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Abstract—Multipath TCP (MPTCP) enables the simultaneous
use of multiple links for bandwidth aggregation, better resource
utilization and improved reliability. Its coupled congestion control
intends to reap the increased bandwidth of multiple links, while
avoiding being more aggressive than regular TCP flows on every
used link. We argue that this leads to a very conservative
behavior when paths do not share a bottleneck. Therefore, in
this paper, we first quantify the penalty of the coupled congestion
control for links that do not share a bottleneck. Then, in order
to overcome this penalty, we design and implement a practi-
cal shared bottleneck detection (SBD) algorithm for MPTCP,
namely MPTCP-SBD. Through extensive emulations, we show
that MPTCP-SBD outperforms all currently deployed MPTCP
coupled congestion controls by accurately detecting bottlenecks
resulting in throughput gains of up to 40% in the absence of
shared bottlenecks with two subflows while remaining fair to TCP
in shared bottlenecks. We complement the emulation results with
real-network experiments justifying its safeness for deployment.

Keywords: Multipath TCP, MPTCP, Shared Bottleneck Detec-
tion, Congestion Control, Coupled Congestion Control.

I. INTRODUCTION

When the Transmission Control Protocol (TCP) and the
Internet Protocol (IP) were first specified, Internet hosts were
typically connected to the Internet via a single network in-
terface and TCP was built around the notion of a single
connection between them. Nowadays the picture is rather
different with the rapid increase in the number of hosts with
more than one network interface (multi-homed). For example,
mobile devices today often accommodate multiple wireless
technologies (e.g. 3G/4G and WiFi). Standard TCP is not
able to efficiently explore the multi-connected infrastructure
as it ties applications to network interface specific source and
destination IP addresses.

Multipath TCP (MPTCP) closes the gap between net-
works with multiple paths between destinations and TCP’s
single-path transport by allowing the use of multiple network
paths for a single data stream. This provides potential for a
higher overall throughput and ensures application resilience
if some network paths suffer performance degradation or
failure. MPTCP is designed to look like regular TCP from the
network’s perspective making it deployable in today’s Internet.
The Internet Engineering Task Force’s (IETF) Multipath TCP
working group continues MPTCP’s development and standard-
isation. Available implementations include: Linux distributions
(Debian, Ubuntu, etc.), FreeBSD, iOS, Mac OS and Yosemite.
Current commercial deployments do not exploit MPTCP’s

full capabilities, instead tending to only take advantage of
MPTCP’s resilience characteristics.

Three goals capture the desired operation of MPTCP [1]:

1) Improve Throughput: A multipath flow should perform at
least as well as a single path flow would on the best of
the paths available to it.

2) Do Not Harm: A multipath flow should not take more
from any of the resources shared by its different paths
than if it was a single path flow.

3) Balance Congestion: A multipath flow should move as
much traffic as possible off its most congested paths,
subject to meeting the first two goals.

The first goal is the primary incentive behind the design
of MPTCP [2], while the second design goal guarantees
fairness at the bottleneck. The third goal addresses the resource
pooling principle [3]. Focusing on the first two goals, we
propose improvements to the multipath congestion control
mechanism. Congestion control in a multipath environment
determines how network resources should be shared efficiently
and fairly between competing flows at shared bottlenecks.
Different coupled congestion control algorithms have been
proposed for MPTCP in the literature [1], [4]–[7]. However,
due to the lack of practical Shared Bottleneck Detection (SBD)
mechanisms, the design of these algorithms always assumed
shared bottlenecks, resulting in sub-optimal performance when
this is not the case.

This paper proposes a dynamic coupled congestion con-
trol for MPTCP with a practical shared bottleneck detection
mechanism, namely, MPTCP-SBD. The proposed MPTCP-
SBD congestion control algorithm can dynamically decouple
subflows that are not sharing bottlenecks, unlocking the full
throughput potential of the links. When there is a shared bottle-
neck, MPTCP-SBD keeps the subflows coupled, remaining fair
to competing TCP connections. We designed MPTCP-SBD as
a light-weight extension to standard MPTCP and implemented
it on Linux MPTCP v0.89.5 kernel. Through extensive em-
ulations, we show that MPTCP-SBD can accurately detect
bottlenecks resulting in throughput gains of up to 40% for
the non-shared bottleneck scenarios with two subflows while
remaining fair to TCP in shared bottlenecks. We also confirm
the robustness of the algorithm by showing how it adapts to
shifting bottlenecks. The emulation results are complemented
by real-network experiments that justifies the effectiveness of
the algorithm and shows that it is safe for deployment.
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Figure 1. Bottleneck Scenarios

II. MOTIVATION

In order to motivate the need for MPTCP-SBD, this section
highlights the shortcomings of current MPTCP congestion
control algorithms with respect to their interaction with bot-
tlenecks. Specifically, we looked at Linux implementations
of: uncoupled congestion control where each link applies
standard TCP congestion control (we refer to as Reno1) [8],
[9], Linked Increase Adaptation (LIA) [10], Optimized Linked
Increase Adaptation (OLIA) [11] and Balanced Link Adapta-
tion (Balia) [12]. We evaluated two scenarios from [13]: Non-
Shared Bottleneck (NSB) and Shared Bottleneck (SB).

In Figure 1(a), we illustrate the NSB scenario where two
disjoint paths have distinct bottlenecks. We measured MPTCP
with two subflows (SF), MPTCP-SF1 and MPTCP-SF2, where
each subflow sent over a path. On each path, we also had a
regular TCP flow, TCP1 and TCP2, each competing against
the corresponding MPTCP subflow. The corresponding SB
scenario is illustrated in Figure 1(b). There is a single shared
bottleneck through which all MPTCP subflows (MPTCP-N
where N indicates the number of subflows) and one regular
TCP flow, TCP1, are sent. For both setups, a queue size of
1 Bandwidth×Delay Product (BDP) was used. Background
traffic composed of greedy and rate-limited TCP and UDP
on/off flows also traversed the bottleneck. The traffic genera-
tion details and measurement setup are described in Section IV.

For the NSB scenario, we studied relative performance
of congestion control algorithms in terms of the individual
throughput ratio (i.e. the ratio of each MPTCP subflow with
respect to its corresponding TCP flow) as well as the sum
throughput ratio (i.e. the ratio of all MPTCP subflows to the
sum of the TCP flows). Figure 2(a) shows the comparative
results for the 4 different tested congestion control algorithms.
We observe that all coupled congestion controls (LIA, OLIA
and Balia) have similar performances, where the throughput
ratio is around 0.70 for MPTCP SubFlow 1 (MPTCP-SF1),
0.45 for MPTCP SubFlow 2 (MPTCP-SF2) and close to 0.6 for
the combined result. However, the Reno uncoupled congestion
control (i.e. both subflows run regular TCP) provides a ratio
that is close to 1, which is the desirable result for this particular
scenario. Therefore, the coupled congestion control in a NSB
scenario results in a more than 40% drop in overall throughput
when compared to uncoupled congestion control. Further, this
scenario is aggravated when the number of NSB increases, for
example, with 5 non-shared bottlenecks the penalty in the total
throughput can reach more than 60%.

1Reno refers to congestion control including NewReno and SACK as
implemented in Linux, kernel version 3.14.33.

MPTCP−SF1/TCP1 MPTCP−SF2/TCP2 MPTCP/(TCP1+TCP2)

MPTCP Subflow # / TCP #

 

 

0.4

0.6

0.8

1

T
h
ro

u
g
h
p
u
t 
R

a
ti
o

MPTCP−Reno

MPTCP−Balia

MPTCP−OLIA

MPTCP−LIA

(a) Non-Shared Bottleneck (NSB)

MPTCP−2/TCP1 MPTCP−3/TCP1 MPTCP−4/TCP1 MPTCP−5/TCP1

MPTCP # Subflows / TCP1

 

 

0.8

0.9

1

1.1

1.2

1.3

T
h
ro

u
g
h
p
u
t 
R

a
ti
o

MPTCP−Balia

MPTCP−OLIA

MPTCP−LIA

(b) Shared Bottleneck (SB)

Figure 2. MPTCP Performance in NSB and SB Scenarios with synthetic
background traffic expressed as ratio of MPTCP to TCP flow(s). Boxes span
the 25th to 75th percentile, with a notch at the median and whiskers extending
to the lesser of the extreme point or 1.5 times the interquartile range.

Figure 2(b) shows the relative performance of the different
MPTCP congestion control algorithms for the SB scenario. We
show the ratio of the sum of all MPTCP subflows to competing
TCP at the shared bottleneck for different number of subflows.
We observed that the ration of MPTCP to TCP is close to 1
for all MPTCP coupled congestion control algorithms.

Remark 1: The Linux kernel has packet as the unit
for both congestion window (cwnd) and slow-start (SS)
threshold (ssthresh). Reno defines min ssthresh=2, and all
Linux congestion controls are implemented to enter SS when
cwnd ≤ ssthresh. In MPTCP-OLIA and Balia specifications
[11], [12], min ssthresh=1 is required for connections that
have at least 2 subflows. However, we found out that this
was not honored in the Linux implementation of MPTCP-
OLIA. Based on our preliminary analysis, we observed that
MPTCP-OLIA assigns different rates to the subflows that share
a bottleneck. MPTCP-OLIA with min ssthresh=2 enters SS
more frequently compared to min ssthresh=1, especially for
a larger number of subflows, adversely increasing aggressive-
ness of MPTCP-OLIA. Therefore, in this paper, all figures are
obtained for min ssthresh=1 following the specification.

Summary and discussion of findings: Our analysis shows
that MPTCP’s coupled congestion controls are fair to TCP
in the SB scenario, but do not achieve their fair portion
of the link capacity in the NSB scenario. Based on these
results, we argue that current coupled congestion controls are
unnecessarily conservative when there is no shared bottleneck.
The incorporation of a shared bottleneck detection algorithm in
MPTCP can help to improve this scenario, enabling MPTCP to
get its fair share of the link capacity for non-shared bottlenecks
while ensuring fairness to TCP in shared bottlenecks.

III. SYSTEM DESIGN AND IMPLEMENTATION

The achievable throughput for MPTCP, when there is no
shared bottleneck, is limited as a result of MPTCP’s conges-
tion control design goal 2 (see Section I). This design goal
forces a fairness notion that includes two separate aspects:

1) Fairness to TCP if flows share a bottleneck with it.
2) Fairness such that resource use is limited to the amount of

resources that would be used by a single flow on one of
the paths (called “fairness in the broader, network sense”
in RFC6356 [10]).



These two aspects are intrinsically bound in the coupled
congestion controls of MPTCP. As we will see, shared bot-
tleneck detection makes it possible to untie them, so that we
can support the first aspect without necessarily ensuring the
second. Our intention is not to advocate one particular fairness
notion, but to provide another degree of freedom by enabling
the separation of the two aspects above.

Our goal in this paper is to decouple subflows if they
do not traverse a shared bottleneck, so that they can be-
have as regular TCP and achieve their fair share on their
respective bottlenecks. For the subflows sharing a bottleneck,
we maintain MPTCP’s default coupled congestion control,
MPTCP-OLIA, as it was shown to be fair to regular TCP, see
Figure 2(b) and [6]. In order to achieve this, we implement
a practical shared bottleneck detection algorithm for MPTCP.
In the following subsections, we describe the SBD algorithm
and detail the sender and receiver side implementation together
with the signalling procedure.

A. Shared Bottleneck Detection Algorithm

The current Internet is unable to explicitly inform hosts
about which flows share bottlenecks. Instead, they need to infer
this information from packet loss and delay. Since MPTCP
uses packet loss to indicate congestion, it seems to be a natural
choice for bottleneck detection. However, it is relatively rare
signal in a well-operating network (e.g. <3%), and often not
well correlated across flows sharing the bottleneck. Packet
delay provides a frequent, but noisy signal. Packets traversing
a common bottleneck will encounter quite widely varying
bottleneck queue lengths, with this bottleneck induced delay
being further perturbed by every other device along the path.
This along with differing path lags makes it difficult to
correlate the delay of different flows.

Recently [14], [15] proposed a way of address these issues
using the distribution of packet delay measurements, grouping
flows that have similar statistical characteristics. They use
three key summary statistics as a basis for grouping flows that
share a common bottleneck. [14], [15] propose the use of the
One-Way Delay (OWD) as the base measurement. Although
Round Trip Time (RTT) is easier to measure, it includes noise
introduced by every device on the return path to the bottleneck
delay signal. Therefore, using OWD potentially removes up
to half of the path noise from the delay signal. Since these
statistics are calculated with respect to the mean OWD, only
the relative OWD is required – meaning that sender and
receiver clocks do not need to be synchronised.

Although [14], [15] propose their mechanism for use with
RTP media, we believe that the algorithm is general enough to
apply to MPTCP. We base our MPTCP-SBD algorithm imple-
mentation on the specification and parametrisation from [15],
since it includes improvements to original algorithm in [14].
The algorithm is based on three key statistics: skewness,
variability, and key frequency. Skewness is estimated by
counting the number of OWD measurements above and below
the previous mean. Mean Absolute Deviation (MAD) is used
to quantify the variability. A key frequency characteristic is

quantified by counting and normalising the number of times
a short-term mean OWD significantly crosses a longer-term
mean OWD. Thus, it is a measure of the low-frequency oscil-
lation of OWDs at the bottleneck. We follow [15] calculating
these statistics as:

OWDn =

∑Cn

c=1 OWDc

Cn
(1)

where c identifies a particular OWD measurement over the
interval T , Cn represents n th stored number of OWD mea-
surements in T , the base time interval.

OWD =

∑N
n=1 OWDn

N
(2)

where N is the number of stored base statistics

skew est =
∑N

n=1 skew basen∑N
n=1 Cn

(3)

where

skew basen =

Cn∑
c=1

[
OWDc < OWD

]
−

Cn∑
c=1

[
OWDc > OWD

] (4)

var est =
∑N

n=1 var basen∑N
n=1 Cn

(5)

where

var basen =

Cn∑
c=1

∣∣OWDc − OWDn−1

∣∣ (6)

freq est =
number of crossings

N
(7)

where number of crossings is a count of OWDn values that
cross OWD by more than pvOWD. Note that base calculations
are made for a number of statistics over each T . The imple-
mentation calculates the statistics incrementally with a cyclic
buffer of N base entries (n = 1 is the most recent).

Flows where Skew est (Eq. (3)), var est (Eq. (5)) and
freq est (Eq. (7)) have similar values (within a certain thresh-
old), are grouped together. Flows that are grouped together are
deemed to be sharing a common bottleneck.

Flows are grouped according to the simple grouping algo-
rithm outlined in [15]. Key to this algorithm’s operation is to
only attempt to group flows that are traversing a bottleneck
(i.e. a congested link), since the summary statistics of flows
not traversing a bottleneck are really only a measure of the
path noise. The algorithm does this by only choosing flows
whose estimate of skewness or high packet loss indicates that
they are traversing a bottleneck.

B. MPTCP-SBD Implementation

This section presents MPTCP-SBD’s design and integration
into MPTCP. Our system design is depicted in Figure 3 and
has two main components as highlighted in red: (i) shared
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Figure 3. MPTCP-SBD Design: The MPTCP sender transmits local timestamps with 31 Bits precision in the MPTCP TS option in each subflow’s packet ¬.
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SBD algorithm is implemented in user-space, SBDU). The receiver feeds back the SBD information ¯ to the sender, which uses the information to couple
flows in the same group and decouple those in different groups °.

bottleneck detection mechanism at the receiver (®) and (ii) dy-
namic congestion control mechanism at the sender (°). For
the signalling between the sender and the receiver, MPTCP
options (¬, ¯) are used. One-way delay computations are
carried out at the receiver (­). The implementation is available
for Linux MPTCP v0.89.5 based on kernel v3.14.33.

Referring to Figure 3, the elements are now presented:
¬ MPTCP Timestamp: Since the standard TCP time stamp

option [16] precision is too low in the Linux (v3.14.33) TCP
implementation, we introduced a new MPTCP Time Stamp
(TS) option containing a time stamp with microsecond
precision. It is carried by every data segment leaving the
sender2. The sender fills this field immediately prior to
passing the packet down to the IP layer.

[15] uses packet loss to supplement skewness at extreme
loads. We reserve a flag in the timestamp option in order to
transmit loss counts incrementally.

­ One Way Delay Computation at the Receiver: The relative
OWD is calculated by subtracting the arriving MPTCP TS
from the host’s version of current time. This calculation is
done right after the basic header checksum to avoid extra
delays, introduced by host. These are the input values for
the statistics in Eqs. (3), (5) and (7), which are updated for
the current T interval. The kernel stores the statistics for
the last N intervals. At the end of an interval, the statistics
can be retrieved by the SBD decision mechanism (®).

® SBD Decisions: After every T = 350ms the SBD mech-
anism runs with OWD statistics collected over the last N
intervals. The result of every SBD run is: a) a list of non-
congested flows, and b) a list of flow flows grouped by
common shared bottleneck. We refer to this set of flow
state and groupings as an SBD observation. Every SBD
observation could be sent to the sender directly. However,
we noticed that flows which were first grouped together
can occasionally be separated. This could be due to an
erred SBD grouping decision or a fluctuating bottleneck, i.e.
temporarily congestion abated so there was no bottleneck
for a time. To avoid having the sender reacting to such

2 [17] was used as reference for the design.

transient grouping changes, the mechanism collects 10 ob-
servations and decides that flows share a stable bottleneck if
the majority of the observations are consistent (i.e. the same
observation was made at least 5 times), see Subsection IV-B.
We refer to the result of this 10 observation filter as an SBD
decision. A decision is transmitted to the sender every 3.5 s.

Parts of SBD are implemented in user-space (SBDU) to
aid experimentation3. The parts that are currently imple-
mented in user-space are: Equation 7, grouping and decision
making. All other steps are implemented in the kernel.

¯ SBD Signalling: Grouping information is transmitted in the
form of a vector, mapping each flow to a group identifier.
Non-congested flows have a reserved group ID. This in-
formation is conveyed in the ACKs via an MPTCP option
containing the group ID, flow ID, and decision ID. The
flow ID allows a subflow to inform the sender not only about
itself, but also about others in a round-robin manner. The
decision ID allows the sender to detect when a new complete
decision was received. Note that a decision remains valid
until it is updated by the sender.

° Dynamic Coupled Congestion Controller based on SBD:
The sender, using SBD decision feedback, decouples sub-
flows that are in distinct bottlenecks during congestion
avoidance. We develop MPTCP-SBD based on MPTCP’s
default coupled congestion control OLIA. Let F be the set
of all subflows, M ⊆ F the subset of flows with maximum
cwnd, B ⊆ F the subset of flows that are the best subflows
based on interloss probability estimation and cwnd. OLIA
works as follows: When OLIA is called for a subflow
x ∈ F , it considers all F building M and B sets. The cwnd
update for subflow x is calculated based on M and B, [11].

The SBD feedback is integrated into OLIA with an
additional initial step. Let S ⊆ F be the subset of flows
that share a bottleneck with subflow x. First the subset
S is built containing all flows that share a bottleneck
with x. Subsequent steps follow OLIA, but using S as
the base set instead of F . Moreover, within the subset S,
MPTCP-SBD increases the cwnd of the subflows as for

3A pure kernel implementation of SBD is already under testing.



Table I
SBD MECHANISM PARAMETERS, FOLLOWING [15]

T N Thresholds
(ms) c_s c_h p_f p_s p_v p_mad p_d p_l

350 50 -0.01 0.3 0.1 0.1 0.7 0.1 0.1 0.1

single path TCP, and it also performs load-balancing among
them, maintaining MPTCP’s design goals 1) and 2). When
computing the cwnd for x, subflows that are in distinct
bottlenecks are not considered, and flow x is decoupled
from them. Further, if it can be inferred from SBD decision
that flow x does not share a bottleneck with other subflows,
Reno is used, making x behave like a regular TCP flow.
Remark 2:
The current implementation does not cater for relative clock

skew in its calculation of the summary statistics. In real-
network experiments, the hosts’ clock skew may affect SBD.
Although the skew is usually not significant over the time
intervals of the mechanism, a separate contribution related to
this will be added to MPTCP-SBD.

IV. EMULATION EXPERIMENTS

We first assessed MPTCP-SBD’s performance on an emu-
lation testbed where we have more control and can revalidate
the tests performed by [7] and [13].

A. Measurement Setup

We used the CORE network emulator [18] with MPTCP
for our emulation experiments. We followed the same values
in [7], where for both shared and non-shared bottleneck
scenarios, the bottlenecks had 20 Mbps capacity and 20 ms
RTT. The droptail bottleneck queue was set to 1 BDP (about 35
packets in these tests), which allows for 100% link utilization
with a congestion control that halves its cwnd upon congestion
(which MPTCP does just like TCP Reno) [19], [20]. Since
[13] is not available for a direct comparison in a real system,
we repeat the same experiments scenarios to compare both
mechanisms under similar conditions. Linux MPTCP v0.89.5
was used with maximum socket buffer size recommended
by [21], i.e., buffer =

∑n
i=1 bandwidthi × RTTmax × 2. To

ensure independence between runs, cached TCP metrics were
cleared after each run. We focused on congestion avoidance,
discarding the initial connection phase, analyzing 120s of run.

A synthetic mix of TCP and UDP was generated with
D-ITG [22] as background traffic, creating a more realistic
emulation environment. The TCP traffic was composed of
greedy and rate-limited TCP flows with exponential distributed
mean rates of 150 pps. The UDP traffic was composed of flows
with exponentially distributed mean rates between 50 and
150 pps and Pareto distributed on and exponentially distributed
off times with on/off intervals betwen 1 s and 5 s. Packet sizes
varied with a mean of 1000 Bytes and RTT between 20 and
80 ms. We used similar proportions and traffic characteristics
from [13], [14] to dimension the background traffic.

B. SBD Decision Threshold

As mentioned in Section III-B, the SBD mechanism gen-
erates one SBD observation every T = 350ms and takes a
SBD decision based on a window of 10 observations (3.5s)
in order to increase reliability and remove transients in the
observations. The window size can be adjusted to balance
delay and stability of decision making. For example, a larger
window will increase the delay in reaching a decision, whereas
the shorter window may not be able to effectively eliminate
transients in the observations. We found a window size of
10 to be a good compromise between these two aspects. A
decision is reached based on a simple threshold, counting
how often any two flows were observed to be on the same
bottleneck. In order to show the effect of the threshold, we
ran preliminary experiments. We define a correct observation
such that the SBD arrives at the expected4 grouping for each
case. In other words, a correct observation indicates that all
subflows belong to the same group for the shared bottleneck
scenario, and that all subflows belong to distinct groups for
the non-shared bottleneck scenario.

Figures 4(a) and 4(b) show both NSB and SB scenarios,
depicting the distribution of correct observations within the
SBD decision windows. For the SB scenario, we observed that
in about 90% of all SBD decision windows, 10/10 observations
in the window correctly grouped the subflows into the same
group, regardless of the number of subflows. Similarly, for the
NSB scenario, we observed that in approximately 45% of all
SBD decision windows, 10/10 observations correctly placed
the subflows into different groups.

The decision threshold tunes the stability of the final SBD
decision. For example, choosing a low threshold favors group-
ing yielding more conservative behavior. We use a decision
threshold such that at least 50% of the observations are
consistent (i.e. the same observation was made at least 5 times)
where in a tie event, we bias toward grouping. We found that
this threshold yields good results in a wide range of scenarios.

Remark 3: Our goal was for the SBD decision to favor
coupling to avoid false decisions of decoupling. Note that for
the non-shared bottleneck case, an incorrect decision means
MPTCP-SBD falling back to MPTCP’s normal behaviour.

C. Results

We assessed the performance of MPTCP-SBD in 5 different
scenarios: 1) non-shared bottlenecks, 2) shared bottlenecks,
3) shifting bottlenecks, 4) Active Queue Management (AQM),
and 5) subflows with different base-RTTs.

1) Non-Shared Bottleneck (NSB): We evaluated the perfor-
mance of MPTCP-SBD in terms of SBD decision accuracy and
throughput gains. The SBD decision accuracy is the percentage
of correct decisions over all decisions in a single experiment,
and, subsequently, the average SBD decision accuracy is
computed over all measurements. In Table II, we presented

4Note that in our experiments, we generated background traffic in order to
create bottlenecks. However, due to the traffic characteristics, the bottleneck
may fluctuate during the experiment. Therefore, what we deem the correct
observation may not reflect the actual link condition in some circumstances.
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Table II
SBD Decision ACCURACY IN NSB AND SB SCENARIOS

Scenario 1 Group 2 Groups 3 Groups 4 Groups 5 Groups

NSB-2 0.25 0.75 - - -
NSB-3 0 0.26 0.74 - -
NSB-4 0 0.14 0.15 0.71 -
NSB-5 0 0.02 0.118 0.16 0.702

SB-2 0.97 0.03 - - -
SB-3 0.975 0.018 0.003 - -
SB-4 0.977 0.022 0 0 -
SB-5 0.973 0.024 0.0026 0 0

the average SBD decision accuracy. Our results indicates that
MPTCP-SBD can detect disjoint bottlenecks correctly in 75%
of the cases for 2 subflows and 70% for 5 subflows. In
Figure 5(a), we show the throughput improvement and that the
MPTCP-SBD throughput is about 40% higher with 2 subflows
compared to MPTCP-OLIA by decoupling the subflows.

2) Shared Bottleneck (SB): Similarly, for the shared bottle-
neck case, we evaluated SBD decision accuracy and MPTCP
throughput. In Table II, we showed that MPTCP-SBD can
detect the shared bottleneck with an average accuracy of 97%.
This results in MPTCP-SBD performing slightly more aggres-
sive compared to MPTCP-OLIA regardless of the number of
subflows (see Figure 5(c)). This aggressiveness is due to the
SBD occasionally separating subflows that we expected to be
in the same bottleneck group. Decoupling flows causes them
act like independent TCP flows.

3) Shifting Bottleneck: To show how MPTCP-SBD adapts
to shifting bottlenecks, we consider a scenario where MPTCP
subflows share different bottlenecks at different times. This
scenario is illustrated in Figure 6, where we shift the load from
bottleneck 3 (e.g. shared bottleneck) to bottlenecks 1 and 2
(e.g. non-shared bottleneck) and then back to bottleneck 3.
This way, MPTCP-SBD can detect the transition between non-

MPTCP−SF1/TCP1 MPTCP−SF2/TCP2 MPTCP/(TCP1+TCP2)

MPTCP Subflow # / TCP #

 

 

0.4

0.6

0.8

1

T
h

ro
u

g
h

p
u

t 
R

a
ti
o

MPTCP−SBD

MPTCP−OLIA

(a) NSB Scenario

2             3             4            5

MPTCP with # Subflows / # TCP

 

 

0

0.5

1

1.5

T
h

ro
u

g
h

p
u

t 
R

a
ti
o

MPTCP−SBD

MPTCP−OLIA

MPTCP−Reno

(b) 2, 3, 4, and 5 NSBs

MPTCP−2 MPTCP−3 MPTCP−4 MPTCP−5

MPTCP # Subflows / TCP1

 

 

0.8

0.9

1

1.1

1.2

1.3

T
h

ro
u

g
h

p
u

t 
R

a
ti
o

MPTCP−SBD

MPTCP−OLIA

(c) SB Scenario

Figure 5. MPTCP with and without SBD with 2, 3, 4 and 5 subflows, for
NSB and SB Scenarios with synthetic background traffic. Boxes span the 25th
to 75th percentile, with a notch at the median and whiskers extending to the
lesser of the extreme point or 1.5 times the interquartile range.
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Figure 7. The average percentage of correct SBD observation within a SBD
decision window in time for the shifting bottleneck scenario.

shared and shared bottleneck phases. For the shifting bottle-
neck scenario, the bottlenecks are loaded for 30s, alternating
between SB → NSB → SB → NSB → SB. With shifting
bottlenecks we set other bottleneck interval (30 s) compared
to DWC’s work [13], where they set the bottleneck to shift
at 320 s. Here, we would like to show that even with when
bottlenecks shift over time, within a single experiment, our
mechanism can cope to detect the change.

Note that SBD needs N×T samples to build estimates [15]
(i.e. the mechanism requires memory to detect a shifting
bottleneck). In Figure 7, we illustrated the average percentage
of correct SBD observations within a SBD decision window
versus time. Recall that the SBD decision threshold imposes
that at least 50% of the SBD observations have to be consistent
within one observation window in order to have a decision.
This is shown in Figure 7, where the average percentage of
correct observations are closer to 50% for the SBD decision
windows that come immediately after a bottleneck transition
and this percentage increases in time indicating that SBD
decisions become more reliable and stable.

We define transition delay as the time between the first ex-
pected SBD decision after a bottleneck transition and illus-
trated the distribution of the transition delay in Figure 8(a).
We observed that SBD had an average delay of 7 s (i.e. around
2 SBD decisions) to detect a transition. After the transition,
MPTCP-SBD shows on average 90% accuracy in SB and over
60% accuracy in NSB scenarios as depicted in Figure 8(b).

4) Active Queue Management (AQM): This section shows
MPTCP-SBD’s performance when the bottleneck queue policy
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Table III
SBD DECISION ACCURACY WITH RED FOR NON-SHARED BOTTLENECK

AND SHARED BOTTLENECK SCENARIOS

Scenario 1 Group 2 Groups 3 Groups 4 Groups 5 Groups

NSB-2 0.321 0.679 - - -
NSB-3 0 0.324 0.675 - -
NSB-4 0.041 0.057 0.267 0.658 -
NSB-5 0 0 0 0.366 0.633

SB-2 0.989 0.010 - - -
SB-3 0.973 0.026 0 - -
SB-4 0.968 0.026 0.053 0 -
SB-5 0.962 0.026 0.016 0 0

is changed from DropTail to Random Early Detection (RED)5.
RED marks and randomly drops packets when the average
queue occupancy exceeds a certain threshold, i.e., not nec-
essarily only when the queue is saturated. This changes the
statistical characteristics of the OWD measurements, hence,
SBD’s input. Table III shows that MPTCP-SBD is robust when
the bottleneck queue is RED, for both shared and non-shared
bottleneck scenarios. RED desynchronizes TCP flows making
the bottleneck more stable. In the NSB scenario, we see a
slight drop in detection accuracy with a higher number of
subflows. This is caused by our conservative configuration
of SBD, which prefers grouping over splitting and, therefore,
intermittently groups any two flows observed as being similar
enough. This also means that we cannot always perfectly de-
tect subflows belonging to distinct bottlenecks, however, in the
NSB with 5 bottlenecks, MPTCP-SBD has five independent
uncoupled flows 63.3% of the cases.

5) Subflows with Different Base-RTTs: So far, we have
assumed that the subflows’s base RTTs are very similar. In
this section, we vary the subflows’ base RTT and evaluate
the performance of MPTCP-SBD. For both, shared and non-
shared bottleneck scenarios, we kept one subflow’s RTT fixed
at 20ms and changed the other subflows’ RTTs. The results
and RTT settings are shown in Table IV.

For the shared bottleneck scenario, we observed that having
different base RTTs slightly reduces the SBD accuracy (when
compared to those with identical base RTTs), especially as the
gap between shortest RTT and longest RTT grows. For the
non-shared bottleneck scenario, the difference in base RTTs
improved detection for NSB with 2 and 3 subflows compared
to the scenario where the subflows had the same baseline
RTT, see Table II. However, NSB with 4 and 5 subflows
kept similar detection values. This is due to our conservative
configuration of SBD, however, further investigation in real
non-shared bottleneck setups, is object of future work. This is
a very promising result for the non-shared bottleneck scenario
since in the real world the subflows’ base RTTs are expected
to be vary due to link and queue perturbations.

V. REAL-NETWORK EXPERIMENTS

The experimental analysis of MPTCP-SBD in real networks
is difficult, since the ground truth for bottlenecks is not known.
We look at the performance of MPTCP-SBD within a topology

5Parameters set according to http://www.icir.org/floyd/REDparameters.txt

Table IV
SBD DECISION ACCURACY WITH DIFFERENT RTTS FOR NON-SHARED

BOTTLENECK AND SHARED BOTTLENECK SCENARIOS

Scenario RTTs [ms] 1 Group 2 Groups 3 Groups 4 Groups 5 Groups

NSB-2 20, 40 0.153 0.846 - - -
NSB-3 20, 30, 40 0.014 0.187 0.798 - -
NSB-4 20, 30, 40, 50 0.027 0.055 0.198 0.717 -
NSB-5 20, 30, 40, 50, 60 0.021 0.062 0.092 0.181 0.694

SB-2 20, 40 0.9615 0.0384 - - -
SB-3 20, 30, 40 0.961 0.033 0.055 - -
SB-4 20, 30, 40, 50 0.955 0.044 0 0 -
SB-5 20, 30, 40, 50, 60 0.93 0.061 0.083 0 0
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Figure 9. Real-network experimental setup

constructed over NorNet6 using Virtual Machines (VM) from
five commercial cloud service providers (2x in Europe, 1x
in North America and 2x in Asia) that are connected via
100 Mbps links. Furthermore, we also used consumer hard-
ware with a RaspberryPi connected to a home DSL provider
whose connection is limited to asymmetric rates of 25 and
50 Mbps for uplink and downlink, respectively. The experi-
mental setup is illustrated in Figure 9. In our experiments, we
evaluated the performance under realistic network conditions
with real-network experiments for shared-bottleneck, non-
shared bottleneck and shifting bottleneck scenarios using the
same parameters as in Section IV .

A. Non-shared Bottleneck

For the NSB scenarios, since the server is well-provisioned,
the DSL provider on the client side would normally become
the bottleneck (see Section V-B). In order to create server-
side bottlenecks, we throttled the server links to 50 Mbps with
netem, and used the dedicated VMs to receive background
traffic from the server: via ISP-1 with an average rate of
40 Mbps, and via ISP-2 with 30 Mbps, resulting in two distinct
and separate server-side bottlenecks of 20 Mbps and 10 Mbps,
respectively. In Figure 9, the bottlenecks are created in the lab
network, before the traffic enters both ISP networks.

6NorNet: https://www.nntb.no.
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For the NSB scenario, we observed a mean SBD accuracy
of about 70%7. This results in an average improvement of 20%
in the throughput ratio of MPTCP-SBD compared to MPTCP-
OLIA as illustrated in Figure 10(a). This is lower than the
results presented in Figure 5; the reason is that the mobile
broadband path (SF2) has excessive buffering, i.e., less losses,
and MPTCP-OLIA performs just as well as Reno. Therefore,
MPTCP-SBD can yield an improvement only on SF1 (DSL),
which reduces the overall benefit of MPTCP-SBD. Under
the same conditions, Reno had approximately 25% more
throughput than MPTCP-OLIA. Furthermore, we observed
that the NSB accuracy in real networks (70%) is comparably
the same to the emulations (75%) reported in Section IV-C1.
This is due to different base RTTs and perturbation on the
paths in real networks as discussed in Section IV-C5.

B. Shared Bottleneck

For the SB scenario, we used the same setup as above, but
this time, we used the DSL connection as the bottleneck link.
Apart from general background traffic due to it being a real
network, we used the VMs to receive background traffic from
the server via the two ISPs. The VMs in the U.K., Japan and
India received data that were sent via ISP-1 at an average rate
of 40 Mbps, and the VMs in Germany and the USA received
data that were sent via ISP-2 at an average rate of 30 Mbps.

In this scenario the server sent traffic to the client with
2 subflows connected to the server’s ISPs. We observed
a mean SBD accuracy of 91% for two subflow case and
around 85% for the five subflow case. As a result, Fig-
ure 10(b) shows that MPTCP-SBD has similar throughput
values compared to MPTCP-OLIA for the two-subflow case
and slightly more aggressive than MPTCP-OLIA for higher
number of subflows. Compared to the emulation results of SB,
we observed that SBD’s accuracy in real network experiments,
especially for many subflows, is marginally lower, as discussed
in Section IV-C2. We justify this observation by the random
varying nature of real systems compared to the emulation setup
with synthetic background traffic. Also, note that having a
high number of subflows in the network traversing the same
bottleneck is less likely in real setups.

C. Shifting Bottleneck

For the shifting bottleneck scenario, first illustrated in
Section IV-C3, we used the same network (Figure 9), with
the client connected by both, ISP-1 and ISP-2, to the home
DSL. The server is connected to each ISP via a 100 Mbps
connection, whereas the client has asymmetric 25 Mbps in
the uplink and 50 Mbps in the downlink. We create a shifting
bottleneck every 60 s by changing the background traffic on
each ISP from 70 Mbps to 20 Mbps, therefore first creating a
shared bottleneck on the client side (SB) and then creating
distinct bottlenecks on the server side (NSB).

Figure 11 shows that, although dealing with a real-network
setup, the shifting shared bottleneck scenario also performs

7Based on what we expect to be a bottleneck with our experiment,
remembering much of the network is not within our control.
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Figure 11. Mean SBD Observations for a Shifting Bottleneck {60,120} s

satisfactorily in the real network. The SBD accuracy we
observed after the bottleneck transition is similar to that of
SB and NSB scenarios, i.e., about 7s̃ or two SBD decisions.

VI. RELATED WORK

Congestion control for multipath transport [23] has evolved
from algorithms behaving like regular TCP to coupled conges-
tion control: Coupled MPTCP [4] applies resource pooling to
shift away traffic to less-congested paths. Then, fully-coupled
MPTCP [1] applies the idea that the total multipath cwnd
increases and decreases in the same way as for TCP. Semi-
coupled congestion control, or linked-increase (LIA) [5], [10]
emerged, because of poor responsiveness and “window flappi-
ness” (oscillatory behavior) of the fully-coupled algorithm. In
semi-coupled congestion control the cwnd increase is coupled,
whereas its decrease is not. MPTCP’s default congestion
control, Optimized Linked Increase Adaptation (OLIA) [6],
[11], improves LIA’s unfriendliness and congestion balance.
A recent proposal, Balanced Link Adaptation (Balia) [7],
improves OLIA’s responsiveness. Note that all MPTCP con-
gestion control algorithms are semi-coupled, hence assume
shared bottlenecks in the multipath connection.

The closest related work to this paper is Dynamic Window
Coupling (DWC) [13] that studies the benefits of shared bot-
tleneck detection in multipath transport. The DWC mechanism
can be summarised as follows. If one of MPTCP’s subflows
has a loss, the flow manager sends an alert to the other flow
controllers. Then, each subflow sets the smoothed RTT back,
“undoing” the effect of the last cwnd/2, and continues to
monitor the smoothed RTT for another cwnd/2. If any of the
smoothed RTTs > RTTth, the subflow is grouped with the
subflow that had a loss. RTTth is calculated in a similar way
to TCP’s smoothed RTT, but based on RTTmax. Correlating
loss events is difficult since not all flows sharing a link
will necessarily experience loss during the same congestion
episode. Different paths may also have lags that differ by
more than the cwnd/2 (about RTT/2) that DWC uses for
correlation, making accurate correlation in these scenarios
impossible (Note: some of our experiments in Section IV-C5
have much larger lags). RTT, even the smoothed RTT DWC
uses, is a very noisy signal. For these and other reasons (see
Section III-A) we took a different approach for MPTCP-SBD.
It is difficult to directly compare our mechanism with DWC
as it not available in a real stack implementation, for this
reason, as described in Section IV-A, we reproduce the same
set of experiments and scenarios to be able to compare both
mechanisms under similar conditions. However, by running
similar experiments to those in [24, pp 127–130] we find that



our algorithm was able to detect shared bottlenecks with an
accuracy of 97%, while DWC mentions approximately 75%.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we show the benefits of Shared Bottleneck
Detection (SBD) for MPTCP. We argue that MPTCP’s coupled
congestion control is overly conservative when multiple paths
do not share a bottleneck. With SBD, MPTCP can decouple
the subflows’ cwnd increase and still achieve its 3 main
design goals: 1) improve throughput, 2) do not harm and 3)
balance congestion. We designed and implemented MPTCP-
SBD, a dynamic coupled congestion control mechanism for
MPTCP that is aware of shared bottlenecks. We demonstrated
the efficiency of the proposed MPTCP-SBD in a wide range
of settings through extensive emulations, showing significant
throughput gains in non-shared bottleneck scenarios without
causing harm in shared bottlenecks. These results are further
confirmed with real-network experiments.

There are many avenues for future work. One direction is to
consider the robustness of the SBD algorithm against attacks,
where a receiver could manipulate the SBD feedback to gain
an unfair advantage. Therefore, ensuring the feedback mech-
anism deserves further attention. Moreover, we observed that
while MPTCP-SBD tries to detect bottlenecks, all MPTCP’s
coupled congestion controls try to avoid them by shifting
traffic away from congested paths. Also, MPTCP’s lowest-
RTT scheduler can cause subflows that are sharing a common
bottleneck to oscillate in their relative share of the available
bandwidth. These oscillations can make the SBD statistics
noisier, affecting its performance. At the moment, the SBD
algorithm is protocol agnostic. There may be advantages in
tuning it specifically to MPTCP’s congestion control, however,
this could lead to difficulties every time a congestion control
algorithm change. Another possibility is to improve SBD’s
robustness against oscillations from the link, this could be
explored with more complex grouping algorithms.

Finally, investigating the performance of MPTPC-SBD for
different use-cases is of great interest. One promising use-case
is highlighted in [25] where single-homed devices may be able
to take advantage of multipath protocols. Hosts with dual-stack
IPv4/IPv6 [25] systems may be able to exploit concurrent IPv4
and IPv6 use when both paths are disjoint and the bottleneck
lies in the network. This is an ideal application for MPTCP-
SBD and should be further investigated.
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[11] R. Khalili, N. G. Gast, M. Popović, and J.-Y. L. Boudec, “Opportunistic
Linked-Increases Congestion Control Algorithm for MPTCP,” IETF,
Internet Draft draft-khalili-mptcp-congestion-control-05, Jul. 2014.

[12] A. Walid, Q. Peng, J. Hwang, and S. H. Low, “Balanced Linked
Adaptation Congestion Control Algorithm for MPTCP,” IETF, Internet
Draft draft-walid-mptcp-congestion-control-02, Jan. 2015.

[13] S. Hassayoun, J. Iyengar, and D. Ros, “Dynamic Window Coupling
for Multipath Congestion Control,” in Proceedings of the 19th IEEE
International Conference on Network Protocols (ICNP), 2011, pp. 341–
352, ISBN 978-1-4577-1392-7.

[14] D. A. Hayes, S. Ferlin, and M. Welzl, “Practical Passive Shared
Bottleneck Detection using Shape Summary Statistics,” in Proceedings
of the 39th IEEE Conference on Local Computer Networks (LCN),
Edmonton, Alberta/Canada, Sep. 2014, pp. 150–158.

[15] D. Hayes, S. Ferlin, and M. Welzl, “Shared Bottleneck Detection for
Coupled Congestion Control for RTP Media.” IETF, Internet Draft draft-
ietf-rmcat-sbd-01, Jul. 2015.

[16] V. Jacobson, R. Braden, and D. A. Borman, “TCP Extensions for High
Performance,” IETF, RFC 1323, May 1992, ISSN 2070-1721.

[17] O. Bonaventure, “Multipath TCP Timestamp Option,” IETF, Internet
Draft draft-bonaventure-mptcp-timestamp-01, Jul. 2015.

[18] J. Ahrenholz, “Comparison of CORE Network Emulation Platforms,” in
Military Communications Conference (MILCOM), San Jose, Californi-
a/U.S.A., Oct. 2010, pp. 166–171.

[19] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing Router Buffers,”
in Proceedings of the ACM SIGCOMM Conference, vol. 34, no. 4. New
York/U.S.A.: ACM Press, Aug. 2004, pp. 281–292, ISSN 0146-4833.

[20] A. Vishwanath, V. Sivaraman, and M. Thottan, “Perspectives on Router
Buffer Sizing: Recent Results and Open Problems,” ACM SIGCOMM
Computer Communication Review (CCR), vol. 39, no. 2, pp. 34–39, Mar.
2009, ISSN 0146-4833.

[21] C. Paasch, “Improving Multipath TCP,” Ph.D. dissertation, Université
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