

numarray: A New Scientific Array Package for Python

Perry Greenfield, Jay Todd Miller, Jin-chung Hsu, & Richard L. White
Science Software Branch

Space Telescope Science Institute.

3700 San Martin Dr.
Baltimore, MD 21218

perry at stsci.edu

Python has long had an array module (Numeric) for science and engineering applications;
why a replacement? We explain the motivations for developing numarray, which are
primarily, though not entirely focused on enabling the use of larger arrays and data sets
that Numeric has difficulty handling. We also describe the design issues in its
development and its new features and capabilities. Numarray is highly compatible with
Numeric, including the C-API, though there are some differences that are discussed.
Numarray is sufficiently well developed that it is being used in production pipelines to
reduce and calibrate Hubble Space Telescope (HST) data and is being distributed to HST
users along with applications for data reduction. Finally, we outline planned
enhancements and improvements. Numarray is available from the Sourceforge numpy
project page.

Introduction
The Space Telescope Science Institute began using Python as a means of bridging an old
legacy system with more modern software as part of an effort called PyRAF (White &
Greenfield, 2000). Our success in doing so led us to believe that Python would also prove
a productive language for writing astronomical data analysis applications. Whether
Python is a suitable language for scientific or engineering development depends on
various considerations. One of these is the ability to manipulate large sets of numbers
efficiently without suffering too much penalty in execution time. Scientists and engineers
may be willing to tolerate slower programs, but if the slowdown means that programs
that took 5 minutes with a compiled language will take 2 hours in Python, it will not be
accepted.

A common way for interpreted languages to deal with this issue is to adopt an array or
matrix facility that allows actions or operations to be performed on whole arrays. Since
the array operation is generally carried out in efficient compiled code, the overhead of
interpretation becomes negligible if the arrays are sufficiently large. There are many such
examples: APL, J, Matlab, IDL, and Octave are some of the better known.

Such tools may or may not be sufficient to allow development in an interpreted language;
this generally depends on whether the problems to be solved can be efficiently cast into
array operations. If they can’t, then such facilities are primarily useful for visualization,
and perhaps for scripting compiled codes (Beazley, 2000). But many other classes of

 2

problems are well suited for array manipulations. In fact, IDL is popular in astronomical
circles, and experience has shown that many useful astronomical applications can be
developed with an array facility. We therefore had no doubts that such a facility in
Python would be useful for our purposes.

The Numeric Module
To our benefit, an array manipulation package was already available in Python: Numeric
(also known as Numpy). Numeric was developed primarily by Jim Hugunin, though
many others contributed (see acknowledgements).

Before detailing the reasons why we were motivated to re- implement Numeric, a brief
overview of the capabilities of Numeric is in order. The crux of array languages is the
avoidance of explicit loops to carry out operations on all the array elements. Not only is it
a matter of syntactic convenience, the fact that the loops over all elements are implicit
means that they can be performed efficiently. This is because the loop is performed in the
efficient, compiled implementation language rather than in Python. The following
summarizes the kinds of operations that can be performed efficiently on arrays. Although
this section references Numeric, the examples actually use numarray; for most of the
examples the differences are slight.

Array Creation
Arrays may be created several different ways. In a real application they are likely to be
obtained from data files or instrumentation, but there are more direct ways to create
arrays, particularly for the purpose of examples.
>>> from numarray import *
>>> x = array([5,2,3,1,5]) # create an array from a list
>>> y = arange(5, type=Float32) # Create an array of single
 # precision floats a la range()
>>> z = zeros((5,6)) # create a 5x6 array of zeros
>>> print x
[5 2 3 1 5]
>>> y
array([0., 1., 2., 3., 4.], type=Float32)
>>> print z
[[0 0 0 0 0 0]
 [0 0 0 0 0 0]
 [0 0 0 0 0 0]
 [0 0 0 0 0 0]
 [0 0 0 0 0 0]]

Arrays may also be created from binary data (either in strings or files). Most, if not all,
numerical types from 8-bit unsigned integers to double precision complex numbers are
supported.

Note that that Numeric and numarray adopt the C convention for array ordering; the last
index represents the most rapidly varying element in the array. In other words, row-major
ordering is used.

 3

Universal Functions
Universal Functions (or more commonly, Ufuncs) are mathematical functions that can be
applied to arrays element by element. Examples would be addition (in which case there
would be two input arrays) and the trigonometric sine function. More specifically for the
above examples:
>>> print x + y
[5. 3. 5. 4. 9.]

Note that the addition of the two array objects resulted in the addition of each
corresponding array element.
>>> print sin(y)
array([0. 0.84147096 0.90929741 0.14112 -0.7568025],
type=Float32)

Here sin() is applied to each element. The standard Numeric also includes the basic
mathematical operators and functions.

Array Structural and Conversion Operations
Array structural operations involve any creation of new array objects from existing ones
by means of subset selection, rearrangement or combination. New arrays may be
efficiently sliced (including use of strides, i.e., skipping n elements), reshaped,
transposed, concatenated, sorted, or expanded by replication. Generally most such
operations are functional, though a few (like flattening an array) can be performed as
methods. Arrays may be converted from any supported type to another.

Array Element Selection and Manipulation
There are innumerable occasions that require treating a subset of array values specially
rather than treating all elements identically. Such operations are performed by functions
that can operate on a subset of elements by reason of value rather than their location. This
includes being able to identify all elements satisfying some logical condition (e.g., greater
than some threshold) and subsequently being able to modify such values. The following
illustrates how this is typically done in numarray (Numeric does not provide the syntactic
indexing convenience of the last example; the put() function must be used to accomplish
the same action)
>>> print x
[5 2 3 1 5]
>>> print x < 3 # Results in Boolean array showing results for
[0 1 0 1 0] # applying results to each element.
 # (This uses “rich” comparisons that requires
 # Python 2.1 or later)

>>> print nonzero(x < 3) # Get indices where expression is true
(array([1, 3]),)
>>> x[nonzero(x < 3)] = 0 # Use previous expression to set values
>>> print x
[5 0 3 0 5]

 4

The expression “x<3” (a Ufunc) produces an array where all array elements that satisfy
the condition have true values, and those that don’t have false values. The “nonzero”
function produces an array of indices where the input array is nonzero. When an array is
given as an index to another array, it uses those array values as indices to get or set (set in
this case). The end result is that all array elements that have a value less than 3 will be set
to 0. This example is both syntactically straightforward (the mathematical meaning is
clear) and performed efficiently for large arrays.

Other Functions
There are many useful functions that are not applied element-by-element and so cannot
be implemented as Ufuncs. This includes functions such as matrix multiplication, dot
products, and sums over array elements. While a number of such functions (such as those
just mentioned) are in the base Numeric, it generally is expected that most such functions
will be in Numeric extension modules (such as FFT and Linear Algebra).

The numarray and Numeric manuals provide comprehensive descriptions of the
capabilities available.

Motivation for a Numeric Replacement
Despite the tremendous functionality of Numeric, some capabilities are lacking that
meant Numeric would be impractical for applications we need to write. The most
important considerations were

1) Memory efficiency. We deal with large images, some larger than 4K by 4K
pixels. Such arrays consume significant amounts of memory; it is important for us
to minimize the memory usage to the greatest extent. To do so required two basic
changes to Numeric capabilities, namely avo iding creation of temporary arrays
when possible (such as when Numeric coerces an input array to a type expected
by a function or operator) and the ability to use memory-mapped files. The latter
allows accessing subsets of large datasets on disk in sections using array slicing
thus reducing memory usage.

2) We deal with much data in tabular format. A means of efficiently accessing large
binary tables was also important to us. Since such arrays of records may be
accessed by column or row, copying the data from such data sets into Numeric
arrays results in unnecessary copying as well as complicating the ability to update
individual records.

3) The ability to easily extend arrays to other classes of objects without having to
reproduce the common machinery of performing structural operations on arrays
such as slicing or reshaping by use of class inheritance.

4) Many Numeric users’ desire for such a library to be made available as part of the
Standard Python distribution. Such inclusion would allow authors of other
important Python modules to add the ability to access arrays in their code
knowing that such objects are a standard Python format. It is for this primary
reason that PIL, wxPython and other modules and packages do not handle arrays
though Numeric arrays are an eminently sensible format for such packages.
However, there was consensus that existing Numeric code was not suitable for
inclusion into the Standard Library, at least without massive reorganization.

 5

There are other less important reasons as well; these will be mentioned later primarily
under new features or compatibility issues (in other words, most of the incompatibilities
with Numeric are intentional).

Design Issues
The key design consideration is achieving both speed and memory efficiency. It is
relatively simple to obtain one at the expense of the other. Speed has traditionally been
achieved in array packages by making the array operations as efficient as possible when
looping over all the elements in an array. This is invariably accomplished by having these
loops coded (either explicitly, or implicitly) in a compiled language such as C. In this
way, even though the interpreted language is relatively slow, the time to perform an
operation on the array takes little longer than it would if coded in a compiled language.
Most of the time, for large arrays, is spent in the loop that is written in such a compiled
language. This is not a difficult problem for the specific case of dealing with fixed input
and output types. But an array manipulation package must deal with many numeric types,
from byte integers to double precision complex numbers. Devising a system for handling
all the possible combinations of types is what adds all the complexity.

The first two motivations have profound impacts on the design of an array package in
ways that are not immediately obvious. If memory-mapped arrays are to be supported, a
mechanism for handling data in non-native processor ordering is imperative. It is
common to store data arrays in a machine- independent format, and for some processors,
this requires byte-swapping the data. But how can this be handled in a transparent way
while still keeping the data on disk as the primary data object? The situation is
complicated further by the desire to support arrays of records. With arbitrary records
comprised of heterogeneous data types (e.g., 1-byte integers through 8-byte floats) one
faces the prospect of some numeric quantities in the data buffer having address alignment
issues, that is, it is necessary to copy the item to an aligned memory location or register
before it can be accessed as that type. How is that to be handled transparently?

This requirement alone requires a complete reworking of how arrays are manipulated
internally, compared to the design of Numeric that has no means of solving these
problems. This issue was the single most difficult design problem.

Options Considered
We considered several approaches, but found only one practical. The main problem is
limiting the combinatorial complexity of all possible array types and representations (i.e.,
byte-swapping and non-aligned data). In principle, one could create an addition function
for all possible combination of types and representations. This, however, leads to an
explosion of the number of C functions required (hundreds for each binary operation).

Numeric solves this problem by limiting the number of operator function signatures, and
instead relying on the creation of temporary arrays to match the existing function. For
example, if a Float32 array is added to an Int16 array, the Int16 array will be converted to
a temporary Float32 array before calling a function that expects two Float32 array inputs.
Likewise, if an array had to be byte-swapped or aligned, the conversion process would

 6

also handle these issues. Unfortunately, this approach was unacceptable since it was
wasteful of memory.

Yet another approach is to call conversion functions inside the C loop that iterates over
an array. In this way, pointers to the appropriate conversion functions (for type, byte-
swapping, or alignment) can be passed to the operator function, thus reducing the number
of function versions tremendously. This approach is the most elegant, but suffers
significant speed penalties. Our benchmarks found that regardless of optimizations, it
generally suffered a factor of 3 or worse performance penalty over the fastest forms of
processing loops.

The Blocking Approach
The approach we chose was a hybrid of the last two. Temporaries are used, but only for
sub-blocks of the array, if it is large. In essence, the array is chunked through,
conversions performed on each of these blocks, then the operator function called, until
the whole array is completed. This leads to more complicated loop handling, but reduces
memory usage without serious speed penalties. The block size is chosen to be as large as
possible, but small enough to avoid memory-caching problems.

Another design choice included slicing as one of the transformation operations. Since a
slice of a Numeric or numarray array does not result in a copy but rather a new view into
the same data buffer, the resulting array may not have data that are contiguous in
memory. The basic operator functions are designed to operate on simple contiguous
arrays. This is to keep them very simple, and allow the compiler to optimize them as
much as possible. Thus non-contiguous arrays, such as sliced arrays, are first copied to a
contiguous temporary block (much like conversions are performed) before other
operations can be performed.

The block size used for a particula r case is determined from the dimensions of the array.
The algorithm used for the current implementation of numarray will always use a
blocksize at least half as large as the largest blocksize permitted (presuming the entire
array is at least that large). The only exception is for the last block. That block may be
smaller than half the largest size permitted. If the last dimension is larger than the
maximum blocksize, that dimension will be partitioned into different blocks. If the last
dimension is smaller than a blocksize, then the block will consist of as many whole
dimensions that will fit within the maximum blocksize.

This is best demonstrated with examples. Suppose the maximum permitted blocksize is
10,000 bytes and we are dealing with a 20x20x20x20 array of Int32 values (total size of
640,000 bytes). The block used in this case will be a subarray of size 6x20x20 elements
(size 9600 bytes). The iteration over blocks will be performed 20 x 4 times (20 for the
size of the first dimension, and four times for the second dimension (3 whole subarrays
for the second dimension plus a leftover subarray unit of size 2x20x20 elements since
the first 3 iterations account for 18 of the 20 values possible leaving 2).

If instead the array had dimensions 20x9000 and the same maximum permitted blocksize,
the last dimension would be subdivided into 3 2,500 element blocks with a leftover block
of 1,500 elements. There would be 20 times 3 iterations over full-size blocks and 20
iterations over the leftover blocks.

 7

The following schematically illustrates how a more complex case would work when
adding a large (i.e., multi-block sized) byte-swapped Int32 array with a strided (i.e., non-
contiguous) Unsigned Int32 array. To complicate the case, an existing Float64 array (of
proper shape) is provided for the results. After the appropriate block size is determined a
loop is set up to iterate over blocks. The output type must be Int64 to retain the full range
of both inputs. For each iteration:

1) Copy a block from Int32 array to a temporary block buffer and byte-swap all
elements in the process.

2) Copy the data from the temporary block buffer produced by step 1 to a second
temporary block buffer, converting all elements to Int64

3) Copy a block from the Unsigned Int32 array to a temporary block buffer, thus
producing a contiguous array from a noncontiguous one.

4) Copy the data from the temporary block buffer produced in step 3 to another
temporary block buffer, converting all elements to Int64 in the process.

5) Add the elements in the output block buffers of Steps 2 and 4 and place the results
in another temporary block buffer

6) Copy the results from the block buffer produced by step 5 to the appropriate
location in the provided output array, converting all elements to Float64 in the
process.

Each of these steps is performed by a very simple C function that iterates over all
elements for the types expected in the input and output buffers. A considerable amount of
logic is involved in determining what steps are necessary, and which C function is needed
for that step. As an example, there is an addition function for every possible type of input,
but all the addition functions require both inputs be the same type, hence the necessity for
type conversion to be part of the block loop.

C Function Management
The C functions are handled as objects that can be passed into the block loop
management code. The C functions are encapsulated Python types so that they may only
be called in the proper context. This C function type is passed into the C code that sets up
the call to the encapsulated C function. This C code checks the attributes associated with
the C function to make sure that it is consistent with the array data passed to it. Otherwise
it would be possible for Python code (mistakenly or maliciously) to call a C function
mismatched with the data. For example, a C function that expects to iterate over Float32
data being given Int8 data would result in a buffer overrun and likely crash the process.
The C function objects for Ufuncs are retrieved by using the ir input type signatures as
keys in a dictionary of C function objects.

Array Class Hierarchy
In order for more complex array types, such as record arrays, to be created, the design of
the array objects has been split into two classes. NDArray encapsulates all the structural
aspects of arrays without regard for their contents. This includes all indexing, slicing,
sorting, reshaping, concatenation and related operations on arrays. All numerical

 8

functionality is implemented in a subclass of NDArray. In this way, it was possible to
easily implement record arrays and character arrays as different subclasses of NDArray
without having to reproduce the sizable machinery for structural operations.

Exception handling
Numeric currently has no support for IEEE-754 floating-point exception handling. There
is no way to trap or otherwise be aware of such exceptions other than to check all results
for new appearances of NaN and Inf values. We recognized that a numerical package
needs to offer flexibility; no one approach to such exceptions is suitable for all problems.
Numarray allows a user to select one of three modes of floating point exception handling.
These modes can be independently set for four different kinds of exceptions: Invalid
results (i.e., NaN), Overflows, Underflows, and Divide-by-zero). The three modes
available are: Ignore (Numeric’s behavior), Warn, or Raise. Warn results in a printed
warning message and Raise results in a Python exception being raised. The latter two
happen at the end of an array operation. There is no support for raising exceptions in the
middle of an array operation nor is any planned.

The exception handling features are achieved by making use of the floating-point
processor’s sticky bits. The bits are cleared at the beginning of an operation and checked
at the end. This is one of the few areas of numarray that has any platform-dependent
code. It has been suggested that such code should eventually be migrated to the Python
core for use by Python for scalar operations as well (Peters, 2001).

We have also used this mechanism for problems with integer operations as well. The C
code that handles integer operations checks for overflow or divide-by-zero problems; if
any are encountered, a floating point exception of the corresponding type is intentionally
triggered so that the same mechanism may be used for all numeric types.

Buffer Objects
So that memory mapped files may be used as buffers for numarray objects, numarray
uses the buffer object interface for its in memory buffers and memory mapped files.
There are serious problems with the current buffer object that are driving an effort for
their elimination. This will not be a problem so long as some mechanism is provided so
that there is a means for using memory-mapped files as data buffers. There has been
much discussion of the appropriate solutions, but little progress to date as to a final
resolution of this issue. (See Adding a bytes object type, Python Enhancement Proposal
(PEP) 296 & The locked buffer interface, PEP 298.)

Implementation Approach
The initial implementation was almost entirely in Python with only the very low level
functions that performed mathematical operations written in C. Rather than use the
template features of C++, we instead decided to use Python functions to generate the
repetitive C code for the functions. The code generation is an intrinsic part of the building
process (which uses distutils). It is our intent to keep as much of the code in Python as
possible. Optimizations will mean some code will be migrated to C, but optimizations
will be tried in Python whenever possible before migrating any code to C.

 9

The goals for numarray functionality are more ambitious than that for Numeric; as a
result one would expect numarray to be more complex. On the other hand numarray has
most of its implementation in Python that makes it simpler. A comparison of the lines of
code that each have illustrates that the use of Python offsets the extra complexity
introduced by the new requirements.

Numeric v22.0 numarray 0.4

C source code: 11.9K LOC 3.0K LOC (excluding program-generated code)

Python source: 2.1K LOC 11.7K LOC

C-API
Given that not all scientific and engineering algorithms can be efficiently handled with
the base capabilities of Numeric/numarray it is essential that a means of extending
numarray with compiled code be made available through a C-API. This allows building
widely used extension modules such as an FFT module as well as allowing individuals to
develop specialized modules for their own use.

As numarray matured, the attributes previously stored at the Python level were migrated
to C structures. This allowed reuse of the existing Numeric array struct (with the addition
of additional structure members). The C-API is now largely compatible with the Numeric
API, the differences are limited to fairly little used aspects of the Numeric API. This has
and will allow much easier migration of previous extension modules for Numeric to
numarray.

The existence of more complex array representations means a richer API is necessary so
that byte-swapping and alignment issues can be dealt with easily in C extensions.
Unfortunately there does not exist a single, simple API that handles these issues in a
manner that is simple to use, fast, and memory efficient in all cases. For that reason we
provide four different approaches to suit the various needs that will arise.

C-API Examples

High-Level API
The simplest approach is to call an API function that will return a contiguous array that is
of proper byte order and alignment tha t can easily be used by C code (as well as C++ and
Fortran). The numarray High-Level API converts any array that isn’t contiguous, aligned,
or properly byte-ordered (such arrays hereafter will be referred to as “non-C-arrays”) into
one by copying it to a temporary array. This API can also handle any Python sequence of
numbers so long as it can be sensibly converted to a numarray array.

Example: Obtaining a pointer to a C-array from any kind of numarray object or Python
sequence of numbers
PyArrayObject *array = NA_InputArray(inputarray, tFloat64, C_ARRAY);
Float64 *data = (Float64 *) NA_OFFSETDATA(array);

In this example inputarray is a PyObject that itself is a numarray or any Python sequence
of numbers (perhaps nested). The first line obtains a reference to double precision
floating point C-array version of the input array (either a direct reference to inputarray if

 10

it already is a double precision float C-array, or a temporary copy). The second line
obtains a pointer to the beginning of the data array. C_ARRAY is a bit mask that
indicates that the reference must be a contiguous, aligned, non-byte swapped array. It is
possible, by use of other masks, to place fewer restrictions on the array (e.g., permit non-
contiguous arrays).

Pros: • Fast Cons: • Possible increased memory usage
 • Simple code
 • Direct access to data possible

Element-wise API
This API is used to access single elements of arrays that may be non-C-arrays or of
incorrect type. The API consists of functions that obtain individual element s, handling
any byte-swapping, alignment, non-contiguity, or type issues, and macros that only
handle byte-swapping and alignment. Different versions of the functions support access
for 1, 2, or 3 dimensional arrays.

Example: obtain value of i,j element from 2-d array as double precision float value.
Float64 alpha = NA_get2_Float64(inputarray, i, j);

Pros: • Simple code Cons: • Slow
 • Memory efficient

One-dimensional API
This API blends the good performance of the High-Level API with the low memory
footprint of the Element-wise API by converting a series of array elements into C-Arrays
with one function call. While the 1-D API makes it possible to efficiently access non-C-
arrays without creating a temporary copy of the entire array, it does require more careful
thought than either of the previous two APIs. In particular, whereas the previous APIs
allow the C code to isolate the interface to numarray to the input or output stages thus
isolating the API calls from the actual computational loops, this API requires use within
the computational loop. It works best when one of the dimensions of the array is large,
but not too large.

Example: Looping over large 2-d array
for(k=0; k<100; k++) {
 Float64 inner_band[256];
 long offset = NA_get_offset(arrayObject, 1, k);

 NA_get1D_Float64(arrayObject, offset, 256, inner_band);
 /* do something with inner_band */
}
Pros: • Fast Cons: • More complex code
 • More memory efficient

 11

Numeric Emulation API
This API reproduces the interface and semantics of many of the Numeric C-API
functions. In general, shallow wrapper functions around the High-Level API provide this
capability. Existing code developed for Numeric can often simply be recompiled after
simply changing the include file from Numeric to numarray. There are some exceptions
described in the section on incompatibilities.

Example:
PyArrayObject *array = PyArray_ContiguousFromObject(
 objectFromArgTuple, tFloat64, 2, 2);

Pros: • Backward compatible API Cons: • Possible increased memory use
 • Handles non-C-arrays
 • Fast
 • Direct access to data

Features and Compatibility

Summary of New Features
1) Ability to handle byte-swapped data transparently. One may access data in

arrays where the data is not in the processor’s native byte order without having to
produce a copy of the array or change the data in place. This means one may
access memory-mapped data without having to copy (as a whole) it or change it
on disk.

2) Ability to handle arbitrary byte offsets and strides transparently (i.e., non-
aligned data). Regularly spaced data, even though it may have odd byte offsets
between elements may be directly accessed. Such data may appear in arrays of
binary records, for example.

3) Memory mapped arrays. Arrays may be created from memory-mapped files.
4) New type objects. In Numeric Float32 is an alias for the string ‘f’. In numarray

Float32 is an instance of a Floating Type object that is derived from a more
general numeric type object. One can simply test for more general classes of type.
For example:
>>> isinstance(arr.type(), ComplexType)

5) Faster, economical Ufunc code. The C code used for Ufunc loops optimizes
better.

6) Improved coercion rules. No longer does x+1. result in a double precision array
when x is a single precision float array.

7) Configurable handling of IEEE special values. One can individually configure
whether numarray ignores, warns, or raises an exception for underflows,
overflows, divide-by-zeros, and invalid results. The same mechanism is available
for Integer types.

8) Arrays as indices. One may use arrays as indices to other arrays. In such cases
the array is interpreted as an array of indices used to create a new array. For
example:

 12

>>> ind = array([2,5,2,7])
>>> x = array([1,4,9,16,25,36,49,64,81,100])
>>> print x[ind]
[9 36 9 64]
Furthermore one may use an index array for each dimension so long as the index
arrays are shape consistent. Unlike Numeric, nonzero() will work on
multidimensional arrays and return an index array for each dimension.

9) New array types (Boolean, Int64)
10) Record Arrays. Records are similar to a struct containing supported numarray

numeric types as well as fixed length character fields. One may access records by
indexing elements of the record array, or fields of the record array that are either
numarray or chararray objects without copying any data. For example
>>> r = recarray.array([(100, 2.5, ‘abc’), (200, 3.5, ‘xyz’),
 (300, 4.1, ‘pqr’)], names = ‘a,b,c’)
>>> print r[0] # first row
(100, 2.5, ‘abc’)
>>> columnb = r.field(‘b’) # Numeric array view of column b
>>> print columnb
[2.5 3.5 4.1]
>>> columna = r.field(‘a’) # likewise for column a
>>> print columna * columnb
[250. 700. 1230.]
>>> columna[0] = 3000 # Change first element in column
 # illustrating shared nature of
 # record and column views.
>>> print r[0]
(3000, 2.5, ‘abc’)

11) Character Arrays. These are arrays of fixed length strings that are contained in
the same data buffer.

12) Functions to set and test for IEEE-754 floating point special values. This
allows the use of IEEE-754 special values as an alternative to using mask arrays
to track problem values. While it isn’t suitable for all such cases, particularly
when it is desired to retain the original value, it does provide a comparatively
high-performance means to track bad values and is an alternative to the MA
package in such cases.

13) Array subclassing. It is straightforward, if less than trivial, to subclass arrays.
Most practical cases require defining all operators for the subclass, so it is rarely a
short class (though much easier than trying to develop a new array module from
scratch!).

14) Broadcastable extension functions. There are relatively simple ways to make an
extension function handle looping over extra dimensions. Thus if one were to
write a coordinate transformation function for 3-dimensional points, the overhead
of having Python iterate over millions of points would make the advantage of
such an extension minimal. But with the broadcasting mechanism, one may
supply a million by 3 array of point coordinates and have the transformation
function iterate in C over all million points making it run much faster.

15) Ufunc templating. If one wishes to add Ufuncs for many numeric types, the code
generation mechanism used by numarray itself is available for users as well.

16) Package organization. The current release is not organized as a package, but the
next release will be.

 13

Compatibility with Numeric
At the outset of the project, compatibility was not accorded a high priority. We attempted
to apply the principle that compatibility should be attempted in the absence of a
compelling reason for divergence; we weren’t seeking incompatibility for its own sake.
But as the project has developed there has been a greater desire to seek compatibility
unless there were strong reasons against it. This has even extended towards making as
much of the C-API as compatible as possible. There remain some areas, however, where
compatibility is not achieved, either because it wasn’t technically feasible or desirable.
Nevertheless, after doing much of the implementation and confronting many of the
interface issues we are impressed at how many of the interface decisions made for
Numeric were wise.

1) Numeric uses single character codes for array types. For example ‘s’ represents
short integers, ‘f’ single precision floats and so forth. Within the Numeric module
variables are defined with these values to give more descriptive names to the
types (e.g., Int16 = ‘s’) but at their root, the types are represented as characters.
Many find this representation hard to remember (what character should represent
an unsigned Int16?). Numarray instead uses a numarray type class hierarchy. The
types used are instances of these type classes. In this way much of the information
about types is encapsulated with the type object. This includes information about
the nature of the type (e.g., Integer or Floating), the size of the type, and the
conversion functions for converting to other numarray types. Comparison
methods are defined for these objects so that simple comparison to the traditional
typecodes will work successfully and backward compatibility is mostly retained.

2) The type coercion model that Numeric uses for binary operations and functions
has proved annoying to many when one of the binary operation arguments is a
Python scalar. Python only has a subset of the available numeric types for its
scalars. Thus if one follows traditional coercion rules when combining a single
precision floating point array with a Python float, a double precision array is the
result. This is often of little consequence, but when large data sets are involved,
such unexpected coercion wastes memory. Numeric has no good solution to this
issue. Either one is forced to wrap scalars as rank-0 arrays (in effect changing the
scalar’s type) within expressions, or to use a “savespace” attribute for an array
which means its type overrides any coercion rules. The latter can also lead to
quite unexpected behavior. We have chosen a more pragmatic approach for
numarray. When scalars and arrays are combined, the array will only be coerced
to the scalar’s type if the scalar is considered a higher kind of number than the
array.

Thus a float scalar added to an Int16 array will produce a double precision float
array, but if a float scalar is added to a Float32 array, the resulting array will still
be Float32. In other words, if the types of the scalar and array are of the same
kind, either int, float, or complex, then the precision of the array dominates. This
is contrary to typical coercion rules, but the lack of richer Python scalar types
prevents a better solution.

3) The only existing aspect of the existing Numeric C struct not mirrored by the
numarray API is the type descriptor. Not all fields of the type descriptor are

 14

supported. There appears to be little code that uses these members so this
incompatibility should not have a great impact.

4) Because numarray uses a different mechanism for ufuncs than Numeric, the C-
API for ufuncs is completely different.

5) The nonzero() function returns a tuple of arrays in all cases. This was to support
the use of the function’s return value directly as an index to arrays. In cases where
the array that nonzero is being used on is multidimensional, an index array is
returned for each dimension and thus these arrays are packaged in a tuple. For
consistency the same is done even when there is only one dimension. Numeric’s
nonzero() only works with one-dimensional arrays.

6) Numeric currently is inconsistent with regard to whether it returns rank-0 arrays
or scalars as a result of single element indexing. Numarray always returns a
Python scalar in such cases. (Exceptions to this rule may be introduced if there is
support for quad precision floats added if the Python floats are implemented as C
doubles.)

7) Changes to Numeric behavior considered but rejected:
a) Copy vs. view semantics for slicing. Numeric creates a view of the data buffer

for array slices. This is contrary to usual Python behavior for lists, tuples and
strings. Whether numarray should adopt copy semantics was a subject for
much internal and external debate. In the end the desire for compatibility
dominated and the view semantics were retained.

b) Some argued that all array references including array reductions and single
element indexing should produce rank-0 arrays rather than Python scalars as
to promote more generic programming. Since most functions may see Python
scalars as arguments, we decided that it would be hard to rely on all
arguments being some form of array. Instead, it was decided to provide tools
to make it easier to cast all inputs into arrays so that subsequent code would
not have to have many special cases for scalars. There was also controversy
about what the proper behavior for rank-0 arrays were and there appeared to
be a consensus that Numeric does not handle rank-0 arrays consistently. It
also appears that rank-1 len-1 arrays have the properties desired for more
generic code. As a result, an alternate reduce method for Ufuncs, areduce(),
is provided to return a rank-1, len-1 array in cases where the result would be a
scalar for reduce().

c) Complex comparisons; to allow or not. Python (as of v2.1) does not permit
comparison operators, aside from =, != to be used on complex scalars. Some
argued that numarray should allow complex comparisons to make code more
generic. Instead, we decided that most practical cases using comparisons
should use the .real attribute for arrays in cases where real or complex
numbers may be expected. This attribute is now available for Numeric and
numarray for any numeric type, and not just complex types. Complex
comparisons will not be allowed (they raise an exception).

d) Default axis order. Some Numeric functions use the last axis by default and
others use the first. Some argued that a more consistent approach should
always use the last. There are reasonable arguments for both sides. Thus the

 15

Numeric behavior was retained for compatibility’s sake. The recommendation
is to use the axis keyword explicitly whenever possible to avoid confusion.

e) Customized behavior. It would be a straightforward matter to make numarray
have different personality variants. Some that have been suggested is having
versions that used copy semantics for slicing, matrix operations in place of the
existing Ufunc operations (e.g., * would represent matrix multiplication rather
than element-by-element multiplication), or different coercion rules. Despite
being quite feasible, we deem such variants as being very destructive to being
able to develop a common community of 3rd party extensions. Since some
modules would presume one set of behavior within its own Python code,
passing arrays with other behaviors could well break such modules, or worse,
lead to undetected errors. We strongly discourage such variants.

Progress to Date
Numarray has essentially all the functionality present in Numeric. Compatibility issues
continue to surface as Numeric modules and packages are ported to use numarray. The
remaining compatibility issues are expected to be minor. There may well be some
differences remaining that are not yet known and that for reasons of consistency or
simplicity will remain. The Numeric manual has been adapted for numarray and is
available. The project is hosted at http://sourceforge.net/projects/numpy along with
Numeric. The latest release at the time of writing is v0.4.

The standard modules distributed with Numeric have been ported to numarray (with the
exception of MA). These include RandomArray, FFT, and LinearAlgebra, as well as a
new one called Convolve.

The Space Telescope Science Institute has been using numarray for software that is used
in pipelines that routinely reduce and calibrate Hubble Space Telescope data. We also
distribute numarray as part of our PyRAF software distribution that is freely available to
the public, but is primarily intended for those analyzing HST data. We have a module
that performs I/O with astronomy data; the capabilities present in numarray have allowed
us to write this module entirely in Python and yet have efficient access to standard
astronomy data files.

Performance
The single largest remaining issue is performance. The existing design means that
numarray is quite fast for large arrays. This is no surprise since it underlay the reasons
that we decided to reimplement Numeric. In general numarray can handle large arrays
much better than Numeric, both in speed, and memory usage (indeed, there are examples
that work fine for numarray but crash Numeric because of memory issues).

But since much of the implementation is in Python, it has considerably more overhead in
setting up an array operation than does Numeric. We have begun the process of
optimizing small array performance, i.e., reducing array computation setup time. The
approach we are taking is to cache the results of previous setups. Thus, subsequent
operations that use the same combination of array types and functions or operators will
need minimal setup time. The work is ongoing but has already yielded significant
overhead reductions.

 16

The setup time for a simple array operation (no type conversions, byte-swapping,
alignment, or striding) for numarray version 0.4 was approximately 50 times longer than
for Numeric. The latest work, not yet released, has reduced this to about 6 times that of
Numeric. Work on the more complex cases is still underway but we believe that we will
be able to make the overhead comparable for that of the simple case.

We expect that further work should bring the overhead time to within at least a factor of 2
or 3 of Numeric’s overhead time.

Performance is perhaps the single largest issue that prevents some users from
wholeheartedly adopting numarray in place of Numeric besides the usual inertia and
porting hassles.

Planned Enhancements
Work is underway to port, or aid in porting, some of the more popular Numeric packages.
This includes MA, and scipy. Discussions have been started to incorporate more flexible
recarray field definitions to support PyTable requirements (Alted 2002) and to
incorporate changes submitted by Francesc Alted to improve recarray performance.

Other improvements are possible though not on our immediate schedule. Allowing
numarray to handle arrays larger than 2GB is one such enhancement, though doing it well
will require changes to Python. Making numarray thread safe is another possible
enhancement.

Acknowledgments
The existence of the original Numeric package was a tremendous help in defining how a
re-implementation should be designed. Although little of its code was used, it would be
fair to say that the design choices made for how Numeric would appear to the user
probably made doing a re-implementation twice as easy as it would have been since
many of the interface issues were already solved.

Edward Jones and Magnus Lie Hetland have provided invaluable feedback in noting
documentation problems or bugs in the releases. Jochen Kupper has provided much help
in translating the documentation into the standard Python documentation framework. We
also appreciate all the feedback from the numpy and scipy mailing lists.

We would be greatly remiss if we did not acknowledge the discussions with, ideas from,
and work contributed to the original Numeric of the following: Travis Oliphant, Paul
Dubois, David Ascher, Tim Peters, Eric Jones, Jim Hugunin, Konrad Hinsen, Guido (you
know who) and the past Numeric developers.

References
Alted, F., PyTables: http://sourceforge.net/projects/pytables/
Beazley, D. Scientific Computing with Python, Proceedings, Astronomical Data Analysis
Software and Systems IX, Kona, Hawaii, October 2000.
Peters, T. Personal communication. May 2001.
White R. L. & Greenfield, P., Using Python to Modernize Astronomical Software,
Proceedings of the 8th International Python Conference, Arlington, VA, January 2000.

