Python Scripting
for Computational Science

Hans Petter Langtangen

Simula Research Laboratory
and
Department of Informatics

University of Oslo

Third Edition

Preface to the Third Edition

Numerous readers of the second edition have notified me about misprints and
possible improvements of the text and the associated computer codes. The
resulting modifications have been incorporated in this new edition and its
accompanying software.

The major change between the second and third editions, however, is
caused by the new implementation of Numerical Python, now called numpy.
The new numpy package encourages a slightly different syntax compared to
the old Numeric implementation, which was used in the previous editions.
Since Numerical Python functionality appears in a lot of places in the book,
there are hence a huge number of updates to the new suggested numpy syntax,
especially in Chapters 4, 9, and 10.

The second edition was based on Python version 2.3, while the third
edition contains updates for version 2.5. Recent Python features, such as
generator expressions (Chapter 8.9.4), Ctypes for interfacing shared libraries
in C (Chapter 5.2.2), the with statement (Chapter 3.1.4), and the subprocess
module for running external processes (Chapter 3.1.3) have been exemplified
to make the reader aware of new tools. Regarding Chapter 3.1.3, os.system
is not used in the book anymore, instead we recommend the commands or
subprocess modules.

Chapter 4.4.4 is new and gives a taste of symbolic mathematics in Python.
Chapters 5 and 10 have been extended with new material. For example,
F2PY and the Instant tool are very convenient for interfacing C code, and
this topic is treated in detail in Chapters 5.2.2, 10.1.1, and 10.1.2 in the
new edition. Installation of Python itself and the many add-on modules have
become increasingly simpler over the years with setup.py scripts, which has
made it natural to simplify the descriptions in Appendix A.

The py4cs package with software tools associated with this book has un-
dergone a major revision and extension, and the package is now maintained
under the name scitools and distributed separately. The name py4cs is still
offered as a nickname for scitools to make old scripts work. The new scitools
package is backward compatible with py4cs from the second edition.

Several people has helped me with preparing the new edition. In par-
ticular, the substantial efforts of Pearu Peterson, Ilmar Wilbers, Johannes
H. Ring, and Rolv E. Bredesen are highly appreciated.

The Springer staff has, as always, been a great pleasure to work with.
Special thanks go to Martin Peters, Thanh-Ha Le Thi, and Andrea Ko&hler
for their extensive help with this and other book projects.

Oslo, September 2007 Hans Petter Langtangen

Preface to the Second Edition

The second edition features new material, reorganization of text, improved
examples and software tools, updated information, and correction of errors.
This is mainly the result of numerous eager readers around the world who
have detected misprints, tested program examples, and suggested alternative
ways of doing things. I am greatful to everyone who has sent emails and
contributed with improvements. The most important changes in the second
edition are briefly listed below.

Already in the introductory examples in Chapter 2 the reader now gets a
glimpse of Numerical Python arrays, interactive computing with the IPython
shell, debugging scripts with the aid of IPython and Pdb, and turning “flat”
scripts into reusable modules (Chapters 2.2.5, 2.2.6, and 2.5.3 are added).
Several parts of Chapter 4 on numerical computing have been extended (es-
pecially Chapters 4.3.5, 4.3.6, 4.3.7, and 4.4). Many smaller changes have
been implemented in Chapter 8; the larger ones concern exemplifying Tar
archives instead of ZIP archives in Chapter 8.3.4, rewriting of the mate-
rial on generators in Chapter 8.9.4, and an example in Chapter 8.6.13 on
adding new methods to a class without touching the original source code
and without changing the class name. Revised and additional tips on opti-
mizing Python code have been included in Chapter 8.10.3, while the new
Chapter 8.10.4 contains a case study on the efficiency of various implemen-
tations of a matrix-vector product. To optimize Python code, we now also
introduce the Psyco and Weave tools (see Chapters 8.10.4, 9.1, 10.1.3, and
10.4.1). To reduce complexity of the principal software example in Chapters 9
and 10, I have removed evaluation of string formulas. Instead, one can use
the revised StringFunction tool from Chapter 12.2.1 (the text and software
regarding this tool have been completely rewritten). Appendix B.5 has been
totally rewritten: now I introduce Subversion instead of CVS, which results
in simpler recipes and shorter text. Many new Python tools have emerged
since the first printing and comments about some of these are inserted many
places in the text.

Numerous sections or paragraphs have been expanded, condensed, or re-
moved. The sequence of chapters is hardly changed, but a couple of sections
have been moved. The numbering of the exercises is altered as a result of
both adding and removing exerises.

Finally, I want to thank Martin Peters, Thanh-Ha Le Thi, and Andrea
Kohler in the Springer system for all their help with preparing a new edition.

Oslo, October 2005 Hans Petter Langtangen

Preface to the First Edition

The primary purpose of this book is to help scientists and engineers work-
ing intensively with computers to become more productive, have more fun,
and increase the reliability of their investigations. Scripting in the Python
programming language can be a key tool for reaching these goals [?,7].

The term scripting means different things to different people. By scripting
I mean developing programs of an administering nature, mostly to organize
your work, using languages where the abstraction level is higher and program-
ming is more convenient than in Fortran, C, C++, or Java. Perl, Python,
Ruby, Scheme, and Tcl are examples of languages supporting such high-level
programming or scripting. To some extent Matlab and similar scientific com-
puting environments also fall into this category, but these environments are
mainly used for computing and visualization with built-in tools, while script-
ing aims at gluing a range of different tools for computing, visualization, data
analysis, file/directory management, user interfaces, and Internet communi-
cation. So, although Matlab is perhaps the scripting language of choice in
computational science today, my use of the term scripting goes beyond typi-
cal Matlab scripts. Python stands out as the language of choice for scripting
in computational science because of its very clean syntax, rich modulariza-
tion features, good support for numerical computing, and rapidly growing
popularity.

What Scripting is About. The simplest application of scripting is to write
short programs (scripts) that automate manual interaction with the com-
puter. That is, scripts often glue stand-alone applications and operating sys-
tem commands. A primary example is automating simulation and visual-
ization: from an effective user interface the script extracts information and
generates input files for a simulation program, runs the program, archive data
files, prepares input for a visualization program, creates plots and animations,
and perhaps performs some data analysis.

More advanced use of scripting includes rapid construction of graphical
user interfaces (GUIs), searching and manipulating text (data) files, manag-
ing files and directories, tailoring visualization and image processing environ-
ments to your own needs, administering large sets of computer experiments,
and managing your existing Fortran, C, or C++ libraries and applications
directly from scripts.

Scripts are often considerably faster to develop than the corresponding
programs in a traditional language like Fortran, C, C++, or Java, and the
code is normally much shorter. In fact, the high-level programming style and
tools used in scripts open up new possibilities you would hardly consider as
a Fortran or C programmer. Furthermore, scripts are for the most part truly
cross-platform, so what you write on Windows runs without modifications

VIII Preface to the First Edition

on Unix and Macintosh, also when graphical user interfaces and operating
system interactions are involved.

The interest in scripting with Python has exploded among Internet service
developers and computer system administrators. However, Python scripting
has a significant potential in computational science and engineering (CSE) as
well. Software systems such as Maple, Mathematica, Matlab, and S-PLUS/R
are primary examples of very popular, widespread tools because of their
simple and effective user interface. Python resembles the nature of these
interfaces, but is a full-fledged, advanced, and very powerful programming
language. With Python and the techniques explained in this book, you can
actually create your own easy-to-use computational environment, which mir-
rors the working style of Matlab-like tools, but tailored to your own number
crunching codes and favorite visualization systems.

Scripting enables you to develop scientific software that combines ”the
best of all worlds”, i.e., highly different tools and programming styles for
accomplishing a task. As a simple example, one can think of using a C++
library for creating a computational grid, a Fortran 77 library for solving
partial differential equations on the grid, a C code for visualizing the solution,
and Python for gluing the tools together in a high-level program, perhaps with
an easy-to-use graphical interface.

Special Features of This Book. The current book addresses applications of
scripting in CSE and is tailored to professionals and students in this field. The
book differs from other scripting books on the market in that it has a different
pedagogical strategy, a different composition of topics, and a different target
audience.

Practitioners in computational science and engineering seldom have the
interest and time to sit down with a pure computer language book and figure
out how to apply the new tools to their problem areas. Instead, they want
to get quickly started with examples from their own world of applications
and learn the tools while using them. The present book is written in this
spirit — we dive into simple yet useful examples and learn about syntax and
programming techniques during dissection of the examples. The idea is to get
the reader started such that further development of the examples towards
real-life applications can be done with the aid of online manuals or Python
reference books.

Contents. The contents of the book can be briefly sketched as follows. Chap-
ter 1 gives an introduction to what scripting is and what it can be good for
in a computational science context. A quick introduction to scripting with
Python, using examples of relevance to computational scientists and engi-
neers, is provided in Chapter 2. Chapter 3 presents an overview of basic
Python functionality, including file handling, data structures, functions, and
operating system interaction. Numerical computing in Python, with particu-
lar focus on efficient array processing, is the subject of Chapter 4. Python can
easily call up Fortran, C, and C++ code, which is demonstrated in Chapter 5.

Preface to the First Edition IX

A quick tutorial on building graphical user interfaces appears in Chapter 6,
while Chapter 7 builds the same user interfaces as interactive Web pages.

Chapters 8-12 concern more advanced features of Python. In Chapter 8
we discuss regular expressions, persistent data, class programming, and ef-
ficiency issues. Migrating slow loops over large array structures to Fortran,
C, and C++ is the topic of Chapters 9 and 10. More advanced GUI pro-
gramming, involving plot widgets, event bindings, animated graphics, and
automatic generation of GUIs are treated in Chapter 11. More advanced
tools and examples of relevance for problem solving environments in science
and engineering, tying together many techniques from previous chapters, are
presented in Chapter 12.

Readers of this book need to have a considerable amount of software
installed in order to be able to run all examples successfully. Appendix A
explains how to install Python and many of its modules as well as other
software packages. All the software needed for this book is available for free
over the Internet.

Good software engineering practice is outlined in a scripting context in
Appendix B. This includes building modules and packages, documentation
techniques and tools, coding styles, verification of programs through auto-
mated regression tests, and application of version control systems.

Required Background. This book is aimed at readers with programming ex-
perience. Many of the comments throughout the text address Fortran or C
programmers and try to show how much faster and more convenient Python
code development turns out to be. Other comments, especially in the parts
of the book that deal with class programming, are meant for C++ and Java
programmers. No previous experience with scripting languages like Perl or
Tecl is assumed, but there are scattered remarks on technical differences be-
tween Python and other scripting languages (Perl in particular). I hope to
convince computational scientists having experience with Perl that Python
is a preferable alternative, especially for large long-term projects.

Matlab programmers constitute an important target audience. These will
pick up simple Python programming quite easily, but to take advantage of
class programming at the level of Chapter 12 they probably need another
source for introducing object-oriented programming and get experience with
the dominating languages in that field, C++ or Java.

Most of the examples are relevant for computational science. This means
that the examples have a root in mathematical subjects, but the amount
of mathematical details is kept as low as possible to enlarge the audience
and allow focusing on software and not mathematics. To appreciate and see
the relevance of the examples, it is advantageous to be familiar with basic
mathematical modeling and numerical computations. The usefulness of the
book is meant to scale with the reader’s amount of experience with numerical
simulations.

X Preface to the First Edition

Acknowledgements. The author appreciates the constructive comments from
Arild Burud, Roger Hansen, and Tom Thorvaldsen on an earlier version of
the manuscript. I will in particular thank the anonymous Springer referees
of an even earlier version who made very useful suggestions, which led to a
major revision and improvement of the book.

Sylfest Glimsdal is thanked for his careful reading and detection of many
errors in the present version of the book. I will also acknowledge all the input
I have received from our enthusiastic team of scripters at Simula Research
Laboratory: Are Magnus Bruaset, Xing Cai, Kent-Andre Mardal, Halvard
Moe, Ola Skavhaug, Gunnar Staff, Magne Westlie, and Asmund @degard. As
always, the prompt support and advice from Martin Peters, Frank Holzwarth,
Leonie Kunz, Peggy Glauch, and Thanh-Ha Le Thi at Springer have been
essential to complete the book project.

Software, updates, and an errata list associated with this book can be
found on the Web page http://folk.uio.no/hpl/scripting. From this page
you can also download a PDF version of the book. The PDF version is search-
able, and references are hyperlinks, thus making it convenient to navigate in
the text during software development.

Oslo, April 2004 Hans Petter Langtangen

Table of Contents

1 Introduction............l 1
1.1 Scripting versus Traditional Programming................. 1
1.1.1 Why Scripting is Useful in Computational Science... 2

1.1.2 Classification of Programming Languages 4

1.1.3 Productive Pairs of Programming Languages 5

1.1.4 Gluing Existing Applications 6

1.1.5 Scripting Yields Shorter Code 7

1.1.6 Efficiency 8

1.1.7 Type-Specification (Declaration) of Variables 9

1.1.8 Flexible Function Interfaces 11

1.1.9 Interactive Computing 12
1.1.10 Creating Code at Run Time 13
1.1.11 Nested Heterogeneous Data Structures............. 14
1.1.12 GUI Programming, 16
1.1.13 Mixed Language Programming 17
1.1.14 When to Choose a Dynamically Typed Language ... 19
1.1.15 Why Python?, 20
1.1.16 Script or Program?.............. 21

1.2 Preparations for Working with This Book 22
2 Getting Started with Python Scripting 27
2.1 A Scientific Hello World Script 27
2.1.1 Executing Python Scripts 28

2.1.2 Dissection of the Scientific Hello World Script 29

2.2 Working with Files and Data 32
2.2.1 Problem Specification 32

2.2.2 The Complete Code, 33

2.2.3 Dissection......... ... 33

2.2.4 Working with Files in Memory.................... 36

2.2.5 Array Computing i, 37

2.2.6 Interactive Computing and Debugging 39

2.2.7 Efficiency Measurements 42

2.2.8 EXErCISES ...ttt 43

2.3 Gluing Stand-Alone Applications 46
2.3.1 The Simulation Code 47

2.3.2 Using Gnuplot to Visualize Curves 49

2.3.3 Functionality of the Script 50

2.3.4 The Complete Code 51

2.3.5 Dissection......... .. 53

2.3.6 EXErCISESttt e 55

2.4 Conducting Numerical Experiments 58

2.4.1 Wrapping a Loop Around Another Script 59

XII

Table of Contents

2.4.2 Generating an HTML Report..................... 60
2.4.3 Making Animations oL 61
244 Varying Any Parameter.......................... 63
2.5 File Format Conversion, 66
2.5.1 A Simple Read/Write Script...................... 66
2.5.2 Storing Data in Dictionaries and Lists 68
2.5.3 Making a Module with Functions 69
254 EXEICISES ...ttt 71
Basic Python......... 73
3.1 Introductory Topics, 74
3.1.1 Recommended Python Documentation............. 74
3.1.2 Control Statements, 75
3.1.3 Running Applications 76
3.1.4 File Reading and Writing 78
3.1.5 Output Formatting............ 79
3.2 Variables of Different Types 81
3.2.1 Boolean Types., 81
3.2.2 The None Variable 82
3.2.3 Numbers and Numerical Expressions 82
3.24 Listsand Tuples 84
3.2.5 Dictionarieso 90
3.2.6 Splitting and Joining Text 94
3.2.7 String Operationso i, 95
3.2.8 Text Processing........ ..o, 96
3.2.9 The Basics of a Python Class..................... 98
3.2.10 Copy and Assignment 100
3.2.11 Determining a Variable’s Type.................... 104
3.2.12 EXErCISeSttt 106
3.3 Functions 110
3.3.1 Keyword Arguments, 111
3.3.2 Doc Strings ... 112
3.3.3 Variable Number of Arguments 112
3.34 Call by Reference 114
3.3.5 Treatment of Input and Output Arguments 115
3.3.6 Function Objects, 116
3.4 Working with Files and Directories....................... 117
3.4.1 Listing Files in a Directory 118
3.4.2 Testing File Typesc. .. 118
3.4.3 Removing Files and Directories 119
3.4.4 Copying and Renaming Files 120
3.4.5 Splitting Pathnames........... 121
3.4.6 Creating and Moving to Directories 122
3.4.7 Traversing Directory Trees 122

3.4.8 EXErcises 125

Table of Contents XIII

4 Numerical Computing in Python 131
4.1 A Quick NumPy Primer L 132
4.1.1 Creating Arrayscoviiniiiiniiiinnnn... 132

4.1.2 ArrayIndexing 136

4.1.3 Loops over ATraysuiiiiiiiinannin.. 138

4.1.4 Array Computations 139

4.1.5 More Array Functionality 142

4.1.6 Type Testing 144

4.1.7 Matrix Objectst 145

4.1.8 EXErcisesiiiiiii i 146

4.2 Vectorized Algorithms 147
4.2.1 From Scalar to Array in Function Arguments....... 147

4.22 SHCING . .ot 149

4.2.3 EXErciseso.iiiii 150

4.3 More Advanced Array Computing........................ 151
4.3.1 Random Numbers......... 152

4.3.2 Linear Algebra i il 153

4.3.3 Plotting ... 154

4.3.4 Example: Curve Fitting......... 157

4.3.5 Arrays on Structured Grids 159

4.3.6 File I/O with NumPy Arrays..............oo..... 163

4.3.7 Functionality in the Numpyutils Module 166

4.3.8 EXErciSesouiiiiii i 168

4.4 Other Tools for Numerical Computations 173
4.4.1 The ScientificPython Package 173

4.4.2 The SciPy Package, 178

4.4.3 The Python—Matlab Interface 183

4.4.4 Symbolic Computing in Python................... 184

4.4.5 Some Useful Python Modules..................... 186

5 Combining Python with Fortran, C, and C++.... 189
5.1 About Mixed Language Programming 189
5.1.1 Applications of Mixed Language Programming. 190

5.1.2 Calling C from Python 190

5.1.3 Automatic Generation of Wrapper Code 192

5.2 Scientific Hello World Examples 194
5.2.1 Combining Python and Fortran................... 195

5.2.2 Combining Pythonand C 201

5.2.3 Combining Python and C++ Functions............ 208

5.2.4 Combining Python and C++ Classes 210

5.2.0 Exercises 214

5.3 A Simple Computational Steering Example................ 215
5.3.1 Modified Time Loop for Repeated Simulations. 216

5.3.2 Creating a Python Interface 217

5.3.3 The Steering Python Script 218

5.3.4 Equipping the Steering Script with a GUL.......... 222

5.4 Scripting Interfaces to Large Libraries 223

XIV

Table of Contents

6 Introduction to GUI Programming 227
6.1 Scientific Hello World GUT 228
6.1.1 Introductory Topics 228
6.1.2 The First Python/Tkinter Encounter 230
6.1.3 Binding Events 233
6.1.4 Changing the Layout 234
6.1.5 The Final Scientific Hello World GUT.............. 238
6.1.6 An Alternative to Tkinter Variables 240
6.1.7 About the Pack Command 241
6.1.8 An Introduction to the Grid Geometry Manager 243
6.1.9 Implementing a GUl asa Class 245
6.1.10 A Simple Graphical Function Evaluator............ 247
6.1.11 EXErciSescuunumuiuii .. 248
6.2 Adding GUIs to ScriptS. ...t 250
6.2.1 A Simulation and Visualization Script with a GUI .. 250
6.2.2 Improving the Layout 253
6.2.3 EXEercises 256
6.3 A List of Common Widget Operations 257
6.3.1 Frame 259
6.3.2 Label...... .. 260
6.3.3 Button 262
6.3.4 Text Entry...... ... i 262
6.3.5 BalloonHelp 264
6.3.6 Option Menu 264
6.3.7 Slider 265
6.3.8 Check Button i, 265
6.3.9 Making a Simple Megawidget..................... 266
6.3.10 Menu Bar........ ... i 267
6.3.11 List Data ... 269
6.3.12 Listbox 269
6.3.13 Radio Button L. 272
6.3.14 Combo Box ... 274
6.3.15 Message Box i il 275
6.3.16 User-Defined Dialogs 276
6.3.17 Color-Picker Dialogs............ 278
6.3.18 File Selection Dialogs............................ 278
6.3.19 Toplevel 280
6.3.20 Some Other Types of Widgets 281
6.3.21 Adapting Widgets to the User’s Resize Actions 282
6.3.22 Customizing Fonts and Colors 284
6.3.23 Widget Overviewiiiiiiinennin.. 286

6.3.24 EXErciSesc.iii e 289

Table of Contents

7 Web Interfaces and CGI Programming.............

7.1 Introductory CGI Scripts
7.1.1 Web Forms and CGI Scripts......................
7.1.2 Generating Forms in CGI Scripts
7.1.3 Debugging CGI Scripts
7.1.4 A General Shell Script Wrapper for CGI Scripts
7.1.5 Security Issues........ i
7.2 Adding Web Interfaces to Scripts
7.2.1 A Class for Form Parameters
7.2.2 Calling Other Programs
7.2.3 Running Simulations
7.2.4 Getting a CGI Script to Work
7.2.5 Using Web Applications from Scripts
7.2.6 ExXercises i

Advanced Python
8.1 Miscellaneous Topics
8.1.1 Parsing Command-Line Arguments................
8.1.2 Platform-Dependent Operations
8.1.3 Run-Time Generation of Code
8.1.4 EXErCiSesc.uuiniiii i
8.2 Regular Expressions and Text Processing
8.2.1 Motivation
8.2.2 Special Characterscoiieni...
8.2.3 Regular Expressions for Real Numbers.............
8.2.4 Using Groups to Extract Parts of a Text
8.2.5 Extracting Interval Limits..........
8.2.6 Extracting Multiple Matches
8.2.7 Splitting Text
8.2.8 Pattern-Matching Modifiers
8.2.9 Substitution and Backreferences
8.2.10 Example: Swapping Arguments in Function Calls . ..
8.2.11 A General Substitution Script
8.2.12 Debugging Regular Expressions
8.2.13 EXErciseso.iiiiiiii e
8.3 Tools for Handling Data in Files
8.3.1 Writing and Reading Python Data Structures
8.3.2 Pickling Objects i i
8.3.3 Shelving Objects......... i ...
8.3.4 Writing and Reading Zip and Tar Archive Files
8.3.5 Downloading Internet Files.................... ...
8.3.6 Binary Input/Output...................
8.3.7 EXEercisesouuiiii i
8.4 A Database for NumPy Arrays
8.4.1 The Structure of the Database....................
8.4.2 Pickling ...
8.4.3 Formatted ASCII Storage

XVI

Table of Contents

8.5

8.6

8.7

8.8

8.9

8.10

8.4.4 Shelving 376
8.4.5 Comparing the Various Techniques 377
Scripts Involving Local and Remote Hosts................. 378
8.5.1 Secure Shell Commands 378
8.5.2 Distributed Simulation and Visualization 380
8.5.3 Client/Server Programming 382
8.5.4 Threads 382
ClaSSeS @ittt 384
8.6.1 Class Programming 384
8.6.2 Checking the Class Type..............cooiiui... 388
8.6.3 PrivateData 389
8.6.4 StaticData 390
8.6.5 Special Attributes.......... 390
8.6.6 Special Methods 391
8.6.7 Multiple Inheritance........... 392
8.6.8 Using a Class as a C-like Structure 393
8.6.9 Attribute Access via String Names 394
8.6.10 New-Style Classescoooiiiiiiii... 394
8.6.11 Implementing Get/Set Functions via Properties 395
8.6.12 Subclassing Built-in Types 396
8.6.13 Building Class Interfaces at Run Time............. 399
8.6.14 Building Flexible Class Interfaces 403
8.6.15 EXEercises 409
Scope of Variables 413
8.7.1 Global, Local, and Class Variables 413
8.7.2 Nested Functions 415
8.7.3 Dictionaries of Variables in Namespaces............ 416
Exceptions ... 418
8.8.1 Handling Exceptions 419
8.8.2 Raising Exceptions 420
Tteratorso 421
8.9.1 Constructing an Iterator 421
8.9.2 A Pointwise Grid Iterator 423
8.9.3 A Vectorized Grid Iterator 427
8.9.4 Generatorsiiii e 428
8.9.5 Some Aspects of Generic Programming 432
8.9.6 EXErcisesouiiiii e 436
Investigating Efficiency o i 437
8.10.1 CPU-Time Measurements 437
8.10.2 Profiling Python Scripts 441
8.10.3 Optimization of Python Code 442

8.10.4 Case Study on Numerical Efficiency 445

10

Table of Contents XVII

Fortran Programming with NumPy Arrays
9.1 Problem Definition
9.2 Filling an Array in Fortran
9.2.1 The Fortran Subroutine............
9.2.2 Building and Inspecting the Extension Module.
9.3 Array Storage Issues il
9.3.1 Generating an Erroneous Interface
9.3.2 Array Storage in C and Fortran...................
9.3.3 Input and Output Arrays as Function Arguments . ..
9.3.4 F2PY Interface Files
9.3.5 Hiding Work Arrays.............. ...,
9.4 Increasing Callback Efficiency
9.4.1 Callbacks to Vectorized Python Functions..........
9.4.2 Avoiding Callbacks to Python
9.4.3 Compiled Inline Callback Functions
9.5 SUIMIMATY . .ottt e et
9.6 EXErCISesouiiiiii i

C and C++4 Programming with NumPy Arrays ..
10.1 Automatic Interfacing of C/C++ Code
10.1.1 Using F2PY ... o
10.1.2 Using Instant.........
10.1.3 Using Weavettt
10.2 C Programming with NumPy Arrays
10.2.1 The Basics of the NumPy C API..................
10.2.2 The Handwritten Extension Code
10.2.3 Sending Arguments from Pythonto C
10.2.4 Consistency Checks
10.2.5 Computing Array Values.........................
10.2.6 Returning an Output Array
10.2.7 Convenient Macrosc.oouuiininneen...
10.2.8 Module Initialization
10.2.9 Extension Module Template
10.2.10 Compiling, Linking, and Debugging the Module.
10.2.11 Writing a Wrapper for a C Function...............
10.3 C++ Programming with NumPy Arrays
10.3.1 Wrapping a NumPy Array in a C+4 Object
10.3.2 Using SCXX ...
10.3.3 NumPy-C++ Class Conversion
10.4 Comparison of the Implementations
10.4.1 Efficiencyi i
10.4.2 Error Handling
10.4.3 SUMMATY ..o vv i
10.5 EXErcCiSest

XVIII Table of Contents

11 More Advanced GUI Programming................. 529
11.1 Adding Plot Areasin GUIs..........., 529
11.1.1 The BLT Graph Widget 530
11.1.2 Animation of Functions in BLT Graph Widgets 536
11.1.3 Other Tools for Making GUIs with Plots 538
11,14 EXErCiSes . ..o.vutit i e 539

11.2 Event Bindings 541
11.2.1 Binding Events to Functions with Arguments....... 542
11.2.2 A Text Widget with Tailored Keyboard Bindings ... 544
11.2.3 A Fancy List Widget 547

11.3 Animated Graphics with Canvas Widgets 550
11.3.1 The First Canvas Encounter...................... 551
11.3.2 Coordinate Systems, 552
11.3.3 The Mathematical Model Class 556
11.3.4 The Planet Classcooiiiiiiiiin... 557
11.3.5 Drawing and Moving Planets 559
11.3.6 Dragging Planets to New Positions 560
11.3.7 Using Pmw’s Scrolled Canvas Widget.............. 564

11.4 Simulation and Visualization Scripts 566
11.4.1 Restructuring the Script 567
11.4.2 Representing a Parameter by a Class 569
11.4.3 TImproved Command-Line Script 583
11.4.4 TImproved GUI Script 584
11.4.5 Improved CGI Seript, 585
11.4.6 Parameters with Physical Dimensions 586
11.4.7 Adding a Curve Plot Area 588
11.4.8 Automatic Generation of Scripts 589
11.4.9 Applications of the Tools 590
11.4.10 Allowing Physical Units in Input Files 596
11.4.11 Converting Input Files to GUIs 601

12 Tools and Examples 605
12.1 Running Series of Computer Experiments 605
12.1.1 Multiple Values of Input Parameters 606
12.1.2 TImplementation Details 609
12.1.3 Further Applications 614

12.2 Tools for Representing Functions...................... ... 618
12.2.1 Functions Defined by String Formulas 618
12.2.2 A Unified Interface to Functions 623
12.2.3 Interactive Drawing of Functions.................. 629
12.2.4 A Notebook for Selecting Functions 633

12.3 Solving Partial Differential Equations.................. ... 640
12.3.1 Numerical Methods for 1D Wave Equations 641
12.3.2 Implementations of 1D Wave Equations............ 644
12.3.3 Classes for Solving 1D Wave Equations 651
12.3.4 A Problem Solving Environment 657

12.3.5 Numerical Methods for 2D Wave Equations 663

Table of Contents XIX

12.3.6 Implementations of 2D Wave Equations............ 666
12.3.7 EXErcisesc.ouuii i 674

A Setting up the Required Software Environment... 677
A.1 Installation on Unix Systems, 677
A.1.1 A Suggested Directory Structure 677
A.1.2 Setting Some Environment Variables 678
A.1.3 Installing Tcl/Tk and Additional Modules 679
A.1.4 Installing Python 680
A.1.5 Installing Python Modules 681
A.1.6 Installing Gnuplot 683
A1.7 Installing SWIG ... oo i 684
A.1.8 Summary of Environment Variables 684
A.1.9 Testing the Installation of Scripting Utilities........ 685

A.2 Installation on Windows Systems 685
B Elements of Software Engineering................... 689
B.1 Building and Using Modules. 689
B.1.1 Single-File Modules 689
B.1.2 Multi-File Modules 693
B.1.3 Debugging and Troubleshooting................... 694

B.2 Tools for Documenting Python Software 696
B.2.1 Doc Stringsouiii 696
B.2.2 Tools for Automatic Documentation............... 698

B.3 Coding Standards i 702
B.3.1 Style Guide 702
B.3.2 Pythonic Programming 706

B.4 Verification of Scripts. 711
B.4.1 Automating Regression Tests 711
B.4.2 Implementing a Tool for Regression Tests 715
B.4.3 Writing a Test Script 719
B.4.4 Verifying Output from Numerical Computations 720
B.4.5 Automatic Doc String Testing 724
B.4.6 Unit Testing 726

B.5 Version Control Management 728
B.5.1 Mercurial 729
B.5.2 Subversion 732

B.6 Exercises 734
Bibliography 739

