
PyTix: Wrappers for the Tix Widget Set

Mike Clarkson,
Internet Discovery

Ioi Lam,
Sun Microsystems

November 30, 2000

1 Introduction

Tk/Tcl has long been an integral part of Python.
It provides a robust and platform independent
windowing toolkit, that is available to Python
programmers using the Tkinter module. Tkin-
ter is not the only GUI for Python, but is how-
ever the most commonly used one.

The Tix (Tk Interface Extension) library pro-
vides a rich set of widgets. Although the stan-
dard Tk library has many useful widgets, they
are far from complete. The Tix library provides
most of the commonly needed widgets that are
missing from standard Tk: FileSelectBox, Com-
boBox, Control (a.k.a. SpinBox) and an assort-
ment of scroll-able widgets. Tix also includes
many more widgets that are generally useful in
a wide range of applications: NoteBook, FileEn-
try, PanedWindow, etc. Figure 2 shows all of the
Tix widgets - there are more than 40 of them.

With all these new widgets, you can introduce
new interaction techniques into applications, cre-
ating more useful and more intuitive user inter-
faces. You can design your application by choos-
ing the most appropriate widgets to match the
special needs of your application and users.

Tkinter is a thin object-oriented layer on top of
Tcl/Tk. To use Tkinter, you don’t need to write
Tcl code, but you will need to consult the Tk
documentation, and occasionally the Tcl docu-
mentation. Tkinter is a set of wrappers that im-
plement the Tk widgets as Python classes. In
addition, the internal module tkinter provides
a thread-safe manner for two languages to inter-
act: Python and Tcl.

2 Tix Widget Set

Tix introduces over 40 widgets to the Tk/Tkinter
repertoire:

Balloon A balloon that pops up over a wid-
get to provide help. When the user moves
the cursor inside a widget to which a Bal-
loon widget has been bound, a small pop-up
window with a descriptive message will be
shown on the screen.

ButtonBox The ButtonBox widget creates a
box of buttons, such as is commonly used
for Ok Cancel.

CheckList The CheckList widget displays a list
of items to be selected by the user. Check-
List acts similarly to the Tk checkbutton or
radiobutton widgets, except it is capable of
handling many more items than checkbut-
tons or radiobuttons.

ComboBox The Tix ComboBox widget is sim-
ilar to the combo box control in MS Win-
dows. The user can select a choice by ei-
ther typing in the entry subwdget or select-
ing from the listbox subwidget.

Control The Control widget is also known as
the SpinBox widget. The user can adjust
the value by pressing the two arrow buttons
or by entering the value directly into the
entry. The new value will be checked against
the user-defined upper and lower limits.

DirSelectDialog The DirSelectDialog widget
presents the directories in the file system
in a dialog window. The user can use this

i

http://tcl.sourceforge.net
http://www.python.org
http://tix.sourceforge.net
http://www.python.org/topics/tkinter/doc.html
http://tix.sourceforge.net/dist/current/man/Balloon.html
http://tix.sourceforge.net/dist/current/man/BtnBox.html
http://tix.sourceforge.net/dist/current/man/ChkList.html
http://tix.sourceforge.net/dist/current/man/ComboBox.html
http://tix.sourceforge.net/dist/current/man/Control.html
http://tix.sourceforge.net/dist/current/man/DirDlg.html

dialog window to navigate through the file
system to select the desired directory.

DirList The DirList widget displays a list view
of a directory, its previous directories and its
sub-directories. The user can choose one of
the directories displayed in the list or change
to another directory.

DirTree The DirTree widget displays a tree
view of a directory, its previous directories
and its sub-directories. The user can choose
one of the directories displayed in the list or
change to another directory.

ExFileSelectBox The ExFileSelectBox widget
is usually embedded in a tixExFileSelect-
Dialog widget. It provides an convenient
method for the user to select files. The style
of the ExFileSelectBox widget is very sim-
ilar to the standard file dialog in MS Win-
dows 3.1.

FileSelectBox The FileSelectBox is similar to
the standard Motif(TM) file-selection box.
It is generally used for the user to choose
a file. FileSelectBox stores the files mostly
recently selected into a ComboBox widget
so that they can be quickly selected again.

FileEntry The FileEntry widget can be used to
input a filename. The user can type in the
filename manually. Alternatively, the user
can press the button widget that sits next to
the entry, which will bring up a file selection
dialog.

HList The HList widget can be used to display
any data that have a hierarchical structure,
for example, file system directory trees. The
list entries are indented and connected by
branch lines according to their places in the
hierachy.

InputOnly The purpose of TixInputOnly wid-
gets are to accept inputs from the user,
which can be done with the bind command.

LabelEntry The LabelEntry widget packages
an entry widget and a label into one mega
widget. It can be used be used to simplify

the creation of “entry-form” type of inter-
face.

LabelFrame The LabelFrame widget packages
a frame widget and a label into one mega
widget. To create widgets inside a Label-
Frame widget, one creates the new widgets
relative to the frame subwidget and manage
them inside the frame subwidget.

ListNoteBook The ListNoteBook widget is
very similar to the TixNoteBook widget: it
can be used to display many windows in a
limited space using a notebook metaphor.
The notebook is divided into a stack of
pages (windows). At one time only one of
these pages can be shown. The user can
navigate through these pages by choosing
the name of the desired page in the hlist
subwidget.

Meter The Meter widget can be used to show
the pregress of a background job which may
take a long time to execute.

NoteBook The NoteBook widget can be used
to display many windows in a limited space
using a notebook metaphor. The notebook
is divided into a stack of pages. At one time
only one of these pages can be shown. The
user can navigate through these pages by
choosing the visual “tabs” at the top of the
NoteBook widget.

OptionMenu The OptionMenu creates a menu
button of options.

PanedWindow The PanedWindow widget al-
lows the user to interactively manipulate the
sizes of several panes. The panes can be ar-
ranged either vertically or horizontally.The
user changes the sizes of the panes by drag-
ging the resize handle between two panes.

PopupMenu The Tix PopupMenu widget can
be used as a replacement of the tk popup
command. The advantage of the Tix Pop-
upMenu widget is it requires less application
code to manipulate.

http://tix.sourceforge.net/dist/current/man/DirList.html
http://tix.sourceforge.net/dist/current/man/DirTree.html
http://tix.sourceforge.net/dist/current/man/EFileBox.html
http://tix.sourceforge.net/dist/current/man/FileBox.html
http://tix.sourceforge.net/dist/current/man/FileEnt.html
http://tix.sourceforge.net/dist/current/man/HList.html
http://tix.sourceforge.net/dist/current/man/InpOnly.html
http://tix.sourceforge.net/dist/current/man/LabEntry.html
http://tix.sourceforge.net/dist/current/man/LabFrame.html
http://tix.sourceforge.net/dist/current/man/ListNBK.html
http://tix.sourceforge.net/dist/current/man/Meter.html
http://tix.sourceforge.net/dist/current/man/NoteBook.html
http://tix.sourceforge.net/dist/current/man/OptMenu.html
http://tix.sourceforge.net/dist/current/man/PanedWin.html
http://tix.sourceforge.net/dist/current/man/PopMenu.html

Select The Select widget is a container of but-
ton subwidgets. It can be used to provide
radio-box or check-box style of selection op-
tions for the user.

StdButonBox The StdButonBox widget is a
group of Standard buttons for Motif-like di-
alog boxes.

TList The TList widget can be used to display
data in a tabular format. The list entries of
a TList widget are similar to the entries in
the Tk listbox widget. The main differences
are (1) the TList widget can display the list
entries in a two dimensional format and (2)
you can use graphical images as well as mul-
tiple colors and fonts for the list entries.

Tree The Tree widget can be used to display
hierachical data in a tree form. The user
can adjust the view of the tree by opening
or closing parts of the tree.

In addition, Tix augments Tk by providing

Form a form geometry manager based on at-
tachment rules for all Tk widgets.

pixmap to create color images from XPM files.

compound Compound image types can be used
to create images that consists of multiple
horizontal lines; each line is composed of a
series of items (texts, bitmaps, images or
spaces) arranged from left to right. For ex-
ample, a compound image can be used to
display a bitmap and a text string simuta-
neously in a Tk button widget.

wm an addition to the standard TK wm com-
mand for reparenting windows.

Some of these widgets are implemented by Tix
in “C”, such as the HList and Tree widgets, but
most are compound widgets of existing Tk wid-
gets. They are all created using the simple ob-
ject oriented programming (OOP) framework for
writing mega-widgets called the Tix Intrinsics.

3 Integrating Hybrid Applications

As we have seen, Tix provides a rich widget set
for designing user interfaces, and a simple ob-
ject oriented framework for extending the widget
repertoire with mega-widgets.

The Tkinter module is extended by Tix under
Python by the module Tix.py. The Tix widgets
are represented by a class hierarchy in Python
with proper inheritance of base classes.

We set up an attribute access function so that
it is possible to access subwidgets in a standard
fashion, using

w.ok[’text’] = ’Hello’

rather than

w.subwidget(’ok’)[’text’] = ’Hello’

when w is a StdButtonBox. We can even do
w.ok.invoke() because w.ok is subclassed from
the Button class if you go through the proper
constructors. A complete list of the subwidgets
and methods for Tix widgets is presented in Ap-
pendix A.

Using Tkinter as a set of wrappers to implement
the Tk widgets as Python classes may be suitable
for small applications, but for large applications
with tens of thousands of lines of UI code, this
approach has its drawbacks. The Python code
is much more verbose than the Tcl code, and
the code expansion from using Tk widgets from
Python is not offset from any commensurate ben-
efits. With Tix, you can create larger and richer
user interfaces, and sometimes the amount of
user interface code exceeeds the ammount of ap-
plication code. This suggests the possibility of
explicitly using hybrid prgramming, where the
user interface component of an application is
written directly in Tk/Tix and the application
code is written in Python.

In the following two subsections we will exam-
ine the Tkinter module and its thread safety to
see the consequences of explicity working in two
languages.

http://tix.sourceforge.net/dist/current/man/Select.html
http://tix.sourceforge.net/dist/current/man/StdBBox.html
http://tix.sourceforge.net/dist/current/man/TList.html
http://tix.sourceforge.net/dist/current/man/Tree.html
http://tix.sourceforge.net/dist/current/man/Form.html
http://tix.sourceforge.net/dist/current/man/pixmap.html
http://tix.sourceforge.net/dist/current/man/compound.html
http://tix.sourceforge.net/dist/current/man/Wm.html
http://tix.sourceforge.net/dist/current/man/HList.html
http://tix.sourceforge.net/dist/current/man/Tree.html

3.1 Tkinter Module

Besides providing a set of wrappers to implement
the Tk widgets as Python classes, the Tkinter
module provides a number of internal methods
to facilitate communication between Python and
Tcl. The following methods are available from
Python to interact with Tcl:

call Concatenate the arguments to be a Tcl ex-
pression, and evaluate the resulting expres-
sion in Tcl at the global level.

eval, globaleval Evaluate an expression in Tcl;
evaluate at the global level.

evalfile Evaluate a file of expressions in Tcl at
the global level.

setvar, getvar, unsetvar Get, set and unset
variables in Tcl, and return the results as
a string.

getint, getdouble, getboolean Get variables
in Tcl and return the results as the indicated
type.

exprlong, exprdouble, exprboolean
Evaluate an expr and return the result as
the given type. Also, exprstring.

splitlist Split a string into a Tcl list.

mainloop, dooneevent Enter the main loop
of Tk, handling Tcl events, or just do one
event.

quit Quit the Tcl interpreter. All widgets will
be destroyed. This is the replacement for
the Tcl exit command.

interpaddr Get the address of the Tcl in-
tepreter.

register Return a newly created Tcl function.
If this function is called, the Python func-
tion FUNC will be executed. An optional
function SUBST can be given which will be
applied to the arguments before FUNC.

nametowidget Return the Tkinter instance of
a widget identified by its Tcl name NAME.

In hybrid programming, these commands are
used to communicate between the UI Tcl code
and the Python main program. Thus we are free
to design our application with the user interface
portion written in Tcl/Tk/Tix, and the appli-
cation portion written in Python. For example,
any existing Tcl/Tk/Tix program can be exe-
cuted immediately in Python using evalfile:

import Tix
root = Tix.Tk()
root.tk.evalfile(’/tmp/hello.tcl’)
root.mainloop()

Communication between Tix and Python can be
facilitated using the register command. For
example, lets consider a simple hello.tcl which
contains a simple Hello World program with two
buttons, one to print “Hello” on the stdout and
one to exit the application:

frame .frame -relief ridge -borderwidth 2
pack .frame -fill both -expand 1
label .frame.label -text "Hello, World"
pack .frame.label -fill x -expand 1
button .frame.hello -text "Hello" \

-command [list puts "Hello from Tcl"]
pack .frame.hello -side top
button .frame.button -text "Exit" \

-command [list destroy .]
pack .frame.button -side bottom

We can define a function in Python to print “Hi
from Python”.

def Hi():
"""Demo function."""
print "Hi from Python"

We register our Python function Hi, and then use
the eval method of Tk to configure the button
to call this command, before calling mainloop:

command = root.register(Hi)
root.tk.eval(’.frame.hello configure \

-text Hi -command ’ + command)

Of course, the most useful Tcl function is the
pyeval procedure:

command = root.register(eval)
root.tk.eval(’proc pyeval {arg} {return [’ \
+ command + ’ $arg]}’)

With this procedure you can execute any Python
statements from Tcl.

3.2 Thread Safety

As the source code comments indicate, the
threading situation is complicated. Paraphras-
ing from Python-2.0/Modules/ tkinter.c:

“Tk is not yet thread-safe, so we need to use
a lock around all uses of Tcl. Previously, the
Python interpreter lock was used for this. How-
ever, this causes problems when other Python
threads need to run while Tcl is blocked wait-
ing for events. To solve this problem, a separate
lock for Tcl is introduced. Holding it is incom-
patible with holding Python’s interpreter lock.
tkinter.c uses four C macros manipulate both

locks together.

“ENTER TCL and LEAVE TCL are brackets,
just like Py BEGIN ALLOW THREADS and
Py END ALLOW THREADS. They should be used
whenever a call into Tcl is made that could call
an event handler, or otherwise affect the state
of a Tcl interpreter. These assume that the
surrounding code has the Python interpreter
lock; inside the brackets, the Python interpreter
lock has been released and the lock for Tcl has
been acquired.

“Sometimes, it is necessary to have both the
Python lock and the Tcl lock. (For exam-
ple, when transferring data from the Tcl in-
terpreter result to a Python string object.)
This can be done by using different macros
to close the ENTER TCL block: ENTER OVERLAP
reacquires the Python lock (and restores the
thread state) but doesn’t release the Tcl lock;
LEAVE OVERLAP TCL releases the Tcl lock.

“By contrast, ENTER PYTHON and LEAVE PYTHON
are used in Tcl event handlers when the han-
dler needs to use Python. Such event han-
dlers are entered while the lock for Tcl is
held; the event handler presumably needs to

use Python. ENTER PYTHON releases the lock
for Tcl and acquires the Python interpreter
lock, restoring the appropriate thread state, and
LEAVE PYTHON releases the Python inter-
preter lock and re-acquires the lock for Tcl. It is
okay for ENTER TCL/LEAVE TCL pairs to be con-
tained inside the code between ENTER PYTHON
and LEAVE PYTHON.”

Because of this locking mechanism, hybrid ap-
plications are now thread-safe, provided that the
Tk loaded by Python does not itself have threads
enabled.

4 Conclusion

Using the Tix widget set provides a wide range
of high-level widgets that allows a richer class of
user interfaces for Python applications. The Tix
Intrinsics provides a simple object oriented pro-
gramming framework, that allows Tix/Tkinter
to be extended using mega-widgets, while taking
advantage of Tcl’s compactness and efficiency.

At the same time, such a hybrid architecture pro-
vides a graceful evolution path for legacy Tk/Tcl
applications. With minor changes, Tix/Tk ap-
plications can be run almost immediately using
Tix/Tkinter. Then, using the techniques and
procedures described above, legacy applications
might evolve by taking advantage of areas where
Python’s strengths are the most important.

This approach has the beneficial side effect of
uncoupling the UI development from the func-
tional core, promoting a healthy seperation be-
tween the two. Although this hybrid approach
means that a project team must have program-
mers capable of two different languages, this is
not necessarily onerous for a medium or large
sized project. We have long accepted the dual
programming role with C with interpreted lan-
gauges, and this is a similar approach: use a hy-
brid mix of languages where each language has
its strongest feature.

A Python Class Methods

For reference, we catalogue the Tix widgets and
their subwidgets, and give the Python names
of the methods defined on them. In general
the naming convention follows the same ap-
proach as used in the Tkinter module. For
details of what each method does, see the Tix
documentation on http://tix.sourceforge.net in
/dist/current/man/

class TixWidget(Widget)
Methods:
set silent(self, value)
subwidget(self, name)
subwidgets all(self)
config all(self, option, value)

class TixSubWidget(TixWidget)
Methods:
destroy(self)

class DisplayStyle
Methods:
delete(self)
config(self, cnf={}, **kw)

class Balloon(TixWidget)
Subwidgets: label(Label)
message(Message)
Methods:
bind widget(self, widget, cnf={}, **kw)
unbind widget(self, widget)

class ButtonBox(TixWidget)
Subwidgets: Subwidgets are buttons
added dynamically.
Methods:
add(self, name, cnf={}, **kw)
invoke(self, name)

class CheckList(TixWidget)
Subwidgets: hlist(HList) hsb(Scrollbar)
vsb(Scrollbar)
Methods:
getstatus(self, entrypath)
setstatus(self, entrypath, status)

class ComboBox(TixWidget)

Subwidgets: entry(Entry) arrow(Button)
slistbox(ScrolledListBox) tick(Button)
cross(Button)
Methods:
add history(self, str)
append history(self, str)
insert(self, index, str)
pick(self, index)

class Control(TixWidget)
Subwidgets: incr(Button) decr(Button)
entry(Entry) label(Label)
Methods:
decrement(self)
increment(self)
invoke(self)
update(self)

class DirList(TixWidget)
Subwidgets: hlist(HList) hsb(Scrollbar)
vsb(Scrollbar)
Methods:
chdir(self, dir)

class DirTree(TixWidget)
Subwidgets: hlist(HList) hsb(Scrollbar)
vsb(Scrollbar)
Methods:
chdir(self, dir)

class ExFileSelectBox(TixWidget)
Subwidgets: cancel(Button) ok(Button)
hidden(Checkbutton) types(ComboBox)
dir(ComboBox) file(ComboBox)
dirlist(ScrolledListBox)
filelist(ScrolledListBox)
Methods:
filter(self)
invoke(self)

class ExFileSelectDialog(TixWidget)
Subwidgets: fsbox(ExFileSelectBox)
Methods:
popup(self)
popdown(self)

class FileSelectBox(TixWidget)
Subwidgets: selection(ComboBox)
filter(ComboBox) dirlist(ScrolledListBox)
filelist(ScrolledListBox)

http://tix.sourceforge.net
http://tix.sourceforge.net/dist/current/man/

Methods:
apply filter(self)
invoke(self)

class FileSelectDialog(TixWidget)
Subwidgets: btns(StdButtonBox)
fsbox(FileSelectBox)
Methods:
popup(self)
popdown(self)

class FileEntry(TixWidget)
Subwidgets: button(Button)
entry(Entry)
Methods:
invoke(self)
file dialog(self)

class HList(TixWidget)
Subwidgets: None
Methods:
add(self, entry, cnf={}, **kw)
add child(self, parent=None, cnf={},
**kw)
anchor set(self, entry)
anchor clear(self)
column width(self, col=0, width=None,
chars=None)
delete all(self)
delete entry(self, entry)
delete offsprings(self, entry)
delete siblings(self, entry)
header create(self, col, cnf={}, **kw)
header configure(self, col, cnf={}, **kw)
header cget(self, col, opt)
header exists(self, col)
header delete(self, col)
header size(self, col)
hide entry(self, entry)
indicator create(self, entry, cnf={}, **kw)
indicator configure(self, entry, cnf={},
**kw)
indicator cget(self, entry, opt)
indicator exists(self, entry)
indicator delete(self, entry)
indicator size(self, entry)
info anchor(self)
info children(self, entry=None)
info data(self, entry)

info exists(self, entry)
info hidden(self, entry)
info next(self, entry)
info parent(self, entry)
info prev(self, entry)
info selection(self)
item cget(self, col, opt)
item configure(self, entry, col, cnf={},
**kw)
item create(self, entry, col, cnf={}, **kw)
item exists(self, entry, col)
item delete(self, entry, col)
nearest(self, y)
see(self, entry)
selection clear(self, cnf={}, **kw)
selection includes(self, entry)
selectiom set(self, cnf={}, **kw)
show entry(self, entry)
xview(self, *args)
yview(self, *args)

class InputOnly(TixWidget)
Subwidgets: None
Methods:

class LabelEntry(TixWidget)
Subwidgets: label(Label) entry(Entry)
Methods:

class LabelFrame(TixWidget)
Subwidgets: label(Label) frame(Frame)
Methods:

class NoteBook(TixWidget)
Subwidgets: nbframe(NoteBookFrame)
Methods:
add(self, name, cnf={}, **kw)
delete(self, name)
page(self, name)
pages(self)
raise page(self, name)
raised(self)

class NoteBookFrame(TixWidget)
Subwidgets: None
Methods:
None: used to configure options that can
be used to control the appearance of the
TixNoteBook widget.

class OptionMenu(TixWidget)
Subwidgets: menubutton(Menubutton)
menu(Menu)
Methods:
add command(self, name, cnf={}, **kw)
add separator(self, name, cnf={}, **kw)
delete(self, name)
disable(self, name)
enable(self, name)

class PanedWindow(TixWidget)
Subwidgets: add(self, name, cnf={},
**kw)
panes(self)

class PopupMenu(TixWidget)
Subwidgets: menubutton(Menubutton)
menu(Menu)
Methods:
bind widget(self, widget)
unbind widget(self, widget)
post widget(self, widget, x, y)

class Select(TixWidget)
Subwidgets: Subwidgets are buttons
added dynamically.
Methods:
add(self, name, cnf={}, **kw)
invoke(self, name)

class StdButtonBox(TixWidget)
Subwidgets: ok(Button) apply(Button)
cancel(Button) help(Button)
Methods:
invoke(self, name)

class Tree(TixWidget)
Subwidgets: None.
Methods:
autosetmode(self)
close(self, entrypath)
getmode(self, entrypath)
open(self, entrypath)
setmode(self, entrypath, mode=’none’)

Tix Class Structure

Figure 1: The Class Hierarchy of Tix Widgets

	Introduction
	Tix Widget Set
	Integrating Hybrid Applications
	Tkinter Module
	Thread Safety

	Conclusion
	Python Class Methods

