
1

Errata List for the book

“A Primer on Scientific Programming with Python

2nd edition

by H. P. Langtangen

Simple typos are not reported in the list below – only more serious errors
that may lead to confusion.

1. Chapter 2.3.2: “Suppose we want to create Cdegrees as−10,−7.5,−15, . . . , 40.”
The −15 after −7.5 should be −5.

2. Chapter 2.4.3, page 70: “Observe that table[4:6] makes a list ... with
three elements” is wrong, as this makes a list of two elements. The sub-
list construction should instead read table[4:7] both in the interactive
session and the running text.

3. Chapter 2.6.2: The data goes from 1929 up to and including 2009. The
formula n = 2010 - 1929 + 1 must therefore be replaced by n = 2009

- 1929 + 1 in the file sun_data.py and the code snippet from the file
found in the book.

4. Chapter 3.3.2, equation (3.6): the f in front of the first sum should be
replaced by the number 4.

5. Exercise 5.13, page 232: The j in the formula right below (5.16) should
be replaced by i, i.e., the denominotor should read xk − xi.

6. Exercise 6.11: The file path src/basic/lnsum.py is wrong. The right
location is src/funcif/lnsum.py.

7. Page 440: The syntax super(Line, self).methodname(arg1, arg2, ...)

is wrong. The correct syntax is super(Parabola, self).methodname(arg1,

arg2, ...) (super takes the subclass name as first argument). Also, for
super to work, the class must be new-style class, i.e., derived from object.
One then has to define class Line as

class Line(object):
...

8. Page 626: The code snippet must compare ForwardEuler and RungeKutta4:

T = 3
dt = 1
n = int(round(T/dt))
t_points = linspace(0, T, n+1)
figure()
for method_class in ODESolver.ForwardEuler, ODESolver.RungeKutta4:

method = method_class(f)
method.set_initial_condition(1)
u, t = method.solve(t_points)
plot(t, u)

2

legend(’%s’ % method_class.__name__)
hold(’on’)

t = linspace(0, T, 41) # finer resolution for exact solution
plot(t, u_exact)
legend(’exact’)
title("u’=u solved numerically")

9. Page 637, Exercise E.9: The Problem class should take only h, Ts, and
T (0) as attributes (t1 and T (t1) can be used for estimating h). The
estimate_h method should take t1 and T (t1) as arguments, compute h,
and assign it to self.h.

10. Page 647, Exercise E.32: The code examples for parsing command-line ar-
guments in are typical when using the getopt module to parse command-
line arguments, but the text in the exercise refers to Chapter 4.2.4, which
(in the 2nd edition of the book) describes the module argparse for pars-
ing command-line arguments. The text in this exercise becomes clearer
if one simply skips reading the if option == ... lines in the code ex-
amples. Adapting the example in Chapter 4.2.4 to Exercise E.32 is not
straightforward as we want to have pi and other mathematical symbols
in the values on the command line. To this end, treat all command-line
arguments in argparse as strings and perform explicit type conversion in
the get_input function. Here is an example.

def get_input(T=4*pi,
dt=4*pi/40,
initial_u=1,
initial_dudt=0,
method=RungeKutta4,
m=1.0,
friction=lambda dudt: 0,
spring=lambda u: u,
external=lambda t: 0,
u_exact=None):

...
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--dt’, ’--time_step’, type=str,

default=str(dt), help=’time step’)
...
parser.add_argument(’--u_exact’, type=str,

default=’None’, help=’exact solution’)
...
args = parser.parse_args()
Modify/interpret string arguments
dt = eval(args.dt)
T = eval(args.T)
...
if args.u_exact == ’None’:

u_exact = None
else:

u_exact = StringFunction(args.u_exact,
independent_variable=’t’)

u_exact.vectorize(globals()) # allow array argument t

makeplot(T=T, ...)

3

One may also use the getopt module instead of argparse.

11. Page 650: self.solver.set_initial_condition(ic, 0.0)must be self.solver.set_initial_condition(ic)
since the initial t value is supposed to be given in the time_points array
argument to ODESolver.solve.

12. Page 652, Exercise E.36: The call to read_cml_func requires SciTools
version (at least) 0.8.3. The call must also look like

self.spring = read_cml_func(’--spring’, lambda u: u, iv=’u’,
globals_=globals())

Equivalent:
self.spring = read_cml_func(’--spring’, ’u’, iv=’u’,

globals_=globals())

Here, the second argument is the default expression used when there is
no --spring argument on the command line, and iv denotes the name
of the indpendent variable if a mathematical string expression is given
on the command line. The collection of all global names in the call-
ing program (globals()) must be passed on to read_cml_func in case
one would like to specify constructions like CubicSpring(1.8) (otherwise
read_cml_func cannot know about the name CubicSpring).

The alternative to using read_cml_func and specifying values on the com-
mand line is to set the values directly in the program, as outlined in the
exercise.

