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Abstract—In this paper, we investigate low-complexity,
receiver-driven strategies for the transmission of two correlated
sources in a multiple access quasi-static fading channel. We
consider two different transmission modes at the physical (PHY)
layer depending on the average signal to noise ratio (SNR) of the
involved Rayleigh fading channels. The two modes that are al-
lowed are orthogonal transmissions and interfering transmissions
with successive interference cancellation (SIC) decoding. Further,
we consider the sources are compressed independently while
they are jointly decoded with an adaptive linear minimum mean
square error (MMSE) algorithm. Hence, the receiver selects the
combination of a PHY transmission mode that should be used at
the sources, together with the adaptive MMSE-based estimation
of each source. We show that in different SNR regimes, a different
transmission strategy is optimum, that is in the low SNR regime
interfering transmission together with MMSE decoding is better,
while in the high SNR regime orthogonal transmission is superior.
Both schemes outperform distributed source coding (DSC) based
approaches regardless of the degree of the correlation of the two
sources.

I. INTRODUCTION

The most well-known example of correlated data sources
are sensors that collect observations correlated in space and/or
time. The data are typically collected with the help of a
wireless sensor network (WSN). In such a system in order to
reduce the communication bandwidth, increase robustness to
channel errors, and eventually improve the estimation accuracy
of the source signal, all the source and channel transmission
options should be explored. In this paper, in order to shed light
to different practical low-complexity schemes for communicat-
ing the correlated sources, we consider a scenario where two
continuous random correlated sources are transmitted over a
quasi-static Rayleigh fading multiple access channel (MAC).

For continuous correlated sources, the optimal source cod-
ing strategy for a given bandwidth is Wyner-Ziv DSC [1],
[2] where correlated sources are compressed separately and
decoded jointly, i.e., the signal from one source is used as side
information at the joint decoder (in Figure 1, we assume that
this is source Y ). However, the Rate Distortion (RD) function
for a quasi-static fading channel is not trivial to characterize
since the side information may not be available leading to the
need for a lossy RD function. Early works considered the lossy
RD function of Wyner-Ziv DSC [3], and modeled the impact
of lossy side information from a fading cooperative link [4].
In [5], the authors derived distortion bounds for the case of
two correlated sources compressed with DSC. In our previous
work, we considered the lossy transmission of two correlated
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Fig. 1. System model for the transmissions of correlated sources in a
MAC. The dashed lines include the MAC which is a channel coding
problem. Outside the dashed lines we have two correlated sources.

sources compressed with DSC [6]. We investigated the benefits
of interfering transmissions for increasing the capacity of the
channel allowing thus lower distortion1.

Even though the previous studies characterized the RD
performance of DSC in fading channels [3], [4], [5], or even
optimized it [6], this is unfortunately not enough to ensure
optimality in this scenario (i.e., Shannon source-channel sepa-
ration theorem does not hold). Therefore, a joint optimization
of source and channel coding (JSCC) strategy is necessary.
The optimality of such a choice for lossless communication
and a Gaussian MAC was proven in the seminal paper of
Cover [7] with the design of a simple JSCC scheme. For
lossy communication that we are interested in this paper,
Lim et al. [8] proposed a JSCC communication strategy
for the correlated discrete memoryless Gaussian (DM-MAC)
according to which the source and channel coders use the same
codeword. JSCC and the lossy transmission of a continuous
bivariate Gaussian source over a Gaussian MAC is studied
by designing a single source-channel coder [9]. In [10], an
achievable rate distortion region for lossy transmission of two
correlated sources over a discrete memoryless interference
channel (DMIC) as well as Gaussian interference channel was
derived. Overall most of the results for JSCC in our scenario
focus on Gaussian channels, while for the fading case the
complexity of the problem limits the related works. In one
recent work reported in [11], the authors derived bounds of the
distortion exponent for the JSCC problem but for some special
cases of the fading MAC and only for a single source. Even
though there is definitely a need for obtaining robust bounds

1In that work, both sources were not operating under a global power
constraint. This is typically the case with multi-user systems and SIC decoding
since the purpose is to decode as many source packets as possible.



for the setup considered, there is also a need for practical
schemes that can be implemented without the re-design of the
source/channel coders.

In this paper, we propose practical low-complexity strategies
for the transmission of two correlated sources over a fading
MAC under a global power constraint. More specifically, we
propose the use of different transmission modes at the PHY
depending on the average SNR of the involved Rayleigh
fading channels. Regarding source coding, the sources are
compressed independently (sources are agnostic) while they
are jointly decoded with an adaptive MMSE algorithm. Hence,
the complexity is shifted to the receiver that selects the combi-
nation of a PHY transmission mode that should be used at the
sources, together with the adaptive MMSE-based estimation
of each source. The first PHY mode adopts a first stage
successive interference canceling (SIC) decoder at the receiver,
so that we can allow two sources to transmit simultaneously.
The second mode involves orthogonal transmission from the
two sources. Our results indicate that for both orthogonal
and interfering transmissions, our linear estimator (the source
correlation is extracted at the receiver) performs significantly
better compared to Wyner-Ziv DSC (the source correlation is
extracted at the sender) [6]. Furthermore, for both types of
correlation extraction methods (DSC and MMSE), interfering
transmissions outperform the orthogonal transmissions for the
low SNR regime, whereas orthogonal transmission provides
better results for the higher SNR regime. For certain average
channel conditions, our scheme is better regardless of the
correlation between the two sources.

This paper is organized as follows. We introduce the system
model in Section II. We formulate the outage probabilities
in Section III and discuss the adaptive MMSE algorithm in
Section IV. Section V analyzes the proposed strategies for
different source and channel conditions. We conclude the paper
in Section VI.

II. SYSTEM MODEL

We consider a system where Tx and Ty are two terminals in
a wireless network communicating with a common destination.
Each link has flat Rayleigh fading with instantaneous fading
levels hx and hy , and average received signal to noise ratios
SNRx and SNRy . The fading levels are accurately measured
at the receivers, while the transmitters are only aware of the
statistics. We define a packet as a block of N channel uses
and assume the fading is constant for multiple packets.

We assume terminals Tx and Ty have access to two cor-
related sources X and Y respectively, which they wish to
transmit to the destination with minimal expected distortion
in a squared error sense. Without loss of generality, we can
write, Y = aX+Z where Z ∼ N (0, σ2

z) is independent of X
with σ2

z = σ2
y−a2σ2

x and a = ρ
σy

σx
. The sources are zero-mean

jointly Gaussian with the covariance matrix

KXY =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
(1)

where ρ is the correlation coefficient.

For the transmission of the correlated sources, we consider
two different options. First, we assume time division multiple
access (TDMA) among the terminals where each time slot
lasts for one complete packet transmission. At each time slot,
we send K source samples, leading to a bandwidth ratio b =
N
K . For Tx, we assume the number of transmitted information
bits (or source bits) per channel use is Rx. This results in a
compression rate of Rx = NRx

K = bRx bits per source sample.
The corresponding distortion can then be expressed as:

Dx(Rx) = σ2
x2−2Rx (2)

Second, we let Tx and Ty transmit at the same time, hence,
allowing interfering transmission. In the interference cases,
both terminals utilize the total number of time slots. Assuming
Tx and Ty are each utilizing N channel uses with TDMA,
the total number of channel uses for both terminals for the
interfering transmission case is 2N while the compression
rates remains the same. Similar quantities can be defined for
Ty as well.

To ensure a fair comparison of all the tested schemes
all source transmissions are constrained to a specific power
level per each time slot. This means that when orthogonal
transmissions are used for example, then the source transmits
with power Φ while for the schemes that use interfering
transmissions the transmission power for each source is Φx =
Φy = Φ/2. Also the transmit SNR for the two sources is
defined as SNRx = Φx/N0, SNRy = Φy/N0.

To illustrate the effects of the different transmission modes
on the reconstruction of the correlated sources, we consider
four transmission schemes.

• ORT: Each terminal compresses its own signal, ignoring
the source correlation. Each terminal transmits its own
source directly to the destination in its own timeslot, i.e.
orthogonal transmission.

• SIC: Each terminal compresses its own source without
considering the correlation as in ORT. However, in this
mode interfering transmissions are allowed.

• ORT-MMSE: Each terminal compresses and transmits
its own source directly to the destination in its own
timeslot. At the receiver, different from the ORT, the
source correlation is exploited.

• SIC-MMSE: Each terminal compresses and transmits its
own source to the destination. In this mode, interfering
transmissions are allowed and the source correlation is
extracted at the receiver.

III. OUTAGE PROBABILITY COMPUTATIONS

For a given transmission scheme, average channel SNRs,
source correlation and bandwidth ratio, the expected distortion
is a function of the source rates and the amount of channel
coding. We will assume that a complete frame will be dis-
carded if the channel decoder can not correct all the errors.

We define P i as the average probability of state (i), where
i denote whether (X,Y ) is received. Here i ∈ {1, 2, 3, 4}. For
i = 1, the compressed bits of both Tx and Ty are received,
for i = 2 the compressed bits of Tx are received but the bits



for Ty are lost, i = 3 means the compressed bits of Ty are
received but the bits for Tx are lost and finally for i = 4 the
compressed bits of both Tx and Ty fail to reach the destination.

Next, we will illustrate the computation of the outage
probabilities for TDMA orthogonal based transmission as well
as interfering transmission.

A. TDMA based transmission

To compute the average probabilities P i, we consider an
information theoretic approach. Considering complex Gaus-
sian codebooks, for a channel code operating at a rate R bits
per channel use, information is lost when the instantaneous
channel capacity is lower than R, leading to the outage
probability Pout = Pr{C(|h|2SNR) < R} for a point to point
link where C(x) = log(1+x) is the Gaussian channel capacity
and |h| is the fading amplitude.

We will illustrate the computation of P 1 as an example.
Using the outage approach the compressed bits of both Tx
and Ty are correctly received at the destination if:

Rx < C(|hx|2SNRx), Ry < C(|hy|2SNRy) (3)

Note that we have modeled the transmission of additional
parity bits as independent Gaussian codebooks. By taking into
account the above, and the fact that the two transmissions are
independent, we have:

P 1,ORT = Pr{Rx < C(|hx|2SNRx)}Pr{Ry < C(|hy|2SNRy)}
(4)

We can compute the other probabilities P 2,ORT , P 3,ORT and
P 4,ORT similarly. The average distortion for ORT can then be
expressed in terms of error/success probabilities as:

EDORT
x = (P 1,ORT +P 2,ORT)Dx(bRx) + (P 3,ORT +P 4,ORT)σ2

x (5)

EDORT
y = (P 1,ORT + P 3,ORT)Dy(bRy) + (P 2,ORT + P 4,ORT)σ2

y (6)

B. Interfering Transmissions and SIC Decoding

While computing the outage probability for the interfering
transmissions, we follow a similar approach as in the TDMA
case where we modify the SNR expressions such that inter-
fering transmissions are accounted for. The baseband signal
model that is used for the case of interference at the receiver
is:

I = hxXd + hyYd +W (7)

Note that in the above expression Xd and Yd are digital com-
pressed signals. We assume an ordered SIC (OSIC) decoder
is used which means that the stronger signal is decoded first.
For exposition purposes, let us assume that the stronger signal
is hxXd. Then, the instantaneous Signal to Interference plus
Noise Ratio (SINR) for Xd can be expressed as:

SINRax =
|hx|2σ2

xd

|hy|2σ2
yd

+N0
(8)

Now, if Xd is successfully decoded, we can decode Yd with
its respective SINR being equal to:

SINRay =
|hy|2σ2

yd

N0
(9)

If hxYd is stronger signal then we have:

SINRbx =
|hx|2σ2

xd

N0
, SINRy =

|hy|2σ2
yd

|hx|2σ2
xd

+N0
.

At the SIC decoder the validity of the result is verified with
the use of a channel code, i.e., we do not assume perfect
decoding. The channel capacity under SIC can be computed
by replacing the hxSNRx and hySNRy in (3) with the SINR
expressions computed above. We can now write the probability
of receiving both Xd and Yd for the case of interfering
transmissions as:

P 1,SIC = Pr{Rx < 2C(SINRax)), Ry < 2C(SINRay))}
+ Pr{Rx < 2C(SINRbx)), Ry < 2C(SINRby))} (10)

We can compute P 2,SIC , P 3,SIC and P 4,SIC similarly. We
note that for SIC, we do not use the correlation at Tx, hence
the expected distortion can be expressed as:

EDSIC
x = (P 1,SIC + P 2,SIC)Dx(bRx) + (P 3,SIC + P 4,SIC)σ2

x (11)

EDSIC
y = (P 1,SIC + P 3,SIC)Dy(bRy) + (P 2,SIC + P 4,SIC)σ2

y (12)

IV. MMSE RECONSTRUCTION OF CORRELATED SOURCES

Now we describe the estimation algorithm that is used after
the digitally modulated packets are decoded at the receiver.
These packets are the result of SIC. In this case, we exploit
our knowledge of the data model (correlation between sources
X,Y ) that was defined to be Y = αX + Z.

When both signals are correctly decoded with SIC, the
system could then proceed and deliver the packets to the appli-
cation. However, notice that we have two digital observations
contained in Xd and Yd that are correlated. To exploit this, we
define at a finer level the data model of the digital observations:

Yd = αX + Z + qy and Xd = X + qx, (13)

where qx, qy are the samples of the quantization noise that
have variance equal to Dx(bRx) and Dy(bRy). From these
two observations, we will jointly estimate X with MMSE
estimation. This leads to the distortion of X being equal to:

D1
x =

σ2
x

σ2
x( α2

σ2
z+Dy

+ 1
Dx ) + 1

The numerical superscript above indicates the first event, i.e.,
both packets were decoded. The distortion of Y is:

D1
y = min{Dy(bRy), α2D1

x + σ2
z}

The reason for the above expression is because the receiver can
estimate Y since it has the digital compressed signal Yd, that is
hampered by quantization noise qy (with distortion Dy(bRy)).
Or it can estimate it as Ŷ = αX̂ depending which provides
the lowest distortion.



Let us now consider the second event that Xd is decoded
and Yd is not. Then, the distortion of X is equal to:

D2
x = Dx(bRx),

since we cannot avoid the quantization distortion. Similarly as
before, we estimate source Y as Ŷ = αX̂ since now we do
not have any other observation of this signal. Thus we have:

D2
y = α2Dx(bRx) + σ2

z

Note that if we did not use the estimated signal X̂ at all, the
distortion would be equal to σ2

y = α2σ2
x+σ2

z which is clearly
the worst case.

Now, we consider the case where Yd is decoded and Xd is
not. The distortion for Y is then equal to:

D3
y = Dy(bRy)

With MMSE estimation we can also estimate X from our data
model in (13) and in this case the distortion is equal to:

D3
x =

σ2
x

σ2
x( α2

σ2
z+Dy

) + 1

What we do in all these cases is that we check the availability
specific observations, and then we use the knowledge of the
data model to optimally combine the available information
leveraging linear estimation principles. We need an adaptive
MMSE estimation algorithm since we are not interested in
X,Z from our data model, but X,Y where the later is a linear
combination.

Now, the average distortion expressions for the case of
orthogonal transmissions can be written as:

EDORT-MMSE
x = P 1,ORTD1

x + P 2,ORTD2
x

+ P 3,ORT D3
x + P 4,ORT σ2

x (14)

EDORT-MMSE
y = P 1,ORTD1

y + P 2,ORTD2
y

+ P 3,ORT D3
y + P 4,ORT σ2

y (15)

For the case of interfering transmissions, the average dis-
tortion expressions can be written as:

EDSIC-MMSE
x = P 1,SICD1

x + P 2,SICD2
x

+ P 3,SIC D3
x + P 4,SIC σ2

x (16)

EDSIC-MMSE
y = P 1,SICD1

y + P 2,SICD2
y

+ P 3,SIC D3
y + P 4,SIC σ2

y (17)
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Fig. 2. Average distortion with ρ = 0.9, SNRx = SNRy = SNRdB

V. RESULTS

In this section, we carry out the minimization of
(5), (6), (11), (12), (14), (15), (16), (17) numerically and
compare the expected distortions achieved by different modes
for various source correlation and channel link qualities. We
assume σ2

x = σ2
y = 1 and b = 1. We consider a symmetric

scenario where the terminals are at an equal distance to the
destination such that SNRx = SNRy = SNR. We consider
the modes that are discussed in Section II: ORT, ORT-MMSE,
SIC and SIC-MMSE. Furthermore, we present additional re-
sults for the case where the source correlation is extracted at
the sources using Wyner-Ziv DSC as in [6] with one small
modification where we apply the global power constraint as
in all the other modes to ensure fair comparison. For DSC,
we consider both orthogonal transmission (ORT-DSC) and
interfering transmission with SIC decoding (SIC-DSC).

Note that a chosen rate pair jointly affects both EDx and
EDy when correlation is extracted. One way to determine an
optimal assignment of rates and the distortion tradeoff is to
minimize the average distortion of X and Y , (EDx+EDy)/2.
Figure 2 illustrates the achievable minimal average distortion
with such optimal allocation over a wide range of channel
SNRs for a high correlation coefficient (ρ = 0.9). We observe
that joint decoding of correlated sources exploits the signal
correlation very well, hence, reducing the distortion signifi-
cantly. Interfering transmission together with joint decoding
(SIC-MMSE) is more effective in low SNR regime and at
high SNR regime, orthogonal transmission with joint decoding
(ORT-MMSE) provides lower distortion values. Essentially in
the high SNR regime interfering signals are stronger which
means that they cannot be cancelled so effectively, i.e., the
ratio in (8) is relatively low. An important result is that MMSE
can extract source correlation better compared to the DSC-
based schemes in both orthogonal transmissions as well as
interfering transmissions for all SNR regimes. DSC performs
poorly especially for low SNR regime compared to MMSE,
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Fig. 3. EDx versus EDy for ρ = 0.9

however as the SNR gets higher, the performance of ORT-DSC
approaches to the best performing scheme at high SNR,
ORT-MMSE.

To observe the individual and joint effects of interference
and correlation, for a fixed SNR and correlation coefficient,
we vary Rx and Ry , compute the corresponding (EDx,EDy)
pairs and plot the minimum values. Figure 3 illustrates the
EDx versus EDy behaviour for a high correlation coef-
ficient (ρ=0.9), for two different channel signal to noise
ratios, SNRx=5dB and SNRy=20dB. Comparison of ORT
and ORT-MMSE shows how correlation helps to improve the
distortion of X and Y using MMSE at the receiver. We
observe that the proposed method, SIC-MMSE, outperforms
all other modes by reducing the distortion of both X and Y
significantly in the low SNR regime. The reason is that in the
low SNR regime SIC detection ensures better performance for
interference decoding which means that at least one packet
is decoded with high probability. SIC-MMSE also uses joint
detection which means that for highly correlated data between
X,Y when we have at least one observation we can estimate
the other one with high accuracy. On the other hand, in the
high SNR regime, orthogonal based transmission outperforms
the interference-based transmission both with and without
MMSE applied at the receiver.

Figure 4 illustrates the minimum distortion of X and Y as
a function of correlation coefficient ρ for the low SNR regime
(SNRx=SNRy=5dB). For ORT-MMSE and SIC-MMSE, we
observe the expected distortion of both X and Y reduce
as the correlation increases. Introducing interference (SIC
and SIC-MMSE), reduces the distortion significantly com-
pared to the corresponding non-interference modes (ORT and
ORT-MMSE). Joint decoding (SIC-MMSE) provides the lowest
distortion values for both X and Y for both low and high cor-
relation coefficients. We also observe that DSC-based schemes
(ORT-DSC and SIC-DSC) the distortion of Y is constant over
different ρ values while the distortion of X reduces as ρ

increases. This is due to the Wyner-Ziv DSC function that
considers lossy side-information. On the other hand, MMSE-
based schemes (ORT-MMSE and SIC-MMSE) are symmetric
in a sense where as ρ increases, both distortions of X and Y
are reduced since they are jointly decoded at the receiver.

Similarly, in Figure 5 we illustrate the minimum distortion
of X and Y as a function of correlation coefficient ρ for the
high SNR regime (SNRx=SNRy=20dB). Here, in general the
behaviour is similar to the low SNR regime except that orthog-
onal transmission is more beneficial compared to interfering
transmission. Still, MMSE estimation performs better than
DSC for all different correlation values, hence ORT-MMSE
provides the best performance by significantly reducing the
distortion of both X and Y .

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed practical transmission strate-
gies for correlated sources in quasi-static fading channels.
We showed that by compressing each source independently
and applying an adaptive MMSE decoding algorithm at the
receiver, the expected distortion of correlated sources can be
minimized over DSC-based schemes. Even more importantly,
allowing interference is the optimal choice in the low SNR
regime, while orthogonal transmission is superior in the high
SNR regime. Overall, our approach always outperforms DSC-
based schemes indicating the unsuitability of this approach for
fading channels. The proposed scheme is practical since the
sources are agnostic to the use of the proposed scheme, and
they do not need to deploy any new source-channel coders.
Furthermore, other benefits are expected since the channel
access overhead through a MAC protocol is minimized.

In our future work, we first plan to consider a WSN of
several nodes and analyze the performance for such a multi-
source system under the assumption of Gaussian sources. Also
designing an adaptive communication scheme that uses orthog-
onal or interfering transmissions depending on the operating
regime of the system.
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