Usetul Script for Compilation

Hans Petter Langtangen*
March 14, 2004

1 Using the C Preprocessor in Fortran Codes

C and C++ compilers run a preprocessor! prior to the compilation. The preprocessor is a
handy tool that is, unfortunately, not integrated with Fortran compilers. Nevertheless, the
preprocessor can be executed as a stand-alone program, called cpp, or it can be run as a part
of a C compiler (e.g., gcc -E). In this way, one can apply the preprocessor to any file, including
Fortran source code files. We shall now develop a script that transforms a Fortran file with C
preprocessor directives to standard Fortran syntax. This will allow writing Fortran programs
with, e.g., include statements (#include), macros (#define), and C-style (possible multi-line)
comments (/* ... */).

We let Fortran files containing C preprocessor directives have the extension .fcp. The script
is to be invoked with the following command-line parameters:

[cpp options] filel.fcp

That is, standard cpp options can be present, followed by the name of a single Fortran file.
Typical examples on cpp options are definitions of macros, like -DMY DEBUG=2, and specification
of directories with include files, like -I../mydir. The C preprocessor is run by the command

cpp [cpp options] filel.fcp > filel.f

if you have cpp available as a separate program. Since cpp is not always present as a separate
program, we recommend to run the preprocessor as part of GNU’s C compiler gcc, since gec is
a standard utility found on most machines. The relevant commands are then

cp filel.fcp tmp.c # gcc must work with a file with suffix .c

gcc -E -c [cpp options] tmp.c > filel.f
rm -f tmp.c

In Python this becomes

cpp_options = ’ ’.join(sys.argv[1:-1])

shutil.copy(fcp_file, ’tmp.c’)

cmd = ’gcc -E Us -c tmp.c > Ys.f’ % (cpp_options,fcp_file[:-4])
os.system(cmd)

os.remove(’tmp.c’)

A fundamental problem with the macro expansions performed by the preprocessor is that
code lines can easily exceed 72 characters, which is illegal according to the Fortran 77 standard.
Although modern Fortran 77 compilers, and in particular Fortran 90/95 compilers, allow longer
line lengths, buffer overflow is not unusual for long lines (longer than (say) 255 characters).
Since macros are expanded to a single line, there is a danger of very long lines, and the script
needs to split lines that are longer than a specified number of characters, which we here set to
72. Fortunately, whitespace is not significant in Fortran so one can split a line by just inserting
newline, five blanks, and any character (indicating continuation of a line) in column six.

*Dept. of Scientific Computing, Simula Research Laboratory, and Dept. of Informatics, University of Oslo.
hpl@simula.no.
1This section probably does not make much sense if you are not familiar with the C or C++ preprocessor.

split lines that are longer than maxlen chars:
maxlen = 72
f = open(fcp_file[:-4]1+’.f’, ’r’); lines = f.readlines(); f.close()
for i in range(len(lines)):
line = lines[i]
if len(line) > maxlen: # split line?
nrest = len(line) - maxlen
splitline = line[0:maxlen]
start = maxlen
while nrest > 0:
splitline = splitline + ’\n &+ \
line[start:start+maxlen-6]
start start + maxlen-6
nrest = nrest - (maxlen-6)
lines[i] = splitline # in-place list modification

Note that this split feature makes the script convenient for writing Fortran source code files
without any restriction on the line length, besides allowing the use of any C preprocessor direc-
tive.

Newer C preprocessors preserve indentation, but minimize whitespace elsewhere such that
labels like 10 CONTINUE appear as 10 CONTINUE, which is not valid Fortran 77 since CONTINUE starts
before column 7. We therefore need to ensure that labels in columns 1-6 appear correctly:

c = re.compile(r’~(\s*) (\d+) (\s*)’) # label regex
for i in range(len(lines)):
remove lines starting with
lines[i] = re.sub(x’ #.%’, >, lines[il)
if len(lines[i]) >= b5:
columnito5 = lines[i] [0:5]
if re.search(r’\w’,columnito5):
letter after label?
m = re.search(r’ (\s*) (\d+) (\s+)\w+’, columnito5)
if m:
insert extra white space after group 3
n = len(m.group(1))+len(m.group(2))+len(m.group(3))
space = ’’.join([’ ’]*(6 - n))
lines[i] = m.group(1) + m.group(2) + m.group(3) + \
space + lines[i][n:]

Writing lines back to the Fortran file finishes the script. The complete script is called fccp.py
and is available in src/tools.

Here is a simple test example that fccp.py can handle. Two macros are defined in a file
macros. i, stored in (say) /home/hpl/f77macros,

#define DDx(u, i, j, dx) \

(u(i+1,j) - 2%u(i,j) + u(i-1,j))/(dx*dx)
#define DDy(u, i, j, dy) \

(u(i,j+1) - 2%u(i,j) + u(i,j-1))/(dy*dy)

A Fortran 77 file wavel.fcp with C macros, #ifdef directives, and C-style comments has the
following form:

#include <macros.i>

C234567 column numbers 1-7 are important in F77!
SUBROUTINE WAVE1(SOL, SOL_PREV, SOL_PREV2, NX, NY,
& DX, DY, DT)
C variable declarations:
INTEGER NX, NY /* no of points in x and y dir */
REAL*8 DX, DY, DT /* cell and time increments */
REAL*8 SOL(NX,NY), SOL_PREV(NX,NY), SOL_PREV2(NX,NY)

C update SOL:
DO 20 J=1, NY
DO 10 I=1, NX
/*
a 2nd-order time difference combined with
2nd-order differences in space results in
the standard explicit finite difference scheme
for the wave equation:
*/
SOL(I,J) = 2*SOL_PREV(I,J) - SOL_PREV2(I,J) +
& DT*DT*(DDx (SOL_PREV, I, J, DX) +

& DDy (SOL_PREV, I, J, DY))
#ifdef DEBUG

WRITE(*,*) °soL(’,I,’,’,J,’)=’,S0L(I,J)
#endif
10 CONTINUE
20 CONTINUE
RETURN
END

We may then run

fcep.py -I/home/hpl/f77macros wavel.fcp

and get a valid Fortran 77 file wavel.f, which looks like this:

C234567 column numbers 1-7 are important in F77!
SUBROUTINE WAVE1(SOL, SOL_PREV, SOL_PREV2, NX, NY,
& DX, DY, DT)
C variable declarations:
INTEGER NX, NY
REAL*8 DX, DY, DT
REAL*8 SOL(NX,NY), SOL_PREV(NX,NY), SOL_PREV2(NX,NY)

¢ update SOL:
DO 20 J=1, NY
DO 10 I=1, NX

SOL(I,J) = 2+SOL_PREV(I,J) - SOL_PREV2(I,J) +
DT#DT+((SOL_PREV (I +1, J) - 2% SOL_PREV (I
, J)+ SOLPREV (I -1, J))/(DX * DX) +
(SOL_PREV (I , J +1) - 2% SOL_PREV (I
, J)+ SOLPREV (I , J -1))/(dy*dy))

R

10 CONTINUE
20 CONTINUE

RETURN
END

If you are a Fortran 77 programmer and start using fccp.py, never forget that changes in the
source code must be performed in files with suffix .fcp!

2 Experimenting with Optimization Flags

Experimenting with a compiler’s optimization flags is a frequently encountered task in high-
performance computing. Measuring the efficiency of a wide range of flags, possibly on different
platforms and with different compilers, requires accurate work. This is should not be left as a
manual job for a human being. Automating the work in a script makes it easy to repeat the
experiments, extend or modify them, try out new compilers and hardware, etc. In this section
we shall develop a quite general script for running a benchmark problem with different compilers
and compiler flags.

A completely general tool for compiler experimentation would in some sense require us to
reimplement a make program, which is far beyond scope. However, with hardly no extra work
we can generalize a specific example and provide a tool that with minor modifications can be
adapted to a wide range of problems. This is typical for scripting: even a short script can be
made quite generic, and although the completely generic counterpart is beyond scope, the script
can meet surprisingly many demands if you allow for some tuning of the statements in a new
application.

Imagine we have some files to be compiled and linked by a set of compilers. The compilers
have some common flags and some flags that are specific to a certain compiler. We want to
experiment with different settings of the compiler-specific flags, i.e., for each compiler we want
to run through a set of different flag alternatives. The resulting executable is to be run in a
specified benchmark problem. We need to measure the CPU time, and if possible, grab results
from a profiler such as gprof or prof. The results should of course be nicely formatted for easy

inspection. It should be easy to repeat tests on different platforms. The purpose is now to
accomplish these tasks in a Python script.

We restrict the attention to source code files written in the Fortran 77 language. Modifying
the resulting script to treat C or C++ files is a trivial task. Although most applications are
compiled and linked using a makefile, we will in the script issue the commands directly without
using any make utility?. We introduce a set of common options for the compilation and for the
linking step as well as a set of libraries to link with the application. A minimal specification of
these options is

compile_flags = ’-c’
link_flags = ’-o %s’) programname
libs = ??

More advanced applications might need specifications of, e.g., include and library directories,
like in this example:

compile_flags = ’-c -I Ys/include’ % os.environ[’PREFIX’]

link_flags = ’-o %s -L %s/lib -L /usr/share/some/lib % \
(programname, os.environ[’PREFIX’])

libs = ’-ladvanced_lib -lmylib’

The information about a specific compiler is stored in a dictionary with keys reflecting the name
of the compiler, a description of the compiler, the common compile and link options, and a list
of variable compile options. The latter data are subject to experimentation. Here is a definition
of such a dictionary for GNU’s Fortran 77 compiler g77:

g77 = {
’name’ : 2gTT?,
’description’ : ’GNU £77 compiler, v2.95.4°,
’compile_flags’ : compile_flags + ’ -pg’,
’link_flags’ : link_flags + ’ -pg’,
’libs’ : libs,
‘test_flags’ :
[>-00°, °-01’, °-02’, °-03’,’-03 -ffast-math -funroll-loops’,],

’platform_specific_compile_flags’ : {},
’platform_specific_link_flags’ : {},
’platform_specific_libs’ : { c1 : ’-1f2¢c’ },

According to the test_flags key, we want to experiment with different levels of optimization
(-00, ..., -03) and special optimization flags (e.g., -ffast-math). We will typically loop over the
test_flags values and compile and run the benchmark problem for each value.

On a Sun system, we may want to test Sun’s native F77 compiler:

Sun f77 compiler:

Sunf77 = {
’name’ : ’f77’,
’description’ : ’Sun f77 compiler, v5.2’,
’compile_flags’ : compile_flags,
’link_flags’ : link_flags,
’1libs’ HER N
’test_flags’ :
(’-00’, °-01’, ’-fast’,],
’platform_specific_compile_flags’ : {},

’platform_specific_link_flags’ : {},
’platform_specific_libs’ : {},

The next step is to attach a list of compilers, where each compiler is represented by a dictionary
as exemplified above, to a dictionary holding the various platforms where we want to perform
the tests. To this end, we declare a dictionary structure cd (compiler data), whose keys are the
name of specific machines. For example,

2 Apart from checking a file’s date and time, and thereby avoiding unnecessary recompilation, make does not
perform much else than straightforward operating system commands. These are simpler to deal with in a script
written in an easy-to-read language like Python. Avoiding recompilation is not a major issue anymore on today’s
fast machines.

cd = {}

cl = ’basunus.ifi.uio.no’ # computer 1

cdlcl] = {}

cd[c1][’data’] = ’Linux 2.2.15 i686, 500 MHz, 128 Mb’
c2 = ’skidbladnir.ifi.uio.no’ # computer 2

cdlc2] = {}

cd[c2] [’data’] = ’Sun0S 5.7, sparc Ultra-5_10’

cd[c1] [’compilers’]
cd[c2] [’ compilers’]

[g77]
[g77, Sunf77]

The machine names are taken to be identical to the contents of the HOST environment variable.
In this way, we can easily extract the name of the current computer inside the script.
A typical experiment with the compilers and flags on a computer can be sketched as follows.

run through the various compiler and options for the
present host:
host = os.environ[’HOST’]
for compiler in cd[host] [’compilers’]:

for optimization_flags in compiler[’test_flags’]:

construct compilation command from

compiler[’name’],
compiler[’compile_flags’],
optimization_flags,
compiler[’platform_specific_compile_flags’] [host],
source code filenames

H HoH

<compile...>

<link (similar construction as the compile command)...>
<run problem...>

<report timing results...>

The CPU-time measurement can be performed by calling os.times before and after running the
benchmark program. More detailed information about the efficiency of the code can be obtained
from a profiler, such as gprof or prof. Here we demonstrate how to run gprof or prof and grab
the sorted table of the CPU time spent in each of the program’s functions. If the table is long,
we display only the first 10 functions:

def run_profiler(programname) :
"""grab data from gprof/prof output and format nicely"""

gprof needs gmon.out (from the last execution of programname)
if os.path.isfile(’gmon.out’):
run gprof:
if not findprograms([’gprof’]):
print ’Cannot find gprof’
return
res = os.popen(’gprof ’ + programname)
lines = res.readlines()
failure = res.close()
if failure:
print ’Could not run gprof’; return
grab the table from the gprof output:
for i in range(len(lines)):
if re.search(r’\%\s+cumulative\s+self’, lines[i]):
startline = i

break
try:
we are interested in the 10 first lines of the table,
but if there is a blank line, we stop there
stopline = 10
i=0
for line in lines[startline:startline+stopline]:
if re.search(r’~\s*$’, line):
stopline = i; break
i=41i+1
table = ’’.join(lines[startline:startline+stopline])
print table
os.remove(’gmon.out’) # require new file for next rum...
except:
print ’Could not recognize a table in gmon.out...’; return

elif os.path.isfile(’mon.out’):

run prof:
if not findprograms([’prof’]):
print ’Cannot find gprof’
return
res = os.popen(’prof ’ + programname)
lines = res.readlines()
failure = res.close()
if failure:
print ’Could not run prof’; return
for line in lines[0:10]: print line,

else: # no gmon.out or mon.out, cannot run gprof or prof
print programname,\
’was not compiled in profiling mode (-pg or -p?)’
return

The findprograms functions are found in the module funcs in the py4cs package.
A possible command-line interface to such a script can have the following items

programname filel.f file2.f ... inputfile comment

This implies compiling and linking filel.f, file2.f, and so, then running programname < inputfile,
and finally reporting the CPU time in an output line containing the comment about what type of
test we perform. Extracting the command-line information is trivial using Python’s convenient
subscripting syntax:

programname = sys.argv[1]
inputfile = sys.argv[-2]
comment = sys.argv[-1]
f77files = sys.argv[2:-1]

A specific application of a script of the type of script described above is found in

src/app/wavesim2D/F77/compile.py

The Fortran 77 code in the src/app/wavesim2D/F77 directory solves the two-dimensional wave

equation
0%u 0 ou 0 Ju
Z = (x e — (2 e
5 = 5 (Menge) + 5 (e

by an explicit finite difference scheme over a uniform, rectangular grid. We can think of this
equation as modeling 2D water waves. Then u is the water surface elevation, and A(x, y) repre-
sents the bottom topography. The README file in this directory contains an overview of the code
files and the documentation of the involved mathematics and numerics. The finite difference
scheme is coded in a separate file, using a C preprocessor macro to simplify the coding and fu-
ture modifications. A script from the previous section transforms an F77 file with preprocessor
directives to standard F77 code.

In the subdirectory versions there are several different versions of the code, aimed at testing
various high-performance computing aspects:

e file writing versus pure number crunching,

e row-wise versus column-wise traversal of arrays,

e representing A by an array versus calling functions,
e the effect of if-tests inside long do-loops.

A complete implementation of the type of script explained in this section is found in the file
compile.py. This script is central for testing the efficiency of the different coding techniques
used in the files in the versions subdirectory. A simple Bourne shell script runall.sh calls up
compile.py for the different versions of the code. This makes it trivial to test the efficiency
of all versions on different platforms, compilers, and optimization flags. The ranking.py script
extracts the CPU time measurements from the output of runall.sh and writes out the relevant
lines in sorted order. This acts as a kind of summary of the tests.

