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Abstract—One of the main goals of multipath TCP (MPTCP)
is to achieve higher throughput than regular TCP by utilizing
multiple paths simultaneously. When these paths share a common
bottleneck, MPTCP tries not to be more aggressive than a regular
TCP flow. This is achieved by MPTCP’s coupled congestion
control mechanism that couples the increase factor of MPTCP’s
subflows in congestion avoidance. However, slow-start remains
unchanged and behaves uncoupled for each subflow, affecting
MPTCP and concurrent traffic at the bottleneck. We propose
LISA, a simple algorithm for coupling MPTCP subflows in slow-
start, and investigate the trade-off that this coupling entails. Our
evaluations show that coupling in slow-start not only provides
gains for MPTCP but also for a concurrent TCP at the bottleneck.

Index Terms—MPTCP, slow-start, initial window, fairness

I. INTRODUCTION

The Internet was much simpler when the Transmission
Control Protocol (TCP) was first designed 30 years ago. At
that time, end-hosts had a single interface, therefore, TCP was
built around the notion of a (single) connection between two
hosts. However, today’s networks paint a very different picture
where server machines are multi-homed and end-hosts are
multiple connected. For instance, data center networks have
a large redundant infrastructure with many paths between any
two servers. Similarly, smartphones are equipped with two
interfaces: a WiFi and a mobile broadband (e.g., 3G/4G). Al-
though today’s networks provide many possible paths between
end-hosts, any given TCP session will use only one of them.

Multipath TCP (MPTCP) is an ongoing effort of the Internet
Engineering Task Force’s (IETF) Multipath TCP working
group that aims to extend TCP by allowing multiple paths to be
used simultaneously to maximize resource usage and increase
reliability [9]. MPTCP uses TCP options for signaling, hence,
from the network’s perspective, it looks like regular TCP, mak-
ing it deployable in today’s Internet. MPTCP can efficiently
pool network’s resources by presenting a regular TCP socket to
the application, which underneath leverages multiple subflows
and it is able to multiplex a single data stream across them.

One of MPTCP’s main goals is to guarantee fairness to
regular TCP at shared bottlenecks. To address this, coupled
congestion control algorithms are proposed for MPTCP [12],
[15], [14], [10]. However, the current MPTCP congestion
control algorithms only consider fairness in congestion avoid-
ance (CA). Today, most of the TCP sessions in the Internet
constitute short flows (e.g. web requests) [6] and more than

40% of the web transfers are of size smaller than 1MB [3].
For these short flows, TCP will likely never leave the slow-
start (SS) phase, therefore SS behaviour becomes of critical
importance for the performance. However, in the current
MPTCP’s congestion control implementations, each subflow
in SS behaves as an independent TCP connection. In SS,
following default Linux, each subflow’s initial window (IW)
starts with 10 segments [7] and it exponentially increases [9].
For an MPTCP connection with 2 subflows, this results in
MPTCP doubling its queue occupancy, and hence, increasing
the unfairness compared to a concurrent TCP flow at the
shared bottleneck. This further escalates with an increasing
number of subflows.

In this paper, we focus on MPTCP’s slow-start. We first
illustrate that MPTCP’s uncoupled SS harms the performance
of both MPTCP and the concurrent TCP at the shared bottle-
neck. To address this, we propose a linked slow-start algorithm
(LISA) where MPTCP subflows are coupled during the SS.
Our results show that LISA improves the MPTCP transfer
completion time by reducing the number of retransmission and
reduces MPTCP’s negative effect on competing TCP traffic.

II. PROBLEM STATEMENT

MPTCP’s path-manager defines how subflows are added
to an existing connection. The default path-manager fullmesh
opens a full mesh of subflows between all IP addresses of
the end-hosts. The remote end-host advertises all additional IP
addresses to the connection initiator within the same RTT [11].
Each of these subflows is a regular TCP connection (i.e., they
have connection establishment with a three-way handshake,
data transmission with slow-start and congestion avoidance
and connection termination phases) [9]; thus, after 3 RTTs,
all new subflows can start sending, each of them with IW10.

According to [9], and in all current implementations
of different MPTCP’s coupled congestion control algo-
rithms [10],[14], MPTCP subflows in slow-start are uncoupled,
i.e., each behaving as regular TCP with IW10 and increasing
by 1 after every ACK. Therefore, in slow-start, all subflows
independently double their congestion windows (cwnd) as in
regular TCP [9], resulting in also doubling MPTCP’s com-
pound cwnd. Although coupling slow-start could seem unnec-
essary, considering that each new subflow starts with IW=101

1Default Linux kernel 3.14.22 with MPTCP v0.89.3



and assuming that there are existing subflows still in slow-
start, the compound MPTCP cwnd can briefly increase by a
large number when new subflows join.

We illustrate this behavior with an example: Fig. 1(a) shows
the cwnd evolution of a 300 KB file transfer across a 2.5 Mbps
shared bottleneck with TCP (CUBIC) and MPTCP (see the
measurement setup in Section IV). Here, we observe that
TCP completes the transmission approximately 50ms earlier
than MPTCP. This is due to the large overshoot when the
second subflow joins, causing more retransmissions as shown
in Fig. 1(b). In order to eliminate this behavior, we propose a
LInked Slow-Start Algorithm (LISA) for MPTCP.

III. LISA

The idea behind LISA is that each new subflow takes a
credit from an existing subflow needed for its own IW, hence
linking the subflow’s congestion windows in slow start. Doing
so, it has 10 packets as upper limit based on [7] and 3 packets
as lower limit based on [4]2. The design choice of bounding
the IW between 3 and 10 is based on the RFC standards [4],
[7] and the main reason behind it is to let a subflow compete
reasonably when it is not sharing a bottleneck with other
subflows. We also divide the cwnd fairly in order to give all
subflows an equal chance to compete with background traffic.

The LISA algorithm, whose pseudo-code is presented in
Algorithm 1, is in line with Linux (diverging from TCP’s
specification), where the cwnd is given in packets. LISA is
applied to the subflows if and only if they are in slow-start.
LISA first finds the subflow with the largest sending rate
(old subflow.cwnd, measured over the last RTT). Depending
on old subflow.cwnd, between 3 and 10 packets are taken
from it as credit and given to new subflow.cwnd. The credit
is realized by reducing old subflow.cwnd and hindering its
increase after every ACK.

We clarify the algorithm with an example: Consider,
as in Fig. 1, an existing subflow with a cwnd of 40
(e.g. old subflow.cwnd=40) and a new subflow joining
the connection. Since old subflow.cwnd ≥ 20, 10 pack-
ets could be “taken” by the new subflow, resulting in
old subflow.cwnd=30 and new subflow.cwnd=10. Then,
the compound cwnd, whose current size is 40, should ideally
become 60+20=80 after one RTT3 (this is different from Fig. 1,
where packets were already lost at this point). However, if
40 packets from old subflow.cwnd are already in flight,
the compound cwnd becomes in fact 70+20=90, but here,
LISA keeps old subflow.cwnd from increasing its cwnd for
the first 10 ACKs. As a comparison, MPTCP would have
80+20=100 after one RTT.

LISA addresses MPTCP’s aggressiveness described in the
beginning of this section. Revisiting Figure 1(a), we observe
that LISA prevents the first subflow from increasing its cwnd
after every ACK, hence limiting MPTCP’s in flight data and re-
ducing the number of retransmissions as shown in Figure 1(b).

2For simplicity, constant 1.5 KByte packet size is assumed.
3This assumes that the receiver ACKs every packet, which is the case with

Linux in slow-start.

Algorithm 1 LISA: Called before a new subflow sends its IW
1: init: ignore acks = false; ACKs to ignore = 0
2: // get the largest sending rate among subflows in SS
3: old subflow = get subflow with max sendrate()
4: if old subflow then
5: if old subflow.cwnd ≥ 20 then
6: // if old subflow.cwnd ≥ 2*IW(10): take IW(10) packets
7: old subflow.cwnd –= 10
8: new subflow.cwnd = 10
9: ignore acks = true

10: else if old subflow.cwnd ≥ 6 then
11: // if old subflow.cwnd ≥ 2*IW(3): take half the packets
12: new subflow.cwnd = old subflow.cwnd / 2
13: old subflow.cwnd –= new subflow.cwnd
14: ignore acks = true
15: else
16: // old subflow.cwnd < 6
17: new subflow.cwnd = 3 // can’t take from old subflow
18: end if
19: else
20: new subflow.cwnd = 10 // no other subflow in SS
21: end if
22: if ignore acks and inflight ≥ old subflow.cwnd then
23: // do not increase cwnd when ACKs arrive
24: ACKs to ignore = inflight - old subflow.cwnd
25: end if

In figures 1(c) and 1(d), we illustrate the cwnd of each
subflow. Here, we measured 3 RTTs before the second subflow
begins with its IW. This is due to MPTCP’s path-manager
where subflows only join the connection after the first subflow
has been established. Thus, MPTCP would immediately add
10 packets to new subflow, thus amplifying the overshoot.
However, LISA “takes” 10 packets from old subflow.cwnd
to new subflow.cwnd, delaying the compound cwnd in-
crease. Overall, we observe a 200 ms shorter completion time
with LISA for this setup.

MPTCP’s aggressiveness escalates as more subflows join
the connection. Its default path-manager fullmesh can advertise
multiple IPs in the same RTT. That means, after the first
subflow has been established, new subflows may start sending
at roughly the same time.4 Figure 2(a) depicts the compound
cwnd of 3 subflows in the same scenario as shown in Figure 1.
The overshoot is more significant, hence, taking longer to
recover from the losses. We also observe a greater reduction
in retransmissions with LISA, depicted in Figure 2(b).

IV. MEASUREMENT SETUP

We consider two common MPTCP scenarios to evaluate
LISA: a) an end-user accessing a multi-homed server shown in
Section III-A and b) the datacenter scenario from [13] shown
in Section III-B. The different topologies are created with the
CORE network emulator [1]. Linux netem with tc-htb (default
value for cburst is 1600bytes) is used to set the links’ capacity
and delays and iperf creates traffic over TCP. Data is collected
at the server using trace printk. All experiments are run with
Linux kernel 3.14.22 and MPTCP v0.89.3.

4MPTCP’s path-manager ndiffports allows new subflows to start in parallel
after the first subflow is established.
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Fig. 1. Grid lines are spaced at 70 ms, the base RTT without queuing delay
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Fig. 2. MPTCP and LISA: 3 subflows

A. Multi-homed server

In this scenario, we limit MPTCP to 2 subflows to keep
it simple and realistic. However, a larger number of subflows
is possible especially when servers are connected to several
ISPs or the clients are also multi-homed. Note that the 2
subflow case is in fact the worst case for LISA as illustrated
in Section II: LISA plays out its benefits better with a larger
number of subflows.

Here, we investigate two cases: a) the client’s access link
(downlink) is the bottleneck and it is therefore shared among
the two flows, and b) the server’s uplink connections are
the bottlenecks and they are therefore not shared by the two
subflows. Note that we expect to see the benefits of LISA in
case a), whereas LISA may potentially be harmful in case b).

MPTCP ClientMPTCP Server

Bottleneck Link

Eth0

Eth1

Eth0

Fig. 3. Shared Bottleneck Topology

Shared Bottleneck: Here, we choose a multi-homed server
with two interfaces and the client side as the bottleneck
(downlink), see Figure 3. The bottleneck capacity is set to
5 Mbps, RTT is set to 40 ms and no background traffic is
generated. We have selected the link speed based on the
Akamai’s Q1 2015 report indicating that the global average
connection speed is 5 Mbps [2]. However, our results apply to
different link speeds as well since the results do not depend
on the raw link speeds but rather on the bandwidth×delay
product (BDP) of the link. In other words, our results hold for
links that have higher link speeds and shorter RTTs.

We vary the bottleneck queue size from 1 up to 34 packets
(twice the path’s BDP). Although a common choice for
the queue size is the BDP of the link, we have also run
experiments with very different queue sizes in order to stress
test the algorithm under different settings. Note that multiple
subflows’ IW at the bottleneck could reach the path’s BDP
and enter CA with a small cwnd. We explain with an example:
Assume a single flow with IW=10 traversing a path with BDP
of 17 packets and a one packet queue. In the second RTT,
the flow will have cwnd=20, i.e., two packets exceeding the
path’s BDP plus the queue size. Thus, the extra packets will
be dropped and the flow will enter CA with cwnd=10, which
is 55% of the available capacity! Therefore, whether the file
completion time benefits from a change to MPTCP’s slow-start
can vary greatly with the BDP or the queue length.

MPTCP Server MPTCP ClientBottleneck Link

Bottleneck Link

Fig. 4. Non-shared Bottleneck Topology

Non-shared bottleneck: In this scenario, there are no
shared bottlenecks (see Figure 4). As before, the capacity is
set to 5 Mbps and RTTs are set to 40 ms for both links.

B. Datacenter
For the datacenter scenario, illustrated in Figure 5, multiple

MPTCP subflows are opened between the same pairs of end-
hosts in order to evaluate the effect of Equal-Cost Multi-Path
(ECMP). Because ECMP behavior is transparent to the end-
hosts, some of the subflows will end up sharing the same
bottleneck, while others will not – allowing LISA to play out
positively in one case and potentially negatively in the other.

We want to find out whether LISA can be expected to
yield an overall advantage in the use case described in [13].
While a scaled-down of the experiment is used, we observe
a general trend that is expected to be valid at larger scale
of the same experiment. For this, we set up a 4-ary fat tree
with up to 16 nodes, RTT is set to 5ms, and the core links
have a link capacity of 50Mbps. The traffic is as described
in [13]: Each end-host chooses other end-host randomly, with
the constraint of using only one MPTCP connection per end-
host pair. Similar to [13], we randomly choose the shortest



paths for each subflow to simulate ECMP. Also, following the
recommendation in [13], we set the number of subflows to 8.
Here, we also vary the bottleneck queue size from 2 up to 42
packets (i.e., up to 2 BDPs).

Switch

Host machine

Fat−Tree Topology

Fig. 5. Datacenter Topology

V. PERFORMANCE EVALUATION

In this section, we evaluated the performance of LISA
for the two scenarios discussed in Section III. For each of
the scenarios, we considered the following metrics in our
evaluations:

• Completion time, T – the time between sending the first
SYN packet to get the ACK for the last packet for a
file-size transfer.

• The total number of retransmitted packets, R, and the
total number of retransmitted packets before the last
subflow exits slow-start, Rss.

• Sum of cwnd when the last subflow exits slow-start.
In the remainder of this section, we will take the 95%

confidence interval for all the plots of the above measurement
metrics.

A. Multi-homed server

Shared Bottleneck: In this scenario, we first evaluated
the performance of LISA compared to MPTCP for a wide
range of buffer sizes. We transferred a long enough file and
only evaluated the SS phase. In Figure 6(a), we illustrate
Rss for varying buffer sizes. We show that LISA consistently
reduces the number of retransmissions compared to MPTCP,
irrespective of the buffer size, except for the very small buffer
sizes. We observe that for a buffer size less than 8 packets,
the first subflow leaves SS early, causing buffer overflow, and
the newly established subflow sets its IW to 10 similar to the
behavior of MPTCP. Hence, LISA experiences similar Rss

to MPTCP. Retransmissions coincide with a cwnd reduction,
which potentially delays transfers. In Figure 6(b), we depict
the total cwnd of MPTCP flows. A smaller value translates
into more time to increase the window during CA, and hence,
a large value is generally favorable. The figure illustrates that
LISA had a larger total cwnd at the end of slow-start for
almost all buffer size values.

Equipped with knowledge about how buffer sizes affect
the behavior of the MPTCP subflows in SS, we analyzed
the completion time and retransmission performance for file
transfers with sizes ranging from 50 KB to 900 KB. This range
has been selected based on the HTTP transfer size statistics
indicating that more than 40% of the HTTP transfers are of

size up to 1000 KByte [3]. To reduce the effect of the queue
size, we picked three values: 9, 17 and 30 packets. Based on
Figure 6(a) and Fig. 6(b), we believe these values represent a
good, medium and bad case for LISA. We then repeated the
experiments 10 times for each queue size and illustrated the
results in Figure 6(c) and Fig 6(d). In Figure 6(c), we observe
that the completion time is improved by up to 17% for the
300 Kbyte file, and by more than 10% for files up to 500 Kbyte.
For small file sizes (up to 200 KByte), note that LISA does not
provide any gains since there is only one subflow (i.e. LISA
is not active yet). On the other hand, for file sizes larger than
500 Kbyte, as we increase the file size, we add more and more
weight to the CA phase and the performance gain decreases.

We also evaluated the benefits of LISA on the competing
traffic. Intuitively, the reduced aggression of LISA is also
expected to reduce MPTCP’s negative impact on competing
traffic. To confirm this, we ran another set of tests with a
competing TCP (Reno) flow. We then compared the number
of retransmitted packets of this TCP flow in Figure 7(a). The
figure confirms that our intuition is indeed correct and the
number of retransmitted packets experienced by the TCP flow
is reduced with LISA.

So far, we have assumed that the base RTTs of the two
connections are similar. If the base RTT of the connection
used by the first subflow is the shortest, the number of packets
given to the other subflow will be at least as much as in the
equal-RTT case (10 in all our experiments). To evaluate the
worst case for LISA, we were therefore only interested in the
case where the first subflow sees a larger base RTT. A result
from such case is depicted in Figure 7(b) where the base RTT
of the first connection (used by the first subflow) is 200 ms
while the other one is 20 ms; as before, the link capacity is
set to 5 Mbps. We transfer a file of size 500 KB and vary the
queue size from 5 to 92 packets, which is above the sum of
the two BDPs (8 and 83 packets, respectively). As expected,
giving packets to the shorter-RTT flow reduced the overall
efficiency, but with a very small difference, as shown in the
Figure 7(b).

Non-shared bottleneck: Similar to shared bottleneck case,
we first varied the buffer size and evaluated the Rss per-
formance of LISA for the non-shared bottleneck case in
Figure 8(a). We observe that the reduced aggression of LISA
lower the number of retransmitted packets by limiting the
overshoot. Note that this overshoot heavily depends on the
queue size, thus the benefit only plays out for a distinct set
of values. The reduced aggression of LISA should at least
sometimes come with a disadvantage in raw throughput. The
total cwnd at the end of SS, depicted in Figure 8(b), shows
no clear trend. The same is true for the average completion
time shown in Figure 8(c) when, as before, we used the low,
medium and good case queue values (from Figure 8(b), the
queue sizes 9, 17 and 30 again seemed to be a good choice
for these three cases).

In order to see whether the reduced number of retrans-
missions plays out positively, a separate test was run for a
favorable buffer size of 20 packets and the results are depicted
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Fig. 6. Shared bottleneck with varying buffer size and file size

 0

 5

 10

 15

 20

 25

 30

 100  200  300  400  500  600  700  800  900

R
 (

in
 p

k
ts

)

File size (in pkts)

TCP and MPTCP

TCP and MPTCP-LISA

(a) Competing TCP traffic: retrans-
mission vs file size

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  10  20  30  40  50  60  70  80  90

 T—
 (

in
 s

e
c
)

Buffer size (in pkts)

MPTCP

MPTCP-LISA

(b) Different base RTTs: Mean com-
pletion time vs buffer size

Fig. 7. Shared bottleneck with competing traffic and different base RTTs

in Figure 8(c). As expected, we observe that the transfer time
for LISA is consistently smaller. We conclude that, somewhat
surprisingly, LISA does not harm transfer delay in the non-
shared bottleneck case. On the contrary, LISA consistently
improves the transfer delay for queue lengths where it manages
to reduce the number of retransmissions.

As in the shared bottleneck scenario, we also tested het-
erogeneous RTT with 20 (second subflow) vs. 200 ms (first
subflow) and found a small disadvantage of LISA. This
disadvantage is less than 50 ms for all buffer sizes (less than
a quarter of the RTT of the long subflow).

B. Datacenter

Figure 9(a) shows a consistent reduction of the number of
retransmitted packets during SS, whereas Figure 9(b) shows a
consistently lower cwnd at the end of SS, which could play out
negatively unless it is compensated for by the cwnd reductions
caused by the retransmissions.

As before, we determined the total transfer time per file
size by running 30 tests, 10 for each good, medium and
bad queue value case (10, 25 and 40). The results show that
retransmits indeed had a more significant effect than cwnd
at the end of SS in these experiments: in Figure 9(c), the
transfer completion time is significantly reduced by LISA, and
this reduction correlates with the reduction of retransmits in
Figure 9(d).

VI. REAL-WORLD EXPERIMENTS

In this section, in order to validate the performance im-
provements of MPTCP-LISA under realistic network condi-
tions, we conducted real-network experiments for both shared-
bottleneck and non-shared bottleneck scenarios.

Setup: We constructed a multi-homed client topology, illus-
trated in Figure 10, using virtual machines (VM) from NorNet

testbed5 as well as four commercial cloud service providers
(2x in Europe, 1x in North America and 1x in Asia). These
VMs are connected via 100 Mbps links. The server machine
is located in a lab network whereas the multi-homed client is
a laptop connected to a wireless local network (WLAN) and
a 3G mobile broadband provider. Note that 3G and WLAN
have very different link characteristics in terms of capacity,
packet loss and delay. Also, we build our setup to have the
3G path being the first subflow in order to revisit LISA’s
worst case scenario already mentioned in Section IV. Using
this setup, we repeated the experiments for the non-shared
bottleneck and shared bottleneck scenarios. When the wireless
links are the bottleneck, this setup represents the non-shared
bottleneck scenario. On the other hand, when the lab network
is the bottleneck, this setup represents the shared bottleneck
scenario. In order to create a bottleneck inside the lab network,
we generated background traffic at the server machine towards
the VM. The background traffic is composed of greedy and
rate-limited TCP and UDP on/off flows. To mimic multiple
applications on the same device, we further added cross-traffic
on both 3G and WLAN. The device’s background traffic is
composed of rate-limited TCP and UDP on/off flows taking
approximately 30% of the total capacity of each link.

Results: For each scenario, we collected 15 samples for
each experiment. Figures 11(a) and 11(b) show MPTCP and
LISA completion times in both shared and non-shared bottle-
neck scenarios downloading different files sizes ranging from
100 KB to 1000 KB. We observe that LISA improves the
completion time for all file sizes and scenarios. For example,
in the 100 KB file size case, LISA’s completion time is
on average reduction of 10% and 20% for shared and non-
shared bottleneck scenarios, respectively. We observe that the
experimental results are consistent with our emulation results.
Especially, the reduction in the non-shared bottleneck scenario
indicates that the queue size in our experimental setup, which
is a real network setup, is a favorable for LISA.

In Figures 12(a) and 12(b), we illustrate the number of
retransmissions for varying file sizes. We observe that LISA
reduces the number of retransmissions. One interesting ob-
servation is that LISA also limits the bufferbloat on the 3G
path. Note that compared to MPTCP, LISA shares the 3G
subflow’s cwnd with the WLAN subflow in slow-start. Hence,
LISA avoids both subflows doubling their rate every RTT. On

5http://www.nntb.no
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Fig. 11. MPTCP and MPTCP-LISA: Completion Time

average, MPTCP uses 5 to 7% more of the 3G path compared
to MPTCP-LISA for all file sizes in both shared and non-
shared bottleneck scenarios.

Finally, we also analyzed the time for the first loss, i.e., the
transition between the first slow-start to congestion avoidance
phase, in all measurements. For the non-shared bottleneck
scenario, LISA hit the first loss on average 50 ms later com-
pared to MPTCP. On the other hand, for the shared bottleneck
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Fig. 12. MPTCP and MPTCP-LISA: Retransmissions

scenario, LISA’s first loss occurred on average 100 ms later
compared to MPTCP. Moreover, we observe less congestion
avoidance occurrences in the LISA samples, suggesting that
LISA finished the transfer in slow-start at times.

VII. RELATED WORK

Several studies investigate the effect of IW10 for multiple
flows. Barik et al. showed that IW10 can impact queuing delay
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Fig. 13. MPTCP and MPTCP-LISA: Traffic Distribution on Each Path

and also become unfair when several flows are opened at the
same time [5]. The authors in [8] showed that IW10 can create
problems with multiple parallel flows, and that the impact can
be reduced by SPDY (or its successor, HTTP/2.0) by reducing
the number of flows. If MPTCP is used underneath SPDY or
HTTP/2.0 however, it will again increase the number of flows
and potentially eliminate this benefit if its subflows traverse a
common bottleneck.

To the best of our knowledge, this is the first paper
that investigates the current MPTCP’s slow-start performance.
Moreover, it provides the first attempt to couple the slow-
start in MPTCP in order to overcome the unfairness of the
uncoupled slow-start at the shared bottleneck.

VIII. CONCLUSION

In this paper, we first identify the adverse effect of MPTCP’s
uncoupled slow-start on the performance of MPTCP itself as
well as the concurrent TCP traffic. To address this problem,
we propose a link slow-start algorithm (LISA) for MPTCP
that couples the MPTCP subflows during the slow-start phase.
Through extensive emulations and real-network experiments,
we show that LISA not only provides gains for MPTCP but
also for the concurrent TCP at the bottleneck. Moreover,
for the non-shared bottleneck scenario, we show that LISA
does not harm, on the contrary, for favorable buffer sizes,
LISA even provides gains. By coupling the slow-start, LISA
effectively reduces number of retransmissions resulting in
lower completion times.

While the results of our evaluation are generally quite
favorable towards LISA, further improvements could be pos-
sible. For example, in the heterogeneous RTT cases that we
investigated, our algorithm “took” packets from the larger RTT
subflow. This could be prevented by changing the mechanism
to favor subflows’ cwnd that have the smallest RTT. Since

this can create problems related to the precision of RTT
measurements and because the disadvantage was marginal (in
the order of one RTT), we opted against investigating this
potential improvement further at this point, but it is a possible
direction for future work.

REFERENCES

[1] CORE: A real-time network emulator, 2008. [Online]. Available:
http://dx.doi.org/10.1109/milcom.2008.4753614

[2] “Akamai report on state of the internet in Q1 2015,” https://www.akamai.
com/stateoftheinternet, 2015.

[3] “Httparchieve,” http://httparchive.org/index.php, 2015.
[4] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s Initial

Window,” RFC 3390 (Proposed Standard), Internet Engineering Task
Force, Oct. 2002. [Online]. Available: http://www.ietf.org/rfc/rfc3390.txt

[5] R. Barik and D. Divakaran, “Evolution of TCP’s initial window size,”
in IEEE LCN 2013, Oct 2013, pp. 500–508.

[6] N. Brownlee and K. Claffy, “Understanding internet traffic streams:
Dragonflies and tortoises,” IEEE Communications Magazine, vol. 40,
no. 10, pp. 110–117, 2002.

[7] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis, “Increasing TCP’s
Initial Window,” RFC 6928 (Experimental), Internet Engineering Task
Force, Apr. 2013. [Online]. Available: http://www.ietf.org/rfc/rfc6928.txt

[8] Y. Elkhatib, G. Tyson, and M. Welzl, “Can SPDY really make the web
faster?” in IFIP Networking 2014, Jun. 2014.

[9] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP
Extensions for Multipath Operation with Multiple Addresses,” RFC
6824 (Experimental), Internet Engineering Task Force, Jan. 2013.
[Online]. Available: http://www.ietf.org/rfc/rfc6824.txt

[10] R. Khalili, N. G. Gast, M. Popovi, and J.-Y. L. Boudec, “Opportunistic
Linked-Increases Congestion Control Algorithm for MPTCP,” IETF,
Internet-draft (work in progress) draft-khalili-mptcp-congestion-control-
05, Jul. 2014.

[11] C. Pearce and P. Thomas, “Multipath TCP — breaking today’s networks
with tomorrow’s protocol,” in BlackHat USA 2014, Aug. 2014.

[12] C. Raiciu, M. Handley, and D. Wischik, “Coupled Congestion Control
for Multipath Transport Protocols,” RFC 6356, Internet Engineering Task
Force, Oct. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6356.txt

[13] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving datacenter performance and robustness with
Multipath TCP,” in SIGCOMM 2011. ACM, 2011, pp. 266–277.
[Online]. Available: http://doi.acm.org/10.1145/2018436.2018467

[14] A. Walid, Q. Peng, J. Hwang, and S. H. Low, “Balanced Linked
Adaptation Congestion Control Algorithm for MPTCP,” IETF, work
in progress, Internet-draft draft-walid-mptcp-congestion-control-01, Jul.
2014.

[15] M. Xu, Y. Cao, and E. Dong, “Delay-based Congestion Control
for MPTCP,” IETF, work in progress, Internet-draft draft-xu-mptcp-
congestion-control-01, Jan. 2015.

http://dx.doi.org/10.1109/milcom.2008.4753614
https://www.akamai.com/stateoftheinternet
https://www.akamai.com/stateoftheinternet
http://httparchive.org/index.php
http://www.ietf.org/rfc/rfc3390.txt
http://www.ietf.org/rfc/rfc6928.txt
http://www.ietf.org/rfc/rfc6824.txt
http://www.ietf.org/rfc/rfc6356.txt
http://doi.acm.org/10.1145/2018436.2018467

	Introduction
	Problem Statement
	Measurement Setup
	Multi-homed server
	Datacenter

	Performance Evaluation
	Multi-homed server
	Datacenter

	Real-World Experiments
	Related Work
	Conclusion
	References

