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Abstract

Pervasive coverage and continuous connectivity of Mobile Broadband (MBB) networks are common goals for regulators and
operators. Given the increasing heterogeneity of technologies in the last mile of MBB networks, further support for seamless
connectivity across multiple network types relies on understanding the prevalent network coverage profiles that capture different
available technologies in an area. Correlating these coverage profiles with network performance metrics is of great importance in
order to forestall disturbances for applications running on top of MBB networks. In this paper, we aim to profile MBB coverage and
its performance implications from the end-user’s perspective along critical transport infrastructures (i.e., railways in Norway). For
this, we deploy custom measurement nodes on-board five Norwegian inter-city trains and we collect a unique geo-tagged dataset
along the train routes. We then build a coverage mosaic, where we divide the routes into segments and analyze the coverage of
individual operators in each segment. We propose and evaluate the use of hierarchical clustering to describe prevalent coverage
profiles of MBB networks along the train routes and classify each segment accordingly. We further analyze the areas we classify
with each profile and assess the packet-loss and HTTP download performance of the networks in those areas.

Keywords: Mobile Broadband, Mobile Coverage, Network Performance Measurements, Data Analysis, Machine Learning

1. Introduction

Mobile Broadband (MBB) access to Internet enables oper-
ators to join mobility and communications towards the com-
mon goal of offering subscribers performance and efficiency
in highly dynamic mobile scenarios. However, Internet access
under mobility brings a number of challenges, including high
probability of service interruptions. A popular example of such
scenarios is the case of travelers regularly commuting on public
transport infrastructures, such as inter-city trains. In this con-
text, tens or hundreds of passengers try to access the Internet
simultaneously for entertainment, communication and work-
related tasks, all while moving at high speeds. During the last
years, railway operators throughout the world have been test-
ing and providing commercial Internet connectivity solutions
aimed at enabling on-board Internet services to train passen-
gers. Various types of communication solutions have been ad-
vanced [1, 2], including cellular solutions, WLAN-based solu-
tions or hybrid terrestrial/satellite solutions.

The performance of cellular-based solutions for on-board
connectivity highly depends on the MBB coverage around the
railway lines. MBB operators are the main providers of cov-
erage maps for other stakeholders, including regulators, sub-
scribers or businesses such as public transport operators. These
coverage maps usually define the status of one radio access
technology (RAT) in a region for a MBB operator. However,
they do not offer information on how end-users actually experi-
ence the distribution of different RATs in the same geographical
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region. For example, the existence of 4G connectivity in an area
does not mean that all end-users are able to use that technology
and it does not necessarily guarantee a good user experience
for the end-users that are able to access it. This may be due to
a number of factors, including specific geography of the area,
variable train speed, number of passengers in the train or con-
gestion in the network. Given the increasing heterogeneity of
technologies in the last mile of MBB networks, user experience
highly depends on support for seamless handovers across multi-
ple network types. Therefore, identifying the network coverage
profiles that capture the distribution of all available technologies
in the same area from the end-user experience is very important.

In this paper1, we focus on profiling the MBB coverage along
the critical railway infrastructure in Norway from the end-user
perspective. In Figure 1, we summarize the workflow we follow
in this paper in order to achieve this goal. Our main objective
is to build a coverage mosaic, where we classify and charac-
terize railway route segments based on the distribution of RATs
along that segment and on how end-users traveling along that
route would experience the service. For this, we use a vast
dataset that we collect through periodic measurements from
custom devices that we strategically place on-board several pas-
senger trains. The dataset is pestered by numerous challenges,
including high volume, the mixture of spatio-temporal coordi-
nates and the presence of categorical variables (i.e., the RAT
value). Furthermore, depending on the deployment of base sta-
tions along the railway routes, the distribution of different RATs
highly varies from one segment to another. Some operators rely

1This paper is an extension of prior work [3] the authors published in the
2016 IFIP International Workshop on Traffic Monitoring and Analysis.
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Figure 1: The workflow we follow to generate the coverage mosaic maps.

on thresholds that are imposed on statistical descriptors to char-
acterize coverage and classify different regions in coverage cat-
egories. Even when envisioning a simple intuitive classification
such as ”good” coverage (where we have dominant 3G and 4G)
or ”bad” coverage (where we have dominant 2G or no service),
there is no consensus on what should be the threshold in terms
of percentage of 3G/4G presence in a certain area in order to
label that area with good coverage. Thus, it is challenging and
cumbersome to use statistical descriptors to define good and
bad coverage. In this paper, we leverage ideas from machine
learning to help us overcome limitations of using classification
rules based on statistical descriptors to characterize coverage.
More specifically, we evaluate the use of hierarchical clustering
to characterize the distribution of different RATs from individ-
ual MBB providers along the train routes. Clustering facilitates
the efficient manipulation of this dataset and enables us to deter-
mine the salient coverage profiles, characterize them and then
classify the route segments with the proper profile.

The coverage mosaic we produce successfully captures the
mixture of available RATs as experienced by the end-user in-
side the train. Two main coverage profiles emerge from our
analysis, one where 3G is dominant (which we further title
”profile A”) and another where No Service is dominant (which
we further title ”profile B”). This validates the intuition within
the community regarding ”good” and ”bad” coverage. More-
over, through the stability analysis of these coverage profiles,
we demonstrate the need for repetitive measurements (at least
5-10 measurement runs) in order to profile the coverage of a
certain area.

We finally investigate the implications of the coverage pro-
files on network performance by analyzing basic QoS metrics
and application performance by analyzing HTTP performance
metrics. Regarding network performance, we are able to pin-
point the areas with Profile B (”bad”) coverage as trouble zones
with poor performance. These are areas where operators need
to reiterate their coverage evaluation measurements for proper
characterization. We further validate these results with HTTP
download analysis. Considering that mobile operators often de-
ploy performance enhancing proxies, we carry out our analysis

both on the web port (TCP port 80) and a different port (TCP
port 85) in order to understand the impact of proxies on the ap-
plication performance for different profiles. For both operators,
we observe high percentages of successful downloads for Pro-
file A, while noting very low percentages of successful down-
loads for Profile B. We also find evidence of the presence of
a web proxy in Telia’s network, which slightly increases the
HTTP success rate in both profiles.

2. Measurement Setup and Datasets

In this section, we present the measurement infrastructure
that we use in this paper, the measurements we deploy and
the dataset we collect. We summarize the terminology we use
throughout this paper in Table 1.

2.1. Measurement Infrastructure
We use the NorNet Edge [4] (NNE) dedicated mobile broad-

band measurement platform that is designed to measure the per-
formance and reliability of mobile broadband networks from
the user’s perspective. NNE nodes are single board computers
that run a standard Linux distribution and connect to multiple
MBB operators at the same time. The node connects to the
different broadband providers via Huawei E392-u12 modems
supporting 4G/LTE connectivity. The software running on the
NNE nodes ensures that the MBB connections are alive and also
collects network connection information. All the data collected
on the node are periodically transferred to a server hosted in
the back-end and then imported into a database. Note that the
data collected using this platform depends on the hardware used
and, more specifically, the particular implementation of the de-
vice logic.

In order to measure the mobile scenarios, we expand the
NNE testbed to include 6 custom NNE measurement devices
(i.e., NNE nodes) active on the NSB2 regional trains in Nor-
way. Figure 2 shows the routes covered by these trains on the

2NSB is a government-owned railway company operating most passenger
trains in Norway.
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(NNE) Node A NorNet Edge node is a small com-
puter that is used for MBB measure-
ments.

Route A fixed geographical path following a
train route from one city to another city
in Norway.

Run A one way trip in a route when the NNE
node collects data.

GPS point The point in space where a GPS read-
ing is taken.

Metadata Network context information (e.g.,
RAT, signal strength, signal to noise ra-
tio, etc.).

(Geo-tagged)
Data-point

A data-point tagged with a geographi-
cal location (GPS coordinates).

Grid block Square area that results from superim-
posing a grid on the map of Norway for
geographical binning of the geo-tagged
data points.

(Route) Seg-
ment

Portion of the railway route delimited
within a grid block.

Coverage
Chart

The distribution of RATs [2G, 3G, 4G,
no service] over the geo-tagged data
points along a route segment in one
drive run.

Table 1: Terminology.

population density map of Norway. As illustrated in the figure,
the routes traverse a reasonable mix of urban and rural areas.
The regional trains that host our measurement nodes run peri-
odically on 4 different national routes3, covering over 2,500 km.
We define each one-way train trip on a certain route as a run.
We collect data from these nodes for the two largest MBB oper-
ators in Norway, Telenor and Telia for 5 months (from Novem-
ber 2014 to March 2015). In Table 2 we summarize the number
of runs we have for each operator on each route and different
direction. The total number of runs per route ranges from 60
to 150 runs and depends on the public schedule of the trains
hosting the nodes.

The measurements we collect from the NNE nodes operating
aboard passenger trains in Norway mimic the user experience
of the passengers in the train. Under mobility scenarios, as with
all user equipment (e.g. smartphones or modems), the modems
will report a single RAT value, which is the best available RAT,
regardless of how many RATs are available in an area. In other
words, our platform behaves in the same way as the user equip-
ment would and this is exactly what we aim to measure with
our platform: the RAT experienced by the end user.

2.2. Datasets

In this section, we describe the measurements we deploy on
the NNE mobile nodes and the resulting datasets. We transfer
all the data we collect on the node to a server we host in the

3The train routes are: Oslo-Voss, Oslo-Stavanger, Oslo-Trondheim and
Trondheim-Bodø.

Figure 2: Spatial locations of the MBB measurements from the NNE nodes
operating aboard the NSB trains overlayed on the population density map of
Norway. In the population density map, red color indicates highly populated
areas such as cities whereas yellow color indicates thinly populated rural areas.

Route Number of Measurement Runs
Telenor Telia

Oslo - Voss 125 99
Oslo - Stavanger 138 147
Oslo - Trondheim 64 64
Trondheim - Bod 142 136

Table 2: Total number of measurement drive runs per route per operator.

back-end and then import it into a database. Along with the
measurement results, each node also provides context informa-
tion (i.e. metadata) that is very valuable during the analysis.
Furthermore, we access the train GPS location from the NSB
system. For the coverage analysis and its implications, we use
the combination of measurement data (network metadata, UDP
ping and HTTP downloads) and GPS data results, which we
explain in detail in the following sections.

GPS Dataset. We collect the GPS location data from the train
fleet management system to identify the location of NNE mea-
surement nodes and train’s speed during the measurements. The
trains update their GPS locations every 10 to 15 seconds in the
NSB fleet management system.

Geo-tagged (Metadata) Dataset. The NNE nodes monitor
various metadata types including the RAT, which can be No
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service, 2G, 3G or 4G/LTE; different signal quality indicators
(e.g. RSSI, Ec/Io, and RSRQ); network attachment information
(e.g. serving cell identifier, location area code, and tracking
area code); and Radio Resource Control (RRC) state.

We record the metadata when there is a change in the value
of any of these variables, for example, technology change,
cell/LAC change, etc. The device pushes the updates to the
measurement system when changes occur. Moreover, in or-
der to ensure that we always have the latest information about
the connection status in case the modem happens not to inform
the changes in the metadata, we also pull this information from
the device by querying the device periodically. More precisely,
at the beginning of every minute, we record the values for all
above-mentioned variables.

For our analysis, we specifically require geo-localization of
the coverage information from the modems. To obtain this, we
merge the metadata from the device with the GPS information
we retrieve from the train. The trains update their GPS locations
every 10 to 15 seconds in the NSB fleet management system.
For each GPS point, we find the corresponding RAT value (e.g.
No Service, 2G, 3G or 4G) from the metadata readings based on
the timestamp values. We start from the timestamp of the GPS
reading and define a one minute time interval prior to the GPS
timestamp to look for the latest update on the RAT value. Note
that if there is an update on the RAT value in this 1 minute inter-
val, we take the latest update, and this value corresponds to the
RAT value of the GPS reading. As we previously explained,
besides receiving push notifications from the device reporting
any RAT changes, we also pull information from the device ev-
ery 1minute. Therefore, if there are no RAT updates, we used
the last pulled RAT value, and this value corresponds to the lat-
est known RAT value prior to the GPS timestamp. We define
a geo-tagged data point as the GPS point where we can find a
corresponding metadata reading. Note that there are cases when
we do not have metadata information for the GPS reading (e.g.,
when the modem is down, or the IP address is lost). We discard
from our dataset the GPS points with missing metadata infor-
mation. These geo-tagged data points forms our geo-tagged
dataset.

UDP Ping Dataset. To measure network performance and
capture basic quality of service (QoS) metrics (e.g., packet loss,
latency), we send a 20-byte UDP packet every second over each
connection to an echo server that is part of NNE backend and
then record a reply packet from the server. A packet is consid-
ered lost if we do not receive a reply from the server within one
minute.

HTTP Downloads Dataset. In order to measure application
performance, we run periodic HTTP downloads using cURL.
This choice is motivated by the fact that the majority of the In-
ternet traffic in general and MBB in particular is HTTP traffic,
which transfers over TCP port 80. Additionally, MBB operators
are increasingly using transparent proxies that split and acceler-
ate TCP connections, especially for web traffic [5]. Therefore,
in this study, along with TCP port 80, we also consider a differ-
ent port, namely TCP port 85, to understand the effect of these

proxies on the application performance. In order to ensure the
different ports experience similar channel conditions, we per-
form two simultaneous HTTP downloads of size 4MB on the
two different TCP ports for each of our connections once every
hour.

We choose this file size to capture two relevant use cases.
First, the case of business passengers who would like to use the
commute as part of their work day. These users are likely to
engage in downloading and sending email attachments that are
several Mbytes in size. Second, the case of commuters who
are accessing popular video streaming services for entertain-
ing. DASH-based streaming, for example, segments video into
small chunks and send them over HTTP. For a decent streaming
quality, the size of these chunks is a few Mbytes [6]. Note that
we only start a HTTP download if there is coverage. Hence,
this test complements our coverage measurements by examin-
ing whether coverage actually translates into a usable connec-
tivity that lasts for a reasonable duration to allow users com-
pleting a small task. For example, downloading a 4MB file
only takes half a minute with an average speed of 1Mbit/s.

For each HTTP download, we log the start time of the down-
load and set the timeout to 900s from the start time. Addition-
ally, we collect information on the time to first byte (TTFB),
the total download time and the transfer size (as a proportion
of the 4MB target file that successfully transferred during the
download time). We also log the HTTP error code and utilize
it in order to deduce whether the download was successful or
not. We collect this dataset from March until mid-May 2015,
which overpasses the time interval we use to collect coverage
measurements by 6 weeks. This allows us to analyze HTTP
performance assuming that the coverage profiles are stable.

For each MBB provider and for each of the two ports, we
further map the HTTP download data-point to the correspond-
ing GPS location. To this end, we match the GPS dataset from
the NSB fleet management system with the results of the HTTP
measurements from the NNE mobile nodes. For each HTTP
download, we define the download interval and we find the GPS
point that is closest to the download start time and falls within
the download interval based on the timestamps. This allows us
to geo-locate the HTTP download start time.

3. Identifying Coverage Profiles

Our goal is to build a coverage mosaic, where we segment the
routes and classify the coverage of each segment into coverage
profiles that capture the distribution of RATs as the end-user
would experience it. The purpose of building such a coverage
mosaic is to enable further analysis in terms of network perfor-
mance characterization and reliability. In this section, we pro-
pose and evaluate the use of hierarchical clustering to charac-
terize coverage patterns in space and time. However, this comes
with a number of challenges, which we formulate below.

3.1. Motivation and Problem Formulation

Investigating coverage patterns in terms of distribution of dif-
ferent technologies in the same area over time is challenging for
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Figure 3: ECDF of train speed over the segments of each of the 4 routes for a) Telenor and b) Telia.
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Figure 4: ECDF of the number of geo-tagged data points per grid block per route for a) Telenor and b) Telia.
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Figure 5: CDF of the number of train runs (i.e., measurement repetitions) on each route segment with at least 4 GPS points per route. We measure different routes
using hardware devices that operate depending on the schedule of the passenger trains. The Oslo-Trondheim route has the lowest number of repetitions, while
the Oslo-Stavanger and the Trondheim-Bodo route has the highest number of repetitions. In order to have comparable coverage charts for the route segments we
classify, we analyze only the ones where we collected data during at least 75% of the maximum of measurement repetitions. The vertical lines we show in the plots
represent the 75% of the maximum number of measurement runs (on the x axis) we indicate in Table 2. The lines are color-coded to match the Train Route legend.
From the intersection of the ECDF with the vertical lines, we discard from our analysis the route segments at the left of the vertical lines that have less than 75% of
the maximum possible measurement repetitions per route and operator.

three reasons. First, the RAT distribution varies greatly from
one segment to another based on the deployment of base sta-

tions in an area. This information is usually not available from
an objective source. Additionally, connectivity upgrades are
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common and operators do not make their strategies public. Sec-
ond, the geo-tagged dataset is difficult to work with because of
its large volume and spatio-temporal inconsistency (i.e., data
point’s location and time of reading differ from run to run over
the same route). Third, the measurement data is noisy because
of a number of factors, including specific geography of the area,
variable train speed, number of passengers in the train or con-
gestion in the network. For example, all the end-users active in
an area at a moment in time might not simultaneously use the
fastest available RAT. All these reasons make efficient charac-
terization of the network coverage using statistical descriptors
challenging and cumbersome.

To tackle these challenges, we design, implement and eval-
uate a machine learning methodology that can help us charac-
terize coverage patterns in the areas of interest. Our methodol-
ogy contains two separate parts: data morphing and clustering.
First, in the data morphing, we propose the segmentation of
the region of interest in smaller areas and spatially group the
geo-tagged data points in these segments. Second, we focus
on capturing the prevalent coverage profiles and classify each
route segment to a profile accordingly.

Although good or bad coverage may seem like a straight-
forward classification, due to the challenges we present above,
it is surprisingly hard to give predetermined quantitative defi-
nitions of what is good or bad coverage when focusing on the
combination of different RATs in the same area (e.g., is con-
tinuous 2G bad coverage? is it worse having intermittent 3G
coverage? how can one set the thresholds on the RAT dis-
tributions to classify good or bad coverage?). We expand on
this issue in the following Section 3.3. We propose the use of
unsupervised clustering to help us with the classification. The
spatio-temporal heterogeneity of the geo-tagged dataset we col-
lect makes the clustering algorithm a good fit for identifying
patterns in the coverage offered by MBB providers. In par-
ticular, we choose the hierarchical clustering algorithm [7, 8],
which clusters data instances based on their similarity [9], thus
highlighting the prevalent coverage profiles in the region.

3.2. Data Morphing
Our geo-tagged dataset from repetitive runs consists of nu-

merous time-stamped instances of network-specific variables at
different geographic coordinates along the railway routes. We
identify the objects in our dataset as categorical variables (i.e.,
the RAT value) with dynamic location (i.e., the results from the
measurement device does not always come in the same point
in space). The interaction between the spatio-temporal dimen-
sions of the dataset dictates the complexity and challenges in
moving from acquiring the data to drawing knowledge through
data analytics. In order to address these challenges, we begin
by organizing the dataset into instances that we can easily com-
pare.

Spatial binning. We first divide the railway routes into smaller
segments using a fix grid of 2km × 2km tiles that we superim-
pose on Norway’s map. Each square grid block that overlaps
on the train routes contains a segment of the route. The re-
sulting segments are disjoint and uniquely identified by the fix

spatial coordinates of the square grid blocks that contain them.
We then partition the geo-tagged dataset by grouping the data
points that fall along the same route segment.

In order to make an informed decision on the size of the grid
we use for spatial binning, we first investigate the speed distri-
bution of trains, which we depict in Figure 3. We show both
operators to illustrate that the speed of the train affect both geo-
tagged datasets in the same way. We observe that majority of
speeds are between 75-100 kph and in 98% of the time the train
stays below the maximum speed of 120 kph for all the routes.

Recall that the granularity of the GPS data is 10-15 seconds
and in order to have a long enough period to sufficiently cap-
ture the data-plane performance, we need multiple GPS read-
ings within the same bin. Based on the speed distribution, the
smallest possible grid block size that captures at least one GPS
points even at high speeds is 500m × 500m. However, a single
point per grid block is not enough to allow performance analy-
sis. Considering all the above observations, we decide to use a
grid block of size 2km × 2km.

In order to validate our choice, we illustrate the total num-
ber of GPS points within the grid blocks which the train tra-
verses in Figure 4. As expected, due to variation in the speed
and the variation of the route segment lengths per grid block,
the number of GPS points varies. More specifically, for the
Oslo-Trondheim and Trondheim–Bodø routes approximately
75% of the route segments have 4 or more geo-tagged data
points for both operators. For the Oslo-Stavanger and Oslo-
Voss routes the percentage of route segments with 4 or more
geo-tagged datapoints drops to approximatively 65% for both
operators. We leave for future work a detailed analysis of the
impact that the size of the grid we use for spatial binning has
on the coverage patterns we observe. The analysis of the spa-
tial data in terms of spatial sampling patterns is an important
and hard question, and we are currently working on informing
spatio-temporal sampling guidelines based on geographical in-
formation system (GIS) knowledge for network measurement
platforms, such as NorNet Edge or the upcoming MONROE4

platform. As part of our future work, we will also consider
the technical guidelines of Data Specification on Geographical
Grid Systems5 and use INSPIRE reference grid for spatial bin-
ning in order to ease the merging of our (binned) results with
other potential data sources.

Coverage Chart Time Series. After the spatial binning, the
route segment with fix spatial coordinates becomes the object
that we further characterize in terms of mobile coverage. A
route segment is characterized by a variable number of RAT
readings, corresponding to the geo-tagged data points from ev-
ery run that the 2km × 2km area encloses. In this second step,
we transform the categorical variable representing the RAT at
each geo-tagged data point into a set of continuous variables
that show the distribution of each of the RAT values (i.e., 4G,
3G, 2G or noS) over the set of data points along a segment of

4https://www.monroe-project.eu/
5http://inspire.ec.europa.eu/documents/Data_

Specifications/INSPIRE_DataSpecification_GG_v3.1.pdf
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(a) Telenor (b) Telia

Figure 6: The distribution of RAT per route segment for Telenor and Telia along Oslo-Stavanger train route. The x-axis represents the route segment ID and the
y-axis represents the percentage of each RAT for that particular segment using median, first and third quartiles. The points on the figure are the median/quartile
values, while the lines show the fitted curves to these points.

the route. We define the distribution of RAT over one run as
the segment’s coverage chart. For example, if a segment con-
tains 5 different geo-tagged data points [noS, 2G, 3G, 3G, 4G],
then we can derive the coverage chart of the segment for the
measurement run: 2G: 20%, 3G: 40%, 4G: 20%, noS: 20%.

We merge the runs independently of the train trip direction
along a route to generate a coverage chart time series. Note that
due to variations of train speed and the variations on where the
GPS points are sampled, the number of geo-tagged data points
per segment may vary. For example, we might have 3 geo-
tagged data points in one run and 4 geo-tagged data points in
the consecutive run for the same grid. As discussed in the previ-
ous section, our analysis requires a minimum number of 4 GPS
points per route segment per run for each route and operator.
In Figure 5, we illustrate the empirical cumulative distribution
function (ECDF) of number of train runs that generate at least
4 GPS points on each route segment per route and per operator.
We measure different routes using different nodes and depend-
ing on the schedule of the passenger trains that the nodes are
placed, each route has a different number of runs. For example,
the Oslo-Trondheim route has the lowest number of repetitions,
while the Oslo-Stavanger router has the highest number of rep-
etitions. We observe that by selecting 75% of the total runs per
route, we have sufficient number of runs per each route to do the
classification. The dashed vertical lines on the ECDF plots are
color-coded to match the train routes legend and represent the
75% thresholds for the number of measurement repetitions we
require to build the coverage chart time series of each route seg-

ment. Hereinafter, in order to have comparable coverage chart
time series for the route segments we classify, we analyze only
the route segments where we collected at least 4 geo-tagged
data points for at least 75% of the total of measurement repeti-
tions. We discard the route segments at the left of the intersec-
tion of each vertical line with its matching ECDF curve. The
proportion of route segments we discard per router per opera-
tor varies between 37% (e.g., for Telenor on Oslo-Trondheim
or Telia on Oslo-Voss) and as much as 62% (e.g., for Telia on
Trondheim-Bod).

3.3. The Clustering Approach

After morphing the dataset, we reduce the problem to the
matter of quantifying the similarity between the segments’ cov-
erage charts. For the Oslo-Stavanger route, we illustrate the
spatial variation of the distributions of different RATs in Fig-
ure 6a for Telenor and in Figure 6b for Telia. We immediately
observe that, for both operators, the distribution of RATs greatly
varies in the spatial domain, supporting our claim that defining
thresholds on some statistical descriptors of the RATs distribu-
tions to profile coverage is difficult and non-adaptive.

In this section, we present the similarity metric we choose,
the clustering method we follow and the approach we use to
determine the optimal number of coverage clusters. We perform
the clustering of segments on a per-route basis, thus applying
the same methodology on datasets we collect along 4 different
routes.
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Figure 8: Characterization of the coverage profiles we derive using all the data we collect during the 5-months measurements period along the four measured routes
in Norway, for (a) Telenor and (b) Telia. The coverage profile consists of four features we label on the x axis (%2G, %3G, %4G, %noS) that show the distribution
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Similarity metric. In order to calculate the similarity between
two segments, we organize the coverage time series into vec-
tors of coverage charts we measure at each run over a route.
The length of the vector is fix and equal to the number of mea-
surement runs we register on a route. In the case where the
coverage chart for a segment for a run is missing (either due to
hardware issues during the run or due to sifting the data based
on the minimum required number of data points), we populate
the coverage chart with null value or the corresponding cover-

age mode variables. We then use the extended Jaccard mea-
sure [10] to evaluate the similarity between two objects. In
Section 4.2, we investigate the similarity in the measurements
from repeated runs and quantify the number of minimum mea-
surement samples which we can use to characterize each route
segment in terms of coverage as experienced by the end-user.
In Section 4.4, we then generate the per-route-segment cover-
age chart using a fix number of non-null samples. This further
allows us to understand the impact of populating the time series
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of a route segment with null values for the runs when we were
unable to generate the coverage chart.

Clustering method. The clustering method we select is an
average-link hierarchical clustering method, which organizes
the data objects into a multi-level structure, based on the simi-
larity between objects. Such methods consider the distance be-
tween two clusters to be equal to the average distance from any
member of one cluster to any member of another cluster. More
specifically, we employ here Ward’s minimum variance method
for clustering [11], which aims at finding compact, spherical
clusters.

Optimal Number of Clusters. Hierarchical clustering leaves
the task of detecting the optimal number of clusters to the user.
To this end, we evaluate a validity index for different number
of clusters [12]. The number of clusters that generates the best
value for the index is then chosen as optimal. There is no gen-
eral consensus on which validity index should be used. In this
paper, we consider the Silhouette index [13] that represents an
average, over all the clusters, of how similar the data in each
cluster is.

4. Clustering Results

In this section, we run the proposed methodology to charac-
terize coverage along the four Norwegian train routes and then
we analyze the results.

4.1. Coverage Clusters Analysis

We apply the hierarchical clustering method separately to the
coverage chart time-series of the segments covering each of the
train routes. In other words, for each route, we calculate the
similarity between segments’ coverage chart time series and we
group together the segments with similar coverage patterns. We
then determine the optimal number of coverage clusters using
the Silhouette index. For all the four routes and both operators,
the Silhouette index gives 2 clusters, which we detail next.

Prevalent coverage profiles. In Figure 7, we depict the results
for the hierarchical clustering obtained, both for Telenor and
Telia. Each subplot contains in the upper part the dendrogram
of the clustering results, and the tile plot of the coverage clusters
of grid block time series in the lower part. The optimal cluster-
ing of route segments defines the dominant coverage profiles
for the two MBB operators. We observe that the clustering al-
gorithm identifies two main coverage profiles, which we gener-
ically label as coverage Profile A and Profile B. In Figure 7, the
color-coded values of the tiles show that route segments with
similar coverage chart evolution are grouped together.

In Figure 8, we illustrate the characteristics of these two cov-
erage profiles, namely the average RAT distributions [2G, 3G,
4G, noS] over all runs for the segments in the same cluster.
When analyzing the coverage profiles, we note that in the ar-
eas with Profile A, Telenor has around 70% 3G accompanied
with 15% 4G, while Telia compensates with higher 3G avail-
ability (85% 3G) for its slower 4G deployment (5% 4G). This

clearly shows the different deployment strategies of the opera-
tors. Furthermore, we observe slight differences in the profiles
of different routes. For example, the Trondheim-Bodø route
in the Profile A areas of Telia clearly stands out because it has
a lower 3G and higher noS percentage compared to the other
routes. For the Profile B coverage areas, we observe a high
degree of No Service for both operators, which combines with
a smaller ratio of 3G and 2G. The distribution of 2G and 3G
varies considerably among different routes.

Coverage profiles on route. In Figure 9, we show the spatial
distribution of the two coverage profiles along the four train
routes. We observe that Telenor had a slightly larger area with
Profile A coverage than Telia. For both operators, we observe
that coverage Profile B is extensive along the critical transport
infrastructure. This is mostly due to the very challenging ge-
ography of Norway where there are many mountains that the
trains need to traverse. Furthermore, in order to minimize the
difficult mountain crossings during winter, many tunnels have
been built along the railroads. Moreover, in contrast to other
European countries, the rural areas in Norway is very thinly
populated (see Figure 2). Therefore, part of the railroad has
known to have no coverage or only 2G coverage and these are
the areas where an infrastructure improvement is needed.

Next, we analyze the coverage profiles in more detail for the
Oslo-Stavanger route. In Figure 10, we depict the results for
the hierarchical clustering we obtain for Oslo-Stavanger, both
for Telenor and Telia. Each subplot contains the dendrogram
of the hierarchical clustering grouping according to the similar-
ity measures we choose. We group the segments into two main
coverage clusters, namely Profile A and Profile B coverage clus-
ters. We note that for both operators, the two clusters are well
distanced. Additionally, the distances between elements within
the same cluster are relatively small. Thus, the dendrogram al-
low us to clearly observe the separation between the clusters
according to the similarity measure, validating the result of the
validity index.

Though, using the Silhouette index, we systematically dis-
cover two prevalent coverage clusters that dictate the cover-
age profiles, we can further divide these clusters into smaller
sub-clusters with more homogeneous profiles. In some cases,
other indexes such as the Dunn or DB indexes indicate a larger
number of clusters, because of the heterogeneity between the
coverage time series of each of two major clusters. We see in
Figure 10 that the coverage clusters contain several coverage
sub-profiles that highlight the predominance of one RAT or the
mixture of several RATs. For example, in the case of Telenor,
we identify 4 different sub-clusters in the Profile A ”good” cov-
erage cluster, underlining the increasing heterogeneity of tech-
nologies in the MBB networks. For future work, we plan to
collect GPS with a 1 second granularity and further analyze the
impact of sampling on the clustering results.

4.2. Coverage Clustering Stability
In this section, we focus on coverage cluster stability and in-

vestigate the minimum number of runs (i.e., different samples
in time) that is sufficient to classify a segment in one of the
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which each was assigned), for (a) Telenor and (b) Telia.
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Figure 10: Clustering dendrograms showing the prevalent coverage profiles
(i.e., Profile A and Profile B ) and the coverage sub-profiles along Oslo-
Stavanger route, for (a) Telenor and (b) Telia. We generate the dendrogram
of the hierarchical clustering according to the similarity measures we show on
the y axis. On the x axis we show the ID for each route segment we cluster.

main coverage profiles, namely ”Profile A” with good coverage
and ”Profile B” with bad coverage. Our goal is to quantify how
much additional information regarding the coverage can each
drive run bring to the clustering problem and when the classi-
fication of a route segment with one of the above-mentioned

profiles is stable.

To this end, we run the clustering approach we explain in
Section 3 for varying number of runs n, where n is between 1
and 50. Using the resulting coverage chart time series from n
measurement runs, we cluster the segments and separate them
in Profile A and Profile B coverage clusters, which we have pre-
viously established to intuitively stand for ”good” and, respec-
tively, ”bad” coverage. We mention that we use here as input
the results of the prior analysis in Section 4.1 in terms of the
existence of the two main coverage clusters, but the clusters
resulting after each iteration are obviously different from the
ones we obtain when using all the available dataset. We use the
profile characteristics we illustrate in Figure 8 to guide the la-
belling of the coverage profiles at each iteration into ”Profile A”
or ”Profile B”, so we are always trying to understand whether
a segment had ”good” or ”bad” coverage. For example, in or-
der to find the clusters of segments using only 2 measurement
runs (n = 2), we select any pair of runs among all runs and
apply the clustering algorithm. Thus, we obtain an assignation
of coverage profile per route segment, for all routes and both
operators. For each n, we repeat this exercise for 100 different
combinations of n runs out of the ones available on each route.
We obtain 100 different assignation of the coverage profiles per
segment for each size n of the set of runs we use as input. In
order to gauge the differences between the 100 coverage profile
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assignments for every n input measurement runs, we calculate
the similarity between these 100 coverage profile assignments.
We use the Jaccard distance [10], which is well-defined for bi-
nary vectors (for each segment, we assign 1 for Profile A and 0
for Profile B).

In Figure 11 we show the average Jaccard distance between
the coverage profile assignments as a function of the number of
runs we use as input. We show this for each operator and every
route we measure. We conclude that individual runs are highly
dissimilar, generating highly variable assignations of coverage
profiles for the analyzed grid blocks. This is reflected in Fig-
ure 11 with the value of the average distance corresponding to
the number of runs equal to 1. However, we observe that, in or-
der to obtain a stable coverage profile assignment to each route
segment, the minimum number of drive runs required is be-
tween 5 and 10. This result is consistent over all the routes, for
both operators.

4.3. Coverage Profile Adaptability
Previously, we determined that 5-10 measurement runs bring

enough to decide whether a route segment belongs to Profile
A or Profile B. In this section, we aim to capture the evolution
over the measurement period for these two coverage profiles in
terms of the average distribution of RATs over the route seg-
ments that fall within each coverage cluster. Here, we assume
we have a set of consecutive runs per segment. We then use a
sliding window of 10 measurement runs and employ the clus-
tering approach we propose in Section 3 to assign each segment
to the good or bad coverage cluster. In other words, clustering
is done based on the data collected over 10 consecutive runs
per segment where the first run is shifted in time. For exam-
ple, the first clustering results considers the first 10 runs in a
segment while the second clustering results consider 10 runs
starting from the second run in the same segment. This analysis
allows us to capture the technology upgrades over the period of
5 months we measure. In Figure 12, we exemplify this analy-
sis for the Trondheim-Bodø route, which is the one where we
collect the highest number of measurement runs. We note that
the coverage profiles are overall stable for both operators. How-
ever, for Telenor we observe a slight increase in the 4G distribu-
tion in the areas with Profile A coverage. Also, there is a small
improvement in the 3G distribution in the areas with Profile B
coverage along the Trondheim-Bodø. More specifically, in the
first 20 repetitions of deriving the RAT distribution in the ar-
eas with Profile A, the average 4G distribution is 14.8% and in
the final 20 repetitions, the average 4G distribution increases to
18.6%. Similarly, in the areas with Profile B coverage, we note
that the initial average 3G distribution of 8% increases slightly
to 9.8% over the last 20 repetitions of coverage profiling us-
ing a temporal sliding window of 10 runs. This shows that our
methodology is capable of capturing technology upgrades in
the operators’ networks.

4.4. Coverage Clustering Optimization
In the previous section we show that the similarity between

different measurement runs is high and to obtain a stable cov-
erage profile assignment to each route segment, we can reduce

the number of distinct drive runs to as little as 5 to 10 runs.
In this section, we re-run the clustering analysis of the route
segments for each route using only the latest 10 different mea-
surement runs per route segment. We then analyze the cover-
age profiles and investigate whether the coverage profile assign-
ment changes significantly compared to when we were using all
available measurements.

For each operator, for each route and for each route segment
we select where applicable the results from the latest 10 mea-
surement runs. Using this new dataset, we re-run the same
clustering algorithm, using the extended Jacccard distance as
similarity metric, the Ward grouping algorithm to cluster route
segments and the Silhouette index to derive the number of cov-
erage profiles. We note that the measurement runs that provide
the coverage samples may differ for distinct grid blocks. As
we previously note in Section 3.3, during some measurement
runs, the coverage chart for a route segment might be missing
because we were unable to characterize the coverage along the
route segment. This may happen either because of insufficient
measurements along the route segment to generate a coverage
chart (according to the thresholds we impose), lack of coverage
and subsequent impossibility of measuring with our mobile de-
vices or device issues. Considering the latest 10 samples of the
coverage chart for a route segment irrespective of the run allows
us to avoid the artificial population of the coverage chart with
null values. We continue calculating the similarity between
route segments using the extended Jaccard distance. Based on
this, we then group the elements and observe the coverage clus-
ters that further dictate the prevalent coverage profiles.

We illustrate in Figure 14 the characteristics of the coverage
profiles that correspond to the clusters of route segments. When
comparing these results with the coverage profiles built using
all the available data, we observe similar coverage profiles.
Especially on the Oslo-Voss, Oslo-Stavanger and Trondheim-
Bodø routes for both operators the coverage profiles are re-
markably similar. We draw the same conclusion for Telia on
the Oslo-Trondheim route. However, in the case of Telenor’s
MBB service along the Oslo-Trondheim route, we note that
the route segments with Profile B coverage have comparable
noS/2G/3G/4G distributions within the profile, indicating that
along these segments we recorded frequent RAT changes from
the measurement device. Unlike for the route segment along
the same route with Profile A coverage, where 3G is obviously
dominant with 80% ratio, in this coverage profile there is no
clear dominant RAT along the route segments, even if noS has
the highest ratio of more than 35% in average. Despite the fact
that we register quite significant 4G presence in Profile B, the
coverage is patchy.

This difference from the previous clustering result comes
from the fact that by considering the route segments along the
route with exactly 10 different measurement repetitions, we are
able to analyze a larger proportion of the route but discard the
end-user experience by not accounting for the cases when the
device was not able to measure any RAT. In Figure 13, we il-
lustrate on a Norway map the route segments we were able to
analyze and profile using a coverage chart time series derived
from the latest 10 measurement runs on each segment indepen-
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Figure 11: Stability of coverage profile assignment in function of the number of measurement runs we use to build the coverage chart time series of the route
segments.
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Figure 12: Evolution of the coverage profiles when using a sliding window of 10 measurement runs to derive them.

dently. When comparing with the coverage mosaic from Fig-
ure 9, we confirm that, indeed, the total number of route seg-
ments we are able to analyze significantly increases. By dis-
carding the measurement instances in some drive runs where
we were unable to generate a coverage chart for a route seg-
ment, we are essentially discarding the cases when the end-user
is not able to connect to the network. Though for the other
routes this does not impact the coverage profiling, in the case of
the Oslo-Trondheim route the coverage patterns seem to shift,
as there is small amount of no service that we measure along
the route (compared to the other routes). Thus, along this route,
the patterns in the coverage evolve from dominant-3G (Profile
A) and dominant-noS (Profile B) to dominant-3G (Profile A)
and patchy-coverage (Profile B) with frequent RAT changes.

For the route segments we previously characterized using all
the coverage measurements collected throughout the 5-month
measurement interval, we investigate whether the coverage pro-
file assignment changes (i.e., the coverage) when we considered
only 10 different measurement samples along the routes. In
other words, we investigate to which degree the route segments
from the coverage mosaic we depict in Figure 9 change cov-
erage profile assignment in the coverage mosaic we depict in
Figure 13. In Table 3, we summarize the number of route seg-
ments that change the coverage profile after reducing the num-
ber of measurement runs to only 10. The fraction of route seg-
ments that change coverage profile assignment varies between
5% (routes like Oslo-Voss or Trondheim-Bod), to as much as

17% (routes like Oslo-Trondheim for Telenor). As noted above,
this is due to the change in the definition of coverage profiles
along the route after discarding the cases where we were unable
to generate the coverage profile of some route segments.

Route # Route Segments (Proportion
Telenor Telia

Oslo - Voss 4 (5.6%) 9 (10%)
Oslo - Stavanger 12 (7.8%) 13 (7.14%)
Oslo - Trondheim 33 (17%) 24 (12%)
Trondheim - Bod 12 (5%) 19 (12%)

Table 3: The number of route segments that change Profile Coverage assign-
ment when using the latest 10 measurement runs per route segment (without
synchronization between runs over the route segments). For each value, we
show in parenthesis the proportion of the total number of route segments these
ones represent.

5. Coverage Implications: Reliability and Performance

In this section, we focus on how coverage profiles correlate
with the performance of the networks from the end-user point
of view. During the performance analysis, we use the profiles
we derive using all the data (see Section 4.1) and we investi-
gate the performance throughout the whole measurement pe-
riod. This analysis opens the future possibility of using the
resulting coverage mosaic with coverage profiles as an indica-
tor for network performance. Furthermore, this will enable the
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Figure 13: Map of the Coverage Mosaic we derive by clustering and analysing the route segments using only the latest 10 measurement repetitions we collect in the
5 months measurement interval. The route segments are characterized by the two different coverage profiles (their color and shape shows the coverage profile to
which each was assigned), for (a) Telenor and (b) Telia.
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Figure 14: Characterization of the coverage profiles we derive using the latest 10 measurement runs per route segment along the four measured routes in Norway,
for (a) Telenor and (b) Telia. The coverage profile consists of four features we label on the x axis (%2G, %3G, %4G, %noS) that show the distribution of the four
RATs over the segments in the same cluster and whose values we illustrate on the y axis.

design of contex-aware algorithms to improve the application
quality of experience for end-users. We now turn to investi-
gating per-profile MBB performance in terms of downtime and
packet loss as key performance measures.

5.1. Uptime

To calculate connection uptime in a time window T , we di-
vide the number of sent packets in T by the length of T . In

our case, T represents the time that the NNE node spends in-
side a grid block, and has a minimum value of 30-45 sec. Fig-
ures 15a and 15b show the CDF of the fraction of uptime for
each route and cluster combination. As expected there are clear
differences between areas with different coverage profiles. For
example, areas with Profile B coverage (”bad” coverage) ex-
hibits very low uptime caused by the high percentage of no
service. Furthermore, there are clear spatial differences be-
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Figure 15: Uptime per route, run and cluster. There is a tight coupling between uptime and the coverage profiles we show in Fig. 8.
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Figure 16: The distribution of packet loss in a grid block for different routes.

tween operators. For instance, the worst performing route in
the Profile B coverage cluster is Oslo-Stavanger for Telenor and
Trondheim-Bødo for Telia. Trondheim-Bødo is the best per-
forming route with Profile B coverage for Telenor. These dif-
ferences indicate that multi-connectivity, i.e. the use of several
operators simultaneously, can improve users experience along
the same route. Analyzing differences in uptime between op-
erators and between routes in conjunction with routes coverage
profiles (see Fig. 8), indicates a tight coupling between cover-
age profiles and uptime.

5.2. Packet loss

Figure 16 shows the CDF of packet loss in a grid block. We
measure a significant difference in the extent of loss between
Profile A and Profile B coverage clusters. Loss, however, re-
mains high in the areas with Profile A (”good” coverage) cov-
erage. Between 30% and 50% of our samples, depending on
the operator and route, exhibit more than 1% packet loss. This
can be explained by the co-existence of different RATs and the
need for frequent handovers in the areas with Profile A cover-
age. Further, we observe that the ranking of route segments
with Profile A coverage in terms of packet loss matches their
ranking in terms of uptime. There is, however, less similarity
between the Profile B coverage routes loss and uptime rankings:

the worst route is always similar. We believe this similarity in
ranking is because packet loss is usually experienced in areas
with challenging coverage conditions (i.e., larger percentage of
no service) which can also lead to a connectivity loss. We also
measure how loss in a grid block varies in different runs and
find that irrespective of the operator and route, the standard de-
viation of packet loss is twice as much the mean for at least
50% of the grid blocks. Interestingly, this variability is higher
for areas with ”Profile A” coverage (which can be perceived as
”good” coverage), which underlines the fact that one-off mea-
surements are not enough to make conclusions about perfor-
mance under mobility.

6. Coverage Implications: Application Performance

In this section, we continue the analysis from Section 5 on
the implications of the coverage profiles and investigate how
the latter correlate with the application performance as experi-
enced by the end-user. In particular, we focus on HTTP per-
formance and we study TCP port 85 along with TCP port 80
in order to understand the effect of the proxies on the appli-
cation performance. We employ the HTTP Download dataset
we describe in Section 2.2. In order to identify the correspond-
ing route segment for an HTTP download data-point, we use
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the GPS information of the HTTP download data-point to iden-
tify the unique grid-block that contains the GPS location of the
HTTP data-point. Thus, by identifying the grid block, we also
retrieve the corresponding train route segment delimited by that
grid block and its coverage profile.

Next, we first describe how we identify the presence of a
proxy in one of the operator’s networks. We then analyze the
HTTP performance in terms of download success and failure.
Finally, we characterize the HTTP downloads based on the fea-
tures we collect for each data-point.

6.1. Detecting the presence of a proxy

Assessing TCP and HTTP performance is not a trivial task
since there can be several middleboxes on the end-to-end path
that modulate TCP behavior. Transparent web proxies can al-
ter the end-to-end communication in several ways that include
content caching, traffic redirection, object rewriting (e.g. image
compression), and connection lifecycle manipulation. Since we
control both end points (i.e. the HTTP server and client), we
can detect the presence of transparent proxies for web traffic
by inspecting packet traces of a complete HTTP transaction.
Note that proxies’ behaviors like traffic redirection and object
rewriting are not relevant to the test scenario because we are
exchanging immutable content from a single server. Further,
we find that our HTTP server receives an HTTP request and
engages in a packet transfer whenever a download is attempted
meaning that neither operator caches the requested file. To test
for presence of connection lifecycle manipulation proxies, we
perform the following:

• Check if the initial TCP handshake is delayed: Transparent
proxies are known to delay the initial handshake until the
client sends an HTTP GET request [5].

• Inspect TCP roundtrip time measured at the server side:
Presence of a connection splitting proxy pretending to
be the other end of the connection would result in TCP
roundtrip times that are not consistent with the path end to
end delay.

• Cross-match all TCP messages received by the server side
with all messages sent by the client: A mismatch in these
messages confirms the presence of a transparent proxy.

We perform these preliminary tests both for Telia and Te-
lenor. We find evidence that Telia uses a transparent proxy.
For Telenor, we cannot confirm nor preclude the use of a web
proxy. More specifically, we find that Telia’s proxy delays the
initial TCP handshake until the client sends an HTTP GET re-
quest. We also find that server side TCP roundtrip times are
mostly less than 5 msec, which is far lower than a typical RTT
in a MBB network. Finally, we find a clear mismatch between
TCP messages received by the server side with all messages
sent by the client. The server received a receiver window full
messages that were not sent by the client. By doing this, we
believe that the proxy was attempting to slow down the server
without reducing the size of its congestion window. Note that

this evidence is only found when accessing content over tra-
ditional web ports (e.g. ports 80 and 8080). We detail in the
following section the impact of the web proxy in both coverage
profiles.

6.2. HTTP Download Success/Failure
In Figure 17, we show the breakdown of the HTTP dataset

based on the coverage profile of the route segment where each
download initiated. We observe that there is a large difference
between the sample sizes of HTTP downloads in Profile A and
Profile B. For Telenor, there are 8 times less data-points along
Profile B route segments than in Profile A route segments. Sim-
ilarly, for Telia there are 5 times less data-points initiated in Pro-
file B route segments. This is reasonable though since, based on
the coverage profiles’ characterization in Section 4, Profile B
has a large degree of No Service in the RAT distribution. Thus,
it is likely that several of the HTTP downloads we schedule in
the areas with Profile B coverage cannot start because of the
lack of connectivity.

Moving downwards through the HTTP tree in Figure 17,
we observe the separation for each coverage profile, based on
the operator (Telenor/Telia) and the port number (port 80/85).
For each sub-branch, we then break apart the successful/failed
downloads and calculate the corresponding number of route
segments (RS). A download is labeled as failed, if it does not
conclude with transferring the whole 4MB file, or if cURL ex-
its with a non-zero code. The later happens when cURL fails to
complete the initial handshake, or when network connectivity is
lost while downloading the file. We observe that in the case of
HTTP downloads that start along a route segment with Profile
A coverage, the rate of success is very high. While we observe
comparable high success rate in both ports (84%) for Telenor,
we note that for Telia the rate of success in port 80 (92%) is sig-
nificantly higher than in port 85 (85%). Given that the measure-
ment setup is such to ensure the same conditions for downloads
in port 80 and 85. This difference in performance indicates that
web content served over port 80 in Telia enjoys a differential
treatment because of the use of transparent web proxies.

For the HTTP downloads that initiate along route segments
that have Profile B coverage we observe, as expected, that the
rate of failure is very high for both operators. Similar to the
case of HTTP Downloads that initiate along route segments
with Profile A coverage, in the case of Telia there is an obvi-
ous difference between the failure rate in port 80 (64%) and the
one in port 85 (71%). However, the overall failure rate in Te-
lenor (97%) is much larger than the one in Telia (70%), though
the sample sizes in both cases are comparable. Apart from ac-
counting for the benefits of using a middlebox for performance
enhancements, we can get more intuition into what may be the
cause for this difference by analyzing the characterization of
the coverage profiles we depict in Figure 8. We observe that the
coverage Profile B in Telia has a slightly higher rate of 3G and
2G than in Telenor. Also, overall we observe that the number
of route segments we classify with Profile B in Telia is higher
than the one in Telenor. This is apparent also from the tile plot
we depict in Figure 7 for the Oslo-Stavanger route, where the
Profile B cluster is 30% larger in Telia than in Telenor. Also,
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Figure 17: Breakdown of the HTTP downloads dataset per coverage profile, operator (Telenor and, respectively, Telia) and per port (for each operator, we measure
port 80 and port 85 at the same time).

we observe that the two clusters of route segments we use to
define coverage profiles are more homogeneous and better dis-
tanced in the case of Telenor than in the case of Telia. This
explains why for Telenor most HTTP downloads that initiate
along route segments with Profile B coverage end in a failure,
while for Telia as much as 30% of them succeed.

6.3. HTTP Download Characterization

As we previously described in Section 2.2, we characterize
each HTTP download data-point beyond the binary description
of success/failure by measuring the time to first byte (TTFB)
and the transfer size (the proportion of the target file that down-
loaded using cURL). In Figure 18, we show the ECDF for
all the three above-mentioned variables for (a) Telenor and (b)
Telia. In each subplot, we break apart the ECDFs as a function
of the port we measure and also the coverage profile.

In all the ECDFs for the HTTP transfer size and TTFB we
observe the separation between the downloads that initiate in
Profile A route segments and the ones that initiate in Profile B
route segments. The variable that makes the clearest separa-
tion between the two coverage profiles for both operators is the
transfer size (i.e., proportion of target file downloaded). This is
due to the fact that this parameter captures until which point the
HTTP download continued before losing connectivity, which is
important especially in areas with Profile B coverage. For Te-
lenor, we observe that in more than 90% of the Profile B down-
loads the transfer is incomplete, while for approximately 90%
of the Profile A downloads the transfer is complete. This also
validate the previous conclusions we drew from analyzing the
HTTP downloads tree. For Telia, we note that in the case of
HTTP downloads that initiate in Profile B route segments, the
transfer completes for approximately 25% of the cases. This
verifies our observation from the previous section that a slightly
larger degree of 2G or 3G in the RAT distribution in Profile
B for Telia explains the higher proportion of completed HTTP
downloads. We observe only slight differences when analyzing
the transfer size in port 80 and port 85, with a higher proportion
of HTTP downloads that complete in port 80 than in port 85.

7. Related Work

Building accurate and reliable coverage maps has been in
the attention of the community and a magnitude of work ex-
ists in this area. Drive tests are widely used by MBB opera-
tors for coverage assessment and performance monitoring. In
this paper, we argue that piggy-backing mobile broadband mea-
surements onto public transport infrastructure is an efficient,
cost-effective and automated way to perform drive tests. Aside
from the very high costs of drive tests, the data collected from
them usually has a series of shortcomings, including variable
spatio-temporal sampling and limitation of test repeatability.
The drawbacks of drive tests act as incentive for the design of
new methodologies that address these issues [14, 15]. In this
sense, our experimental setup brings the benefit of repeatabil-
ity at a low additional cost. Other apporaches including, for
example, crowdsourcing platforms, may help verify coverage
maps[16], but they also bring additional limitations including,
for example, the lack of control on the measurement device and
lack of repeatability.

Data analytics approaches are receiving much attention from
the community, due to their capabilities to draw useful informa-
tion from large databases collected from the network [17, 18].
Coverage prediction methodologies based on geostatistics[19,
20] in wireless networks constitute another approach in the di-
rection of data analytics. To the best of our knowledge, this pa-
per is the first attempt in mobile coverage profiling using hier-
archical clustering of multivariate time series. Similar solutions
have been proposed in the area of spatio-temporal data mining
with different applications in real life e.g. [21, 22]. This tech-
nique enables us to generate adaptive coverage profiles, which
are based on real measurements and reflect the deployment re-
ality of MBB connectivity solutions and their evolution in time.

In the past years we have seen increased interest in the net-
working community from different parties (e.g., researchers,
operators, regulators, policy makers) in measuring the perfor-
mance of mobile broadband networks. There are mainly three
approaches for measuring the performance and reliability of
MBB networks: (i) crowd-sourced results from a large num-
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Figure 18: CDF of the transfer size and time to first byte (TTFB) for all HTTP downloads on port 80 and port 85 for (a) Telenor and (b) Telia.

ber of MBB users [23, 24, 25, 26] , (ii) measurements based
on network-side data such as [27, 28, 29, 30] or earlier work
including [31, 32] and (iii) measurements collected using ded-
icated infrastructure [33, 34, 35]. Network-side and active tests
can be combined in the so-called ”hybrid measurements” ap-
proach, as implemented e.g. in [36]. In this paper, we collect
data from a dedicated infrastructure in order to have full control
over the measurement nodes, allowing us to systematically col-
lect a rich and high quality dataset over a long period of time.
Unlike previous efforts that ran performance measurements, we
focus on coverage and its implications in terms of network (e.g.
packet loss) and application performance as experienced by end
users.

Several studies focused on the causes of packet loss in
MBB networks. Different groups blamed RRC state transi-
tions [37, 38, 39, 40, 41] and showed that state demotions result
in significant loss. Gember et al. compared packet loss on idle
and near active devices and found loss rates on idle devices to
be 26% higher and likely to be caused by differences between
cell sectors [42]. Xu et al. discussed the effect of bursty packet
arrivals and drop-tail policies employed by the operators [5].
RNC-level performance analysis of UMTS networks identified
correlations between RTTs and loss and their dependency on
diurnal patterns and overloaded NodeBs [41]. Another study
presented a framework for measuring the user-experienced re-
liability in MBB networks, and showed how both radio condi-
tions and network configuration play important roles in deter-
mining reliability [35]. In a recent work [37], the authors con-
ducted a large-scale measurement study of packet loss in MBB

networks. The study showed that a significant fraction of loss
occurs during pathological and normal Radio Resource Control
(RRC) state transitions and the causes of a significant part of
the remaining loss lie beyond the radio access network. Packet
loss has also been investigated for mobility scenarios. [43] stud-
ied TCP performance in HSPA+ networks on high-speed rails
and showed that the number of handovers is proportional to the
increased loss rates for high speeds. Similar observations were
made in a study by [44], showing that most HTTP sessions with
inter-RAT handovers are abandoned. [45] measured HSPA per-
formance on the move to be greatly different from static HSPA
performance. In particular, they observed that the final results
of handovers are often unpredictable and that UDP packet loss
at least doubles during handover periods. Although these stud-
ies considered different aspects of packet loss for stationary and
mobility scenarios, to the best of our knowledge, our paper is
the first study that ties the coverage with network reliability
analysis by showing how coverage profiles can be used as an
indicator for mobile broadband reliability.

In this paper, we also study the implication of the coverage
mosaic on the application performance by measuring and ana-
lyzing HTTP downloads. The analysis of HTTP allows us to in-
vestigate the presence of transparent web proxies that operators
might be deploying in their networks. Performance enhancing
middleboxes are widely deployed in Internet and it is of great
interest to measure and characterize the behavior of them espe-
cially in MBB networks where the resources are scarce. One
of the early studies in this domain investigated the web perfor-
mance of different mobile Internet access technologies (GPRS,
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EDGE, UMTS and HSDPA) with and without the web-proxy
[46]. The impact of middleboxes on measurements was ex-
plored in [47] where the authors proposed a methodology for
measurements in MBB networks. Farkas et al. [48] used nu-
merical simulations to quantify the performance improvements
of proxies in LTE networks. The most thorough analysis to
characterize the behavior and performance impact of deployed
proxies on MBB networks was carried out in [49] where the au-
thors enumerate the detailed TCP-level behavior of MBB prox-
ies for various network conditions and Web workloads. Al-
though the common belief is that the proxies provide perfor-
mance benefits, Hui et al. [50] showed that proxies can actually
hurt performance by revealing that direct server-client connec-
tions have lower retransmission rates and higher throughput.
Wang et al. [51] showed how MBB middlebox settings can im-
pact mobile device energy usage and how middleboxes can be
used to attack or deny service to mobile devices. While these
studies focus on the performance of proxies on MBB networks,
they have not consider the effect of proxies on the reliability
and packet loss.

8. Conclusions and Future Work

MBB networks are the key infrastructure for people to stay
connected, especially in high mobility scenarios (e.g., when us-
ing public transport). MBB coverage profiling from the end-
user experience while on critical public transport routes are of
great importance to many stakeholders. At the same time, this is
a challenging problem, since even a straight-forward classifica-
tion of coverage into ”good” or ”bad” is very difficult to grasp
in quantitative thresholds. In this paper, we evaluate the use
of hierarchical clustering to build a coverage mosaic of MBB
technologies in an area and analyze its implications in terms of
network performance and application performance. By piggy-
backing network measurements onto public transportation ve-
hicles via the NNE platform, we first obtained a unique dataset
that (i) captures the coverage and performance from user’s per-
spective and (ii) provides repetitive measurement runs on the
same route, in similar conditions. Moreover, an important perk
of such measurement platforms is allowing other parties, in-
cluding public transport companies, to assess and compare the
MBB coverage along their infrastructure to verify their service
level agreement. We then leveraged hierarchical clustering in
order to identify and characterize prevalent coverage profiles.
Though in this study we look at the case of railways in Norway,
the methodology can easily be generalized for running a similar
study in other regions or applying it to a different datasets, (e.g.
crowd-sourced data). A copy of the dataset we used in this pa-
per is available for open access in Zenodo6, as well as the code
for the clustering approach.

Our results reveal that the clustering approach can accurately
group together regions with high similarity in terms of cover-
age. Based on the mixture of RATs and the time-domain evo-
lution, two main coverage profiles emerge: Profile A -where

6http://dx.doi.org/10.5281/zenodo.47707

3G dominates, and Profile B - where No Service dominates.
This maps onto the general intuition of ”good” and, respec-
tively, ”bad” coverage. We then analyze the identified cover-
age profiles, both in terms of stability and performance. The
stability analysis investigates the similarity between different
runs over the same route, with the express purpose of indicating
the amount of measurement repetitions we require to accurately
observe stable coverage profiles. We find that we need at least
5 to 10 measurement runs in order to achieve a stable cover-
age profile in an area. We then focus on how coverage profiles
correlate with MBB and also application performance from the
end-user point of view. For this, we first assess packet loss per-
formance per coverage profile and find that it highly varies for
areas with Profile A coverage. This result is counter-intuitive
because Profile A presents a high percentage of superior RATs.
This indicates that, although we can derive this profile with few
measurement runs, further characterization of the performance
requires more analysis, e.g., correlation with the network con-
gestion and measurement time of the day.

We take this analysis further and investigate the implication
of the coverage profiles on the application performance, with a
focus on HTTP traffic. We observe that in the route segments
with Profile B coverage, the rate of failure for HTTP downloads
is very high, while in the route segments with Profile A cover-
age, the HTTP downloads succeed with a high rate. For Telia,
however, we note a rate of 30% of successful downloads even
in Profile B coverage, while for Telenor this rate is very small,
less than 5%. This is an artifact of the fact that the two clusters
of route segments we use to define coverage profiles are more
homogeneous and better distanced in the case of Telenor than in
the case of Telia. While assessing TCP performance we also try
to detect the presence of middleboxes that operators might de-
ploy in their networks, such as transparent web proxies. While
analyzing the characteristics of the HTTP downloads, we dis-
cover the impact of what seems to be a web proxy in Telia.
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