
The 2D Wave Equation

Hans Petter Langtangen∗

November 25, 2001

Contents

1 Introduction 1

2 Problem description 1

2.1 The mathematical model . 1
2.2 The numerical method . 3
2.3 Implementation of the algorithm . 8

3 Implementation in Fortran 77 8

4 Exercises 10

5 Projects 12

1 Introduction

Simulation of physical phenomena often involves numerical solution of partial differential equa-
tions (PDEs). This is particularly the case in mechanics, geophysics, astrophysics, and many
engineering disciplines, as well as in parts of physics, geology, biology, and finance. When dis-
cussing high-performance computing aspects of numerical solution of PDEs, it is convenient to
work with a model problem with as simple mathematics and numerics as possible, yet with physi-
cal and large-scale simulation relevance. The 2D or 3D standard, linear wave equation constitute
such a problem. The wave equation is one of the simplest PDEs in physics from a mathematical
point of view, and it can be solved by the simplest numerical methods for PDEs, namely ex-
plicit finite difference schemes. Fortunately, the resulting simulation code can (especially with
a proper choice of boundary conditions) contain important constructions for exemplifying basic
high-performance computing aspects, e.g.,

• large, nested do-loops

• if-tests and function calls inside/outside loops

• 5- or 7-point stensils and cache problems

This note describes in detail the description of an appropriate model problem to be used as a
main example in a high-performance computing course.

NOTE: You do not need to read or understand the mathematics in Sec-

tion 2 to carry out the exercises. Hence, you can jump directly to Sec-

tion 3, which describes a sample code in Fortran 77, and then you can

∗Dept. of Scientific Computing, Simula Research Laboratory, and Dept. of Informatics, University of Oslo.

hpl@ifi.uio.no.

1

start with the exercises in Section 4. If you are an experienced program-

mer, you will understand the basics of the exercises and the code without

understanding the mathematical details behind the code.

2 Problem description

2.1 The mathematical model

Wave propagation is a physical process of fundamental importance; just think of water waves,
sound waves for oral communication, and electromagnetic waves for transmission of light as well
as radio and TV programs. The simplest mathematical model for waves consists of a partial
differential equation, to so-called wave equation,

∂2u

∂t2
= ∇ · [λ∇u] . (1)

This equation for the unknown function u can describe, for example, water surface waves, elec-
tromagnetic waves, earthquake waves, waves on a drum, or sound waves in air. When it comes
to water and earthquake waves, equation (1) is actually an approximation to the real-world
physics, valid under certain assumptions; the water waves need to be long compared to the
depth of water. This is satisfied for destructive flood waves generated by natural hazards such
as avalanches, slides, earthquakes.

Understanding the right-hand side of equation (1) requires familiarity with vector calculus.
We can write out the term ∇ · [λ∇u] explicitly for a two-dimensional application of the wave
equation, i.e., when u depends on two spatial coordinates, x and y:

∂2u

∂t2
=

∂

∂x

(

λ(x, y)
∂u

∂x

)

+
∂

∂y

(

λ(x, y)
∂u

∂y

)

. (2)

The parameter
√

λ represents the velocity of the waves and depends in general on the properties
of the medium in which wave the propagation takes place. In the case of water waves, λ(x, y) =
gH(x, y), where g is the acceleration of gravity and H(x, y) is the still-water depth. The function
u(x, y, t) is the elevation of the surface, and u = 0 corresponds to still water. If H is constant, λ
is constant and can be moved outside the spatial derivative. This results in a simpler equation,

∂2u

∂t2
= λ

(

∂2u

∂x2
+

∂2u

∂y2

)

. (3)

The right-hand side is the Laplacian of u, often denoted by ∇2u. Hence, an alternative form of
(3) is

∂2u

∂t2
= λ∇2u .

Some readers might recall this wave equation from other contexts.
Equation (2) is defined in a domain Ω, i.e., a two-dimensional area in which we want to

simulate the wave propagation. This can be a harbor or just a part of a big ocean basin. The
boundary of the domain is often denoted by ∂Ω.

There are an infinite number of solutions to 2 unless we specify additional conditions. These
conditions consists of boundary conditions and initial conditions. For the water wave application,

∂u

∂n
≡ ∇u · n = 0 (4)

is an appropriate boundary condition that we will make use of. The vector n is an outward
unit normal to the boundary ∂Ω. The condition (4) is to be applied at every point on ∂Ω. If
the boundary is the line x = 0, n is a unit vector along the x axis, and ∂u/∂n simply becomes

2

∂u/∂x. Physically, equation (4) tells that waves are perfectly reflected from the boundary, which
is relevant if the boundary is, e.g., a coastline with steep hills. A simpler boundary condition is

u = 0 . (5)

Initial conditions specify the shape of u at initial time t = 0 throughout the domain Ω:

u(x, y, 0) = I(x, y) . (6)

The physical interpretation of this equation is that the shape of the water surface is described
by the function I(x, y). In addition to this condition, we need to specify the time derivative of u
at t = 0 as well. This time derivative is, from a physical point of view, the velocity of the water
surface at t = 0. For simplicity, we assume that the surface is at rest (zero velocity):

∂

∂t
u(x, y, 0) = 0 . (7)

The assumption of zero velocity can easily be relaxed.
The partial differential equations with the boundary and initial conditions constitute the

complete mathematical model for simulating water waves1. In particular, we need to specify the
depth function H(x, y) and the initial surface shape I(x, y) before the simulation can take place.

2.2 The numerical method

In the old days, clever mathematicians tried to find solutions to equations like (2) by paper and
pencil. This is an extremely challenging task and in general impossible for a depth function
H(x, y) taken from a sea map. Solution in terms of a computer is, however, quite simple. A
fairly short program is capable of calculating u(x, y, t) with sufficient accuracy in seconds or
minutes for any choice of H(x, y) and initial shape I(x, y).

The numerical solution method to partial differential equations to be used here is based on
finite differences. Finite difference methods are quite easy to explain and program if the domain
Ω has a rectangular shape, which we will assume in the rest of the document. We write

Ω = [xmin, xmax]× [ymin, ymax] .

The finite difference method is based on some fundamental ideas:

1. The domain Ω is represented by a grid, which is a rectangular set of points (xi, yj):

xi = xmin + (i− 1)∆x, yj = ymin + (j − 1)∆y, (8)

for i = 1, . . . , nx, and j = 1, . . . , ny. The points form a rectangular array with equal
spacings ∆x and ∆y between the points, see figure 1 (in this figure, ∆x = ∆y but in
general we can have ∆x 6= ∆y). The value of nx and ny in figure 1 is 9 and 6, respectively.
The size the grid spacings is determined by

∆x =
xmax − xmin

nx − 1
, ∆x =

ymax − ymin

ny − 1
.

2. Also in time a grid is introduced:

t0 = 0, t1 = ∆t, t2 = 2∆t, t3 = 3∆t, . . .

or expressed in terms of an index `: t` = `∆t, ` = 0, 1, . . .

1The term “water waves” refers in this document to water waves where the typical wave length is much greater

than the water depth. If this assumption is violated, the solution to the wave equation will be qualitatively wrong.

3

y

x x
ymin

maxy

min max∆

∆ y

x

x

Figure 1: Example on a two-dimensional grid suitable for finite difference solution of partial
differential equations.

3. We compute numerical approximations to u(xi, yj , t`), i.e., u at the space-time grid points.
The approximations are denoted by u`

i,j .

4. The governing partial differential equation (2) is supposed to be satisified at all space-time
points (xi, yj , t`), i = 1, . . . , nx, j = 1, . . . , ny, ` = 0, 1, This is an approximation as
equation (2) in the mathematical model is to be fulfilled at all the inifinte number of points
in Ω and for all t > 0.

5. Derivatives in the partial differential equation is replaced by following finite difference
approximations:

∂2

∂t2
u(xi, yj , t`) ≈

u`−1
i,j − 2u`

i,j + u`+1
i,j

∆t
, (9)

∂

∂x

(

λ(xi, yj)
∂

∂x
u(xi, yj , t`)

)

≈ 1

∆x

(

λi+ 1

2
,j

u`
i+1,j − u`

i,j

∆x
− λi− 1

2
,j

u`
i,j − u`

i−1,j

∆x

)

,(10)

∂

∂y

(

λ(xi, yj)
∂

∂y
u(xi, yj , t`)

)

≈ 1

∆y

(

λi,j+ 1

2

u`
i,j+1 − u`

i,j

∆y
− λi,j− 1

2

u`
i,j − u`

i,j−1

∆y

)

.(11)

When λ is constant, the formulas simplify to (hopefully) well-known formulas for the
second derivative:

∂2

∂x2
u(xi, yj , t`) ≈

u`
i−1,j − 2u`

i,j + u`
i+1,j

∆x2
.

6. At each time level we assume that u from previous time levels are already computed, i.e.,
they are known values.

Inserting the finite difference approximations into the wave equation results in what we refer
to as the finite difference equations or simply the discrete equations. We make the important
observation that there is only one term involving time level `+1 in the discrete equations. Since
we assume that everything on the previous time levels ` and `− 1 are known, there is actually
only one unknown value, u`+1

i,j . We can solve the discrete equations with respect to this value
and get something like

u`+1
i,j = known terms from previous time levels

This means, algorithmically, that we can just run through all the grid points i = 1, . . . , nx,
j = 1, . . . , ny, and compute new approximations to u from a simple formula. It is common

4

���
���
���

���
���
���

y

x x
ymin

maxy

min max∆

∆ y

x

x

Figure 2: A new u value time level ` + 1 depends on values at previous time levels ` and `− 1
at the same point and values at time level ` at the nieghboring points to the north, south, east,
and west.

to classify such methods as explicit schemes. For other partial differential equations and other
finite difference discretizations, new u values at time level ` + 1 will in general be coupled with
each other in a linear system of algebraic equations (matrix system). This is referred to as an
implicit scheme.

A notation, which is convenient when translating a computational algorithm to program
statements in a code, is to set

u+
i,j ≡ u`+1

i,j , ui,j ≡ u`
i,j , u−

i,j ≡ u`−1
i,j .

We can now write the discrete equations compactly:

u+
i,j = 2ui,j − ui,j + [4u]i,j (12)

where

[4u]i,j ≡
(

∆t

∆x

)2

(λi+ 1

2
,j(ui+1,j − ui,j)− λi− 1

2
,j(ui,j − ui−1,j)) +

(

∆t

∆y

)2

(λi,j+ 1

2

(ui,j+1 − ui,j)− λi,j− 1

2

(ui,j − ui,j−1)) . (13)

Assuming that ui,j and u−

i,j are known for all (i, j) values in the grid, equation (12) gives the
new u value at time level ` + 1 at the grid point with index i and j.

The “geometry” of (12) is interesting to observe: When computing a new u value at a spatial
point with index i and j, we make use of previous u values at this point and the four neighboring
points (west, east, north, and south). This is illustrated in figure 2. This observation, together
with the fact that the order in which we visit the spatial indices i and j in (12) is irrelevant,
forms the basis for constructing an algorithm for wave simulation on parallel computers.

There is one immediate basic problem with (12): If we apply it to the first time level, ` = 1,
it will involve u−

i,j , i.e., u values at time level −1 (t = −∆t), which are unknown to us. The
reason why we run into this problem is that we have not applied the initial condition ∂u/∂t = 0
at t = 0. A typical finite difference approximation to this condition reads

∂

∂t
u(xi, yj , 0) ≈

u1
i,j − u−1

i,j

2∆t
= 0,

which implies
u−1

i,j = u1
i,j .

5

Hence, we can just substitute u−

i,j by u+
i,j in (12) at the first time level. Alternatively, we can

use (12) as it stands, even for the first time level, if we just define u at time level -1 to be

u−1
i,j = ui,j +

1

2
[4u]i,j .

Another problem with (12) is that we have not incorporated the boundary values. For simplicity,
we assume that u = 0 on the boundaries. We can then just use the zero value when (12) involves
u at a boundary. The complete computational recipe is summarized in algorithm 1.

6

∆

∆ y

x

-1 4 -1

-1

-1

Figure 3: Illustration of the finite difference stencil for approximating the Laplace operator ∇2u
in a regular grid.

Algorithm 1

Explicit scheme for the two-dimensional wave equation with u = 0 on the
boundary.

define u+
i,j , ui,j and u−

i,j to represent u`+1
i,j , u`

i,j and u`−1
i,j , resp.

define [4u]i,j as in (13)
define (i, j) ∈ Ī to be i = 1, . . . , nx, j = 1, . . . , ny

define (i, j) ∈ I to be i = 2, . . . , nx − 1, j = 2, . . . , ny − 1
set ui,j = 0, (i, j) ∈ Ī
set the initial conditions:

ui,j = I(xi, yj), (i, j) ∈ I
define the value of the artificial quantity u−

i,j:

u−

i,j = ui,j + 1
2
[4u]i,j , (i, j) ∈ I

t = 0
while time t ≤ tstop

t← t + ∆t
update all inner points:

u+
i,j = 2ui,j − u−

i,j + [4u]i,j , (i, j) ∈ I
initialize for next step:

u−

i,j = ui,j , ui,j = u+
i,j , (i, j) ∈ I

Notice that we do not explicitly set ui,j = 0 at the boundary. Instead, we set ui,j = 0 initially
and never touch the boundary values.

We remark that if λ is constant and ∆x = ∆y = h, the numerical scheme simplifies greatly,
and the Laplace term ∇ · [λ∇u] = λ∇2u takes the well-known discrete form

[4u]i,j = λ

(

∆t

h

)2

(−ui−1,j − ui,j−1 − ui+1,j − ui,j+1 + 4ui,j) . (14)

This formula for approximating λ∇2u can be graphically exposed as in figure 3. The circles
denote the points in the grid that are used in the approximation, and the numbers reflect
the weight of the point in the finite difference formula. One often refers to such a graphical
representation as a finite difference stencil or a computational molecule. In the more general
case when λ is not constant, the same stencil arises, except that the weights are different.

Algorithm 1 assumes that u = 0 on the boundary. We shall now demonstrate how to
implement a more complicated boundary condition, ∂u/∂n = 0, in the scheme. The boundary
condition is discretized by a centered difference at the boundary. For example, at the line i = 1

7

we then require
u`

2,j − u`
0,j

∆x
= 0 ⇒ u`

0,j = u`
2,j .

Notice that this involves a fictitious value u`
0,j outside the grid. Using the discrete finite difference

equation (12) at the same boundary point, with u`
0,j = u`

2,j from the boundary condition, enables
elimination of the fictitious value. The [4u]i,j operator is then modified to

[4u]1,j:i−1→i+1 ≡
(

∆t

∆x

)2

(λ1+ 1

2
,j(u2,j − u1,j)− λ1− 1

2
,j(u1,j − u2,j)) +

(

∆t

∆y

)2

(λ1,j+ 1

2

(u1,j+1 − u1,j)− λ1,j− 1

2

(u1,j − u1,j−1)), j 6= 1, ny . (15)

At the boundary i = nx we would then apply the modification [4u]nx,j:i+1→i−1. Similarly, for
j = 1 and j = ny we replace the original [4u]i,j operator by [4u]i,1:j−1→j+1 and [4u]i,ny :j+1→j−1,
respectively. The corner points of the grid require modification of both indices, for example, the
i = j = 1 point leads to [4u]1,1:i−1→i+1,j−1→j+1.

Algorithm 2 precisely explains the updating of internal and boundary points in terms of a
function WAVE(u+, u, u−, a, b, c). As a special case, the call WAVE(u+, u, u−, 1, 1, 1) reproduces
the original finite difference scheme with modifications due to homogeneous Neumann conditions
∂u/∂n = 0.

Algorithm 2

Basic finite difference updating formula for the two-dimensional wave equa-
tion with ∂u

∂n
= 0 on the boundary.

define [4u]i,j as in (13)
define [4u]1,j:i−1→i+1, [4u]nx,j:i+1→i−1, [4u]i,1:j−1→j+1,

and [4u]i,ny :j+1→j−1 according to (15)
define (i, j) ∈ I to be i = 2, . . . , nx − 1, j = 2, . . . , ny − 1

define u+
i,j , ui,j and u−

i,j to represent u`+1
i,j , u`

i,j and u`−1
i,j , resp.

function WAVE(u+, u, u−, a, b, c):
update all inner points:

u+
i,j = 2aui,j − bu−

i,j + c[4u]i,j , (i, j) ∈ I
update boundary points:

i = 1; u+
i,j = 2aui,j − bu−

i,j + c[4u]i,j:i−1→i+1, j = 2, . . . , ny − 1

i = nx; u+
i,j = 2aui,j − bu−

i,j + c[4u]i,j:i+1→i−1, j = 2, . . . , ny − 1

j = 1; u+
i,j = 2aui,j − bu−

i,j + c[4u]i,j:j−1→j+1 , i = 2, . . . , nx − 1

j = ny; u+
i,j = 2aui,j − bu−

i,j + c[4u]i,j:j−1→j+1 , i = 2, . . . , nx − 1

update corner points on the boundary:

i = 1, j = 1; u+
i,j = 2aui,j − bu−

i,j + c[4u]i,j:i−1→i+1,j−1→j+1

i = nx, j = 1; u+
i,j = 2aui,j − bu−

i,j + c[4u]i,j:i+1→i−1,j−1→j+1

i = 1, j = ny; u+
i,j = 2aui,j − bu−

i,j + c[4u]i,j:i−1→i+1,j+1→j−1

i = nx, j = ny; u+
i,j = 2aui,j − bu−

i,j + c[4u]i,j:i+1→i−1,j+1→j−1

Using the WAVE function from Algorithm 3, we can devise a compact description of all the
computational tasks for the discrete two-dimensional wave equation with homogenous Neumann
conditions. The steps are listed in Algorithm 3.

8

Algorithm 3

Complete scheme for the two-dimensional wave equation with ∂u
∂n

= 0 on the
boundary.

define quantities in Algorithm 2
define (i, j) ∈ Ī to be i = 1, . . . , nx, j = 1, . . . , ny

set ui,j = 0, (i, j) ∈ Ī
set the initial conditions:

ui,j = I(xi, yj), (i, j) ∈ I
define the value of the artificial quantity u−

i,j:

WAVE(u−, u, u−, 0.5, 0, 0.5)
t = 0
while time t ≤ tstop

t← t + ∆t
update all points:

WAVE(u+, u, u−, 1, 1, 1)
initialize for next step:

u−

i,j = ui,j , ui,j = u+
i,j , (i, j) ∈ I

At this point a newcomer to partial differential equations and finite difference schmes might
be overwhelmed and confused by all the indices and book-keeping in these algorithms. Surely,
the amount of details is significant, and hands-on work with the formulas, either with pencil and
paper or in a computer code, is necessary to become familiar with the ideas and the notation.
We should, however, point out that the underlying ideas are quite simple; the whole business
here is mostly a matter of becoming familiar with the index notation. A very good exercise for
repeating the material and working towards a better understanding is to devise an algorithm
for the case where u = 0 at the whole boundary, except the line x = xmax. Readers who
are experienced with finite difference schemes will do this in a minute, while newcomers need
to carefully go through the previous pages and find the right elements that are needed in the
algorithm for this slightly perturbed problem.

2.3 Implementation of the algorithm

The basic operations in algorithm 3 consist of running through all grid points,

i = 1, . . . , nx, j = 1, . . . , ny

and computing some formula at each grid point. The formula typically involves u+
i,j , ui,j , and

u−

i,j values. If we store the latter quantities in three two-dimensional arrays, where i and j
become indices in the array, the basic operation consists of two nested loops and manipulation
on the arrays inside the loop. This type of operation can be programmed in almost any computer
language, since two-dimensional arrays are data structures found in most languages.

3 Implementation in Fortran 77

A rough implementation of the numerical problem described in the previous section has been
realized in Fortran 77. It is not necessary to be familiar with the numerics in detail in order to
play around with the code. We remark that the program applies a rough first-order approxima-
tion to the initial condition ∂u/∂t = 0, the other numerical expressions are as outlined in the
section 2.3.

The program consists of two files, main.f and F77WAVE.fcp. The main.f file contains

9

• a main program, where data structures are declared and some constants set, before the
main routine timeloop is called,

• a function h implementing an expression for the λ(x, y) function (here just 1.0 is returned),

• a function bell for defining the initial condition (a Gaussian bell),

• a function setIC for initializing arrays based on the problem’s initial condition,

• a function timeloop, which runs the finite difference scheme for a given number of time
steps,

• a function dump for dumping data to file.

The timeloop function calls another function F77WAVE for implementing the WAVE function
defined in section 2.3. The WAVE function is just the core finite difference scheme for the wave
equation, i.e., the “heart” of this simulation code. The F77WAVE function is written in Fotran 77,
but we have used a C preprocessor macro to define an inline function LaplaceU, corresponding
to [4u]i,j in section 2.2:

#define LaplaceU(u,lambda,i,j,im1,ip1,jm1,jp1) \
(dt*dt)/(dx*dx)*\
(0.5*(lambda(ip1,j)+lambda(i ,j))*(u(ip1,j)-u(i ,j)) \
-0.5*(lambda(i ,j)+lambda(im1,j))*(u(i ,j)-u(im1,j)))\

+(dt*dt)/(dy*dy)*\
(0.5*(lambda(i ,jp1)+lambda(i ,j))*(u(i ,jp1)-u(i ,j)) \
-0.5*(lambda(i ,j)+lambda(i ,jm1))*(u(i ,j)-u(i ,jm1)))

The equivalent mathematical expression is

[4u]i,j ≡
(

∆t

∆x

)2

(λi+ 1

2
,j(ui+1,j − ui,j)− λi− 1

2
,j(ui,j − ui−1,j)) +

(

∆t

∆y

)2

(λi,j+ 1

2

(ui,j+1 − ui,j)− λi,j− 1

2

(ui,j − ui,j−1)) .

The symbols ip1 (“i plus 1”), im1 (“i minus 1”), and so on corresponds to i + 1, i− 1 etc.
A special script, fcpp.py, translates Fortran 77 code with C macros into plain Fortran 77.

The resulting file is named F77WAVE.f. With the LaplaceU macro the code becomes much more
readable, and it is easier to play around with modifications of the implementation of the finite
difference scheme.

The script make.sh runs fcpp.py and compiles the application with profiling turned on (plain
Unix gprof).

When working with high-performance computing issues related to this wave simulation code,
we shall modify the F77WAVE.fcp file only. The core of this file is the WAVE function:

SUBROUTINE F77WAVE(up, u, um, lambda, a, b, c, nx, ny,
> dt, dx, dy)
IMPLICIT LOGICAL (A-Z)
INTEGER nx, ny
REAL*8 up(nx,ny), u(nx,ny), um(nx,ny), lambda(nx,ny)
REAL*8 a, b, c
REAL*8 dt, dx, dy
INTEGER i,j

DO 20 j = 2, ny-1
DO 10 i = 2, nx-1

up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i-1,i+1,j-1,j+1)

10 CONTINUE
20 CONTINUE

C Boundary points:

i=1
DO 30 j = 2, ny-1

10

up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i+1,i+1,j-1,j+1)

30 CONTINUE

i=nx
DO 40 j = 2, ny-1

up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i-1,i-1,j-1,j+1)

40 CONTINUE

j=1
DO 50 i = 2, nx-1

up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i-1,i+1,j+1,j+1)

50 CONTINUE

j=ny
DO 60 i = 2, nx-1

up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i-1,i+1,j-1,j-1)

60 CONTINUE

C Corners:
i=1
j=1
up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i+1,i+1,j+1,j+1)

i=nx
j=1
up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i-1,i-1,j+1,j+1)

i=1
j=ny
up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i+1,i+1,j-1,j-1)

i=nx
j=ny
up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i-1,i-1,j-1,j-1)
RETURN
END

In the implementation we have paid attention to constructing loops with the first index as the
fastest index. This ensures that arrays are accessed in the way they are stored in Fortran. We
have also treated the boundary points in separate loops. In some of the first exercises you are
asked to rewrite the code in less efficient ways and measure the efficiency.

4 Exercises

CPU-Time Measurements

In most of the exercises below, the purpose is to perform some actions and measure the impact
on the CPU time. The CPU time can be measure in different ways. The simplest is to use the
program (or built-in shell command) time:

time app

The output from time when running the program app may look as follows:

real 0m4.314s
user 0m3.950s
sys 0m0.020s

Here, real is elapsed time (the time you have waited for the program to finish), user is user
time (e.g., arithmetics in the code), and sys is system time (e.g., I/O in the code). The CPU
time is the sum of the user time and the system time.

11

The preferred way to measure CPU time in these exercises is to run prof or gprof. With
gprof, you will find the CPU time at the last line of the cumulative seconds column in the table
of the CPU-time consumption of the various functions. This command picks out the relevant
number:

gprof app | perl -ne ’if (/MAIN__$/)
{ $cpu=(split /\s+/)[2]; print "CPU=$cpu\n"; }’

This command is available as the script cpu.sh. To display the table of CPU-time consumption
of the various functions, you can type

gprof app | head -12

which displays the first 12 lines of the gprof output.
If you want to have a look at the solution produced by the Fortran 77 program, you can

run the script Verify/test1.sh. The plotting requires that you have the X11 plotting program
plotmtv installed.

Exercises

1. Determine the appropriate problem size. CPU-time measurements are not reliable unless
they last for some (say at least 10) seconds. In the present code example, the grid size and
the number of time steps govern the CPU time. We have fixed the number of time steps
at 40, so the parameter to tune is the number of grid points in each spatial direction. This
parameter is set in the top of the main.f.orig file:

PARAMETER (n=501)

Compile the code by

make.sh

and run it:

time app

Adjust the value of n in the PARAMETER statement until you have a CPU time between 10
and 30 seconds.

2. Computations with and without I/O. Measure the CPU time of the original implementation
of the wave simulation code. Then “uncomment” the calls to dump, i.e., write the solution
to file at every time step. Compile and measure the CPU time of a run. In the rest of
the exercises, we shall not write results to file so make sure you insert the comment again
before proceeding.

3. Function calls inside loops. The λ(x, y) coefficient in the wave equation is in our imple-
mentation stored in an array lambda. Alternatively, we could call a function, here h(x,y).
Modify the LaplaceU macro to call h instead of using lambda. First try to replace lambda

by h(0,0) (take a copy of the original F77WAVE.fcp file!):

#define LaplaceU(u,lambda,i,j,im1,ip1,jm1,jp1) \
(dt*dt)/(dx*dx)*\
(0.5*(h(0,0) + h(0,0))*(u(ip1,j)-u(i ,j)) \
-0.5*(h(0,0) + h(0,0))*(u(i ,j)-u(im1,j)))\

+(dt*dt)/(dy*dy)*\
(0.5*(h(0,0) + h(0,0))*(u(i ,jp1)-u(i ,j)) \
-0.5*(h(0,0) + h(0,0))*(u(i ,j)-u(i ,jm1)))

In addition you need to declare h in the F77WAVE function as REAL*8. Compare timings with
the original code.

Smart compilers will notice that h(0,0) is a constant inside the loop and evaluate h(0,0)

just once outside the loop. Replace lambda(i,j) by h((i-1)*delta,(j-1)*delta), where
delta is the cell size, which must be initialized before the loops in the F77WAVE function:

12

REAL*8 delta
delta = 10.0/(n-1)

This time the h needs to be called inside the loop, unless the compiler is so smart that it
detects that the function declaration of h is simple (just 1 is returned) and inlines that
function. The timings will uncover how smart your compiler is.

4. If-tests inside loops. Instead of splitting the finite difference scheme into a loop over the
internal grid points, i,j=2,...,n-1, we can merge all loops and insert appropriate if-tests.
This is a typical coding habit of novice numerical programmers:

DO 20 j = 1, ny
DO 10 i = 1, nx

if (i .ge. 2 .and. i .le. nx-1 .and. j .ge. 2
> .and. j .le. ny-1) then

up(i,j) = a*2*u(i,j) - b*um(i,j) +
> c*LaplaceU(u,lambda,i,j,i-1,i+1,j-1,j+1)

else if ...
C treat boundary points...
10 CONTINUE
20 CONTINUE

Implement just one such if-test, i.e., the one given above with else if replaced by end if.
Is your compiler sufficiently smart to replace the loop by new limits? Or do you get an
increase in the CPU time?

5 Projects

1. Extend the code to simulation of acoustic waves in a heterogenous three-dimensional box.
The governing PDE is the same,

∂2u

∂t2
= ∇ · (λ∇u). (16)

The boundary conditions are also the same: ∂u/∂n = 0.

2. Repeat the tests from the exercises with the two-dimensional version of the program.
Comment upon differences in the results.

3. Reimplement the program in C or C++. Repeat the efficiency tests.

13

