
Computational Partial Differential

Equations

Numerical Methods and Diffpack Programming

2nd Edition

Hans Petter Langtangen

Simula Research Laboratory

and

Department of Informatics

University of Oslo

IV

Preface to the Second Edition

The second edition features lots of improvements and new material. The most
significant additions include

– finite difference methods and implementations for a 1D time-dependent
heat equation (Chapter 1.7.6),

– a solver for vibration of elastic structures (Chapter 5.1.6),

– a step-by-step instruction of how to develop and test Diffpack programs
for a physical application (Chapters 3.6 and 3.13),

– construction of non-trivial grids using super elements (Chapters 3.5.4,
3.6.4, and 3.13.4),

– additional material on local mesh refinements (Chapter 3.7),

– coupling of Diffpack with other types of software (Appendix B.3)

– high-level programming of finite difference solvers utilizing the new stencil
(finite difference operator) concept in Diffpack (Appendix D.8).

Many of the examples, projects, and exercises from the first edition have
been revised and improved. Some new exercises and projects have also been
added. A hopefully very useful new feature is the compact overview of all the
program examples in the book and the associated software files, presented in
Chapter 1.2.

Errors have been corrected, many explanations have been extended, and
the text has been upgraded to be compatible with Diffpack version 4.0.

The major difficulty when developing programs for numerical solution of
partial differential equations is to debug and verify the implementation. This
requires an interplay between understanding the mathematical model, the in-
volved numerics, and the programming tools. Most of the additional material
in the second edition is therefore focused on improving the reader’s multi-
disciplinary skills needed for testing whether a simulator works correctly or
not. I have tried to communicate such multi-disciplinary knowledge through
case studies utilizing numerical experimentation and frequent references to
theory chapters. This type of exposition is particularly evident in the new
Chapters 1.7.6, 3.6, and 3.13.

The introductory solvers in the src/fdm directory have been reorganized
and given new names. If you are used to Diffpack versions prior to 4.0 and
wonder where, e.g., the old Wave1D4 code is located, you can run the dirmap

script:

dirmap Wave1D4

The output will then be src/fdm/Wave1D/ill-posed, which is the directory
that now contains the old Wave1D4 code.

VI Preface to the Second Edition

More advanced applications, numerical methods, and Diffpack tools are
covered in a companion volume: Advanced Topics in Computational Par-
tial Differential Equations – Numerical Methods and Diffpack Programming,
edited by the author in collaboration with Aslak Tveito. That volume covers
parallel computing, domain decomposition, multigrid programming, mixed
finite elements, system of PDEs, stochastic PDEs, as well as applications to
computational finance, geology, medicine, and material science.

Acknowledgements. Several collaborators have contributed to the second edi-
tion. Chapter 3.7, on adaptivity, is now co-authored with Xing Cai. The mate-
rial about finite difference stencil programming in Appendix D.8 was mainly
developed by Elizabeth Acklam. The cover image was made by Glenn Terje
Lines, based on data from the The Bioengineering Research group at The
University of Auckland, New Zealand. Jan Olav Langseth was the creator of
the drawings on pages 2, 609, and 798.

I have received reports on misprints and suggestions for improvements
from many people. In particular I want to thank Elizabeth Acklam, Erlend
Arge, Ole Jakob Arntzen, Are Magnus Bruaset, Xing Cai, Sylfest Glimsdal,
Audrey Huerta, Morten Huseby, Kent-Andre Mardal, Nigel Nunn, Atle Om-
mundsen, Harald Osnes, Ola Skavhaug, and Aslak Tveito. My sincere thanks
go to Jan Olav Langseth and Tom Thorvaldsen for their very constructive
criticism and careful reading of many parts of the manuscript.

The work with this second edition was very much inspired by the enthu-
siasm, creativity, and efforts of the core Diffpack team: Are Magnus, Aslak,
Elizabeth, Erlend, Kent-Andre, and Xing. Without you and the continuous
support from Martin Peters, Thanh-Ha Le Thi, and Leonie Kunz at Springer,
there would have been no major update of this book and the associated soft-
ware.

Oslo, November 2002 Hans Petter Langtangen

Preface to the First Edition

During the last decades there has been a tremendous advancement of com-
puter hardware, numerical algorithms, and scientific software. Engineers and
scientists are now equipped with tools that make it possible to explore real-
world applications of high complexity by means of mathematical models and
computer simulation. Experimentation based on numerical simulation has
become fundamental in engineering and many of the traditional sciences. A
common feature of mathematical models in physics, geology, astrophysics,
mechanics, geophysics, as well as in most engineering disciplines, is the ap-
pearance of systems of partial differential equations (PDEs). This text aims
at equipping the reader with tools and skills for formulating solution methods
for PDEs and producing associated running code.

Successful problem solving by means of mathematical models in science
and engineering often demands a synthesis of knowledge from several fields.
Besides the physical application itself, one must master the tools of math-
ematical modeling, numerical methods, as well as software design and im-
plementation. In addition, physical experiments or field measurements might
play an important role in the derivation and the validation of models. This
book is written in the spirit of computational sciences as inter-disciplinary
activities. Although it would be attractive to integrate subjects like mathe-
matics, physics, numerics, and software in book form, few readers would have
the necessary broad background to approach such a text. We have therefore
chosen to focus the present book on numerics and software, with some op-
tional material on the physical background for models from fluid and solid
mechanics.

The main goal of the text is to educate the reader in developing simu-
lation programs for a range of different applications, using a common set of
generic algorithms and software tools. This means that we mainly address
readers who are or want to become professional programmers of numerical
applications. As the resulting codes for solving PDEs tend to be very large
and complicated, the implementational work is indeed non-trivial and time
consuming. This fact calls for a careful choice of programming techniques.

During the 90s the software industry has experienced a change in pro-
gramming technologies towards modern techniques such as object-oriented
programming. In a number of contexts this has proved to increase the human
efficiency of the software development and maintenance process considerably.
The interest in these new techniques has grown significantly also in the nu-
merical community. The software tools and programming style in this book
reflect this modern trend. One of our main goals with the present text is in
fact to explore the advantages of programming with objects in numerical con-
texts. The resulting programming is mainly on a high abstraction level, close

VIII Preface to the First Edition

to the numerical formulation of the PDE problem. We can do this because
we build our PDE solvers on the Diffpack software.

Diffpack is a set of libraries containing building blocks in numerical meth-
ods for PDEs, for example, arrays, linear systems, linear and nonlinear solvers,
grids, scalar and vector fields over grids, finite elements, and visualization
support. Diffpack utilizes object-oriented programming techniques to a large
extent and is coded in the C++ programming language. This means that we
must write the PDE solvers in C++. If you do not already know C++, this
text will motivate you to pick up the perhaps most popular programming
language of the 90s. Most of the knowledge as a C++ programmer can be
reused as a C, Java, or even Fortran 90/95 programmer as well, so we speak
about a fortunate investment. You do not need to study a textbook on C++
before continuing with the present text, because experience shows that one
can get started as a Diffpack programmer without any experience in C++
and learn the language gently as one proceeds with numerical algorithms, the
software guide, and more advanced example codes. This book comes with a
large number of complete Diffpack solvers for a range of PDE problems, and
one can often adapt an existing solver to one’s particular problem at hand.

In the past, Diffpack was distributed with a pure software guide as the only
documentation. It soon became apparent that successful utilization of numer-
ical software like Diffpack requires (i) a good understanding of the particular
formulation of numerical methods that form the theoretical foundations of
the package and (ii) a guide to the software tools, exemplified first in detail
on simple problems and then extended, with small modifications, to more
advanced engineering applications. The software guide can be significantly
improved by providing precise references to the suitable generic description
of various numerical algorithms. Although this generic view on methods is
to a large extent available in the literature, the material is scattered around
in textbooks, journal papers, and conference proceedings, mostly written for
specialists. It was therefore advantageous to write down the most important
numerical topics that must be mastered before one can develop PDE solvers
in a programming environment like Diffpack, and tailor the exposition to a
programmer.

Our decision to include brief material on the background for and deriva-
tion of a model helps the reader with physical knowledge and interest to
more clearly see the link between our software-oriented numerical descrip-
tions and comprehensive specialized text on the physics of a problem. Much
of the literature on applications, and also on numerical analysis, works with
formulations of equations that are not directly suited for numerical imple-
mentation. Our chapters on mechanical applications therefore emphasizes a
combined physical, mathematical, and numerical framework that aids a flex-
ible software implementation.

The present text has been used in a computationally-oriented PDE course
at the University of Oslo. Experience from the course shows that whether
the aim is to teach numerical methods or software issues, both subjects can

Preface to the First Edition IX

benefit greatly from an integrated approach where theory, algorithms, pro-
gramming, and experimentation are combined. The result is that people use
less time to grasp the theory and much less time to produce running code
than what we have experienced in the past.

Overview of the Text. Chapter 1 serves the purpose of getting the reader
started with implementation of PDE simulators in Diffpack. The chapter
also gives a brief introduction to mathematical modeling and numerical solu-
tion of PDEs. To keep the mathematics and numerics as simple as possible,
we address the one-dimensional Poission equation and the one- and two-
dimensional wave equation, discretized by finite differences. The material on
finite difference algorithms is self-contained, but newcomers to the field of
PDEs and finite differences may find it convenient to also consult a more
comprehensive text like Strikwerda [133] or Tveito and Winther [143]. The
next part of Chapter 1 motivates for the use of C++ and explains the basic
concepts of object-oriented programming and numerical software engineering.
The treatment of the programming techniques is quite brief and readers not
fluent in C++ will need to access a textbook on C++ as they go through the
more advanced parts of this book. Two recommended C++ books are Barton
and Nackman[10] and Stroustrup [136]. Readers with minor experience with
programming on beforehand will perhaps appreciate a more verbose C++
textbook, teaching both C++ and basic programming in general. Prata [112]
is then a good choice.

An introduction to the finite element method is provided in Chapter 2.
The exposition aims at giving the reader the proper view of the finite element
method as a general computational algorithm for a wide range of problems.
This view is important for the understanding and usage of the finite element
toolbox in Diffpack. We start with the weighted residual method as a generic
framework for solving stationary PDEs. Time-dependent equations are han-
dled by first discretizing in time by finite differences and then applying the
weighted residual method to the sequence of spatial problems. Various as-
pects of finite elements are introduced in detail for one-dimensional problems,
but the formulation of the numerical tools is general so that the extension
of the algorithms to multi-dimensional problems becomes trivial. We end
Chapter 2 with a gentle treatment of the basic mathematics of variational
formulations and present some of the main results regarding uniqueness, sta-
bility, best approximation principles, and error estimates. These topics build
the basis for the final section on adaptive discretization of elliptic boundary-
value problems and prepares the reader for accessing the large and important
mathematically-oriented literature on the finite element method. Moreover,
the abstract finite element framework forms the background for the treatment
of the Conjugate Gradient-like methods in Appendix C.

Diffpack offers extensive support for solving PDEs by the finite element
method, and Chapter 3 gives an introduction to Diffpack’s finite element
software tools. The description starts with a very simple program for the 2D

X Preface to the First Edition

Poisson equation on the unit square. We then motivate strongly for making
the solver more flexible. For instance, the solver should work in 1D, 2D, and
3D by parameterizing the number of space dimensions, arbitrary unstructured
grids should be handled, input data should be given through a menu system,
and the results should be visualized using various common tools, ranging from
small public domain programs via Matlab to full visualization systems like
IRIS Explorer. The increased flexibility enhances the user’s productivity when
performing extensive numerical experimentation and supports migration of
the solver code towards much more complicated PDE problems. This is a
philosophy that characterizes most programs associated with the book. Time-
dependent PDE solvers are viewed as some minor extensions of stationary
PDE solvers, and after having demonstrated how to solve a heat equation
in 1D, 2D, and 3D, we end the chapter with a particularly efficient finite
element solver for the standard multi-dimensional wave equation.

There is no separate chapter on tools for finite difference methods, but
Chapter 1 and Appendices D.2 and D.7 provide fundamental examples on
the implementation of explicit and implicit schemes for scalar PDEs, whereas
Chapters 6.2 and 6.4 deal with systems of PDEs. These examples should be
sufficient starting points for creating finite difference-based simulators with
the aid of Diffpack.

Algorithms and software tools for nonlinear problems constitute the topic
of Chapter 4. We describe the standard Successive Substitution method (Pi-
card iteration) and the Newton-Raphson method for solving systems of non-
linear algebraic equations. We also apply these methods directly at the PDE
level. Other topics covered are the group finite element method and continu-
ation methods. Differences and similarities between the finite difference and
finite element methods when applied to nonlinear problems are discussed.
The exposition emphasizes that solution methods for nonlinear PDEs mainly
involve solving a sequence of linear PDEs. As in the other parts of the book,
the advocated view in the theory part is reflected in the usage of the software
tools; the software example shows the few steps required to extend a simple
heat equation solver from Chapter 3 to treat a nonlinear heat equation.

Simulation software for problems in fluid and solid mechanics are devel-
oped in Chapters 5–7 by combining and extending the numerical algorithms
and software tools from Chapters 1–4.

Some elasticity and plasticity models are treated in Chapter 5. We first
present the mathematical model, the finite element discretization, and the
Diffpack implementation of a linear thermo-elasticity solver for 2D and 3D
problems. Here we try to demonstrate the strong link between the vector PDE
in elasticity and a scalar PDE like the Poisson equation, and how we can uti-
lize this similarity to reuse software components from Chapter 3. Thereafter
we discuss algorithms and implementations for an elasto-viscoplastic mate-
rial model. In a certain sense, the plastic deformations can be computed
as a sequence of elastic problems. This chapter also introduces a standard
“engineering finite element notation” that simplifies the formulation of the

Preface to the First Edition XI

elasto-viscoplastic solution algorithm and that prepares the reader for access-
ing the comprehensive engineering-oriented literature on the finite element
method.

Chapter 6 is devoted to convection-diffusion problems, the shallow water
equations, and the Navier-Stokes equations. The convection-diffusion PDE to
be solved has principally the same complexity as the model PDEs in Chap-
ters 3 and 4, but the implementation combines almost all Diffpack features
introduced in previous chapters and thereby acts as a kind of summary and
recommended composition of finite element software tools. The treatment of
the shallow water equations is centered around finite difference methods on
staggered grids and solution of systems of PDEs by operator splitting. Associ-
ated finite element techniques are also covered. A simple finite element solver
for the incompressible Navier-Stokes equations, based on the penalty-function
method, is thereafter described. This application is in some sense a nonlin-
ear extension of the elasticity problem. Thus, there is a natural evolution of
models and corresponding implementations from the Poisson or convection-
diffusion equation via linear elasticity to a penalty-based Navier-Stokes solver.
We also present a classical projection method for the incompressible Navier-
Stokes equations along with its 3D finite difference implementation, including
a multigrid solver for the pressure equation. The basic ideas of this fluid flow
solver are extended to a finite element framework, with particular emphasis
on efficient implementation, in the final section of Chapter 6.

Chapter 7 deals with coupled problems. A special fluid-structure inter-
action problem, so-called squeeze-film damping, is treated first. Thereafter
we focus on non-Newtonian pipeflow coupled with heat transfer. In both ap-
plications we derive the mathematical model, present finite element-based
numerical methods, and explain how one can implement a system of PDEs
by assembling independent solver classes for each scalar PDE in the system.
This is an important implementation technique that is supported by Diffpack
and that significantly reduces the efforts required to develop and verify solvers
for coupled systems of PDEs. The PDE systems in this chapter are highly
nonlinear and extend the material from Chapter 4 with further examples on
numerical methods and Diffpack programs for nonlinear PDEs.

The mathematical tools employed in this text do not require knowledge
beyond multi-variable calculus and linear algebra. Throughout the book we
make use of scaling of mathematical models, compact notations for PDEs and
discrete equations, and tools for determining stability and accuracy of numer-
ical approximations. These mathematical topics are covered in Appendix A.
The treatment of accuracy and stability is centered around exact solutions of
the difference equations and investigation of quantities like numerical disper-
sion relations. Discussion of dispersion relations helps the understanding of
the nature of discretization errors and can be applied to both finite difference
and finite element schemes in a simple and direct way.

Appendix B contains overview of the most important Diffpack function-
ality in tabular form, basic commands for operating Diffpack in the Unix and

XII Preface to the First Edition

Windows environments, and more detailed information about data storage
and finite element programming. The final section in Appendix B demon-
strates how to formulate algorithms and adjust the default “template” pro-
grams in Chapter 3 with the purpose of increasing the computational speed
of Diffpack simulators.

Numerical solution of PDEs is very often centered around discretization
techniques. That is, as soon as the initial PDE is reduced to a sequence of
linear systems of algebraic equations, the problem is considered as “solved”.
This view is reflected in Diffpack simulators as well; calling up a linear sys-
tem solver is trivial, and most of the programming work deals with input
data, formulating the discrete equations, and setting the boundary condi-
tions. Nevertheless, solution of linear systems can easily be the computa-
tional bottleneck and needs careful consideration. Diffpack offers access to
several efficient iterative solution methods for linear systems, but proper use
of these methods requires basic knowledge about the nature of the involved
algorithms. This is the topic of Appendix C. We start with a brief introduc-
tion to classical iterative methods, like the Jacobi, Gauss-Seidel, SOR, and
SSOR methods. Thereafter we outline the basic reasoning behind Conjugate
Gradient-like methods, with strong emphasis on explaining the similarities
between these methods for approximate solution of linear systems and the
finite element method for approximate solution of PDEs. An overview of the
most fundamental and generic preconditioning techniques is thereafter pre-
sented. The basic principles of multigrid and domain decomposition methods
are also outlined.

Appendix D is devoted to software tools for preconditioned iterative
solvers in Diffpack. These solvers can almost in a trivial way be combined
with the simulators from the other parts of the book.

The text contains numerous projects, bringing together different aspects of
computational science: physics/mechanics, mathematics, numerics, and soft-
ware. Each project typically starts with defining the equations in a mathe-
matical model. An optional step is to derive the model from basic continuum
mechanics. The next step is to formulate a numerical method, and there-
after a Diffpack simulator is coded with the purpose of exploring the model.
Throughout the text, particular emphasis is put on investigating the proper-
ties of models using experimental procedures. However, these experimental
procedures must be assisted by a firm theoretical understanding of mathe-
matical properties of similar, perhaps simplified, problems. Therefore most
projects involve analysis of the mathematical and numerical model in sim-
plified cases. The results from this analysis are also central for verifying the
computer implementations. A fundamental property of all projects is that
they can be carried out without working through the details of the physical
derivation step.

What makes this book different from the many other texts on numerical
solution of PDEs? First of all it is the interplay of models, generic algorithms,
and software. The software part is built on modern concepts, such as object-

Preface to the First Edition XIII

oriented programming in C++, and the book is accompanied by the Diffpack
tool and a large collection of ready-made simulators. The generic attitude to
formulating algorithms and implementing them in reusable software compo-
nents explains why we can cover a broad application area, including heat
transfer, fluid flow, and elasticity. If you do not find your application area in
this book, it is likely that you will learn generic tools that can be applied to
solve your problem at hand. Moreover, unified views on models, algorithms,
and software tend – at least in this author’s opinion – to increase the general
understanding and intuition of mathematical modeling.

How to Use the Text. The text can be followed as is if the intention is to
learn about numerical solution of PDEs and how to produce running soft-
ware, with emphasis on modern implementational aspects. Readers having
extensive previous experience with the theory and implementation of finite
element methods, as well as C++ and object-oriented programming, might
want to extract just the Diffpack specific parts of the book. A suitable start
is Chapters 1.3.3, 1.4.3, 1.6.3, 1.6.5, 1.7.1, and 1.7.4, before studying the fi-
nite element software tools in 3 and 4.2. One can then continue with the
application of interest. Some readers want to move to the application part
as fast as possible, without first learning about numerous advanced Diffpack
features. These readers can limit the study of Chapter 3 to sections 3.1, 3.2,
and 3.10. Finally, readers who are mainly interested in numerical methods
can use Chapters 1.3–1.4, 2, 4.1, and the theory parts of Chapters 5–7, com-
bined with Appendix C for a course on numerical solution of PDEs with
main emphasis on finite element methods. The software chapters can then
act as optional add-on material for readers wanting to experiment with the
methods.

Further Information. There is a web page associated with this book:

http://www.diffpack.com/Book

The page contains information on how to get the Diffpack software, how to
update applications written for older Diffpack versions, how to report errors
or provide comments regarding the book and the software, etc.

XIV Preface to the First Edition

Acknowledgements. Many people have contributed to the present book and
the accompanying software. Appendix D is jointly written with Are Magnus
Bruaset, who also developed the associated computer examples. All remarks
regarding Diffpack under Windows NT/95, including Appendix B.2.2, are
due to him. Chapter 2.10 is essentially a slight extension of a set of slides
written by Aslak Tveito. Chapters 2.10.7 and 3.7, as well as the associated
codes, were developed in collaboration with Klas Samuelsson. Harald Osnes
revised the text and developed the associated solvers in Chapters 5.2 and
6.1, the program example in Chapter 6.2 was developed by Elizabeth Acklam,
the software in Chapter 6.4 was made by Anders Jacobsen, and Otto Munthe
developed the computer examples in Chapter 7.2. The illustration on the front
cover originates from simulating the depolarization process of the electrical
potential in the myocardium, using a simulator developed by Glenn Terje
Lines and Vtk-based visualization tools made by Xing Cai.

The author is thankful for the many useful comments on the manuscript
received from Elizabeth Acklam, Alfred Andersen, Are Magnus Bruaset, Erik
Holm, Knut-Andreas Lie, Kent-Andre Mardal, Otto Munthe, Nigel Nunn,
Atle Ommundsen, and Geir Pedersen.

During the nineties I have had the pleasure to experience a very creative
and exciting collaboration with Are Magnus Bruaset and Aslak Tveito in the
Diffpack project and related reseach and educational activites. The results
from this work form the background and basis for the present book. All
contributors to Diffpack are greatly acknowledged, and special thanks go to
Xing Cai, Nigel Nunn, Klas Samuelsson, and Gerhard Zumbusch for their
outstanding energy and creativity in the work with Diffpack. Nigel Nunn is
particularly acknowledged for his extensive contributions to Diffpack version
3.0. Of importance to Diffpack is also the managing support from Morten
Dæhlen and the financial support from the Research Council of Norway.
Recently, the efforts and visions of Erlend Arge have given a new exciting
dimension to the Diffpack development. Another significant collaborator to
be mentioned is Geir Pedersen, who has shaped much of my view on numerics,
modeling, and software development reflected in this book.

The encouragement and always prompt technical assistance from Martin
Peters, Leonie Kunz, and Thanh-Ha Le Thi at Springer-Verlag helped to
bring the current book project to an end within reasonable time.

Finally, thanks to Liv, Mikkel, and Ingunn for all their support and for
providing excellent working conditions during the writing of this book.

Oslo, December 1998 Hans Petter Langtangen

Table of Contents

1 Getting Started . 1
1.1 The First Diffpack Encounter . 3

1.1.1 What is Diffpack? . 3
1.1.2 A Simple C++ Program . 5
1.1.3 A Simple Diffpack Program . 6

1.2 Overview of Application Examples . 7
1.2.1 Very Simple Introductory Program Examples 8
1.2.2 Finite Difference Simulators . 9
1.2.3 Finite Element Simulators . 10
1.2.4 More Advanced Applications . 11

1.3 Steady One-Dimensional Heat Conduction 12
1.3.1 The Physical and Mathematical Model 12
1.3.2 A Finite Difference Method . 15
1.3.3 Implementation in Diffpack . 18
1.3.4 Dissection of the Program . 22
1.3.5 Tridiagonal Matrices . 24
1.3.6 Variable Coefficients . 24
1.3.7 A Nonlinear Heat Conduction Problem 28

1.4 Simulation of Waves . 33
1.4.1 Modeling Vibrations of a String . 33
1.4.2 A Finite Difference Method . 36
1.4.3 Implementation . 39
1.4.4 Visualizing the Results . 42
1.4.5 Automating Simulation and Visualization in Scripts 47
1.4.6 A 2D Wave Equation with Variable Wave Velocity 56
1.4.7 A Model for Water Waves . 59

1.5 Projects . 66
1.5.1 A Uni-Directional Wave Equation . 66
1.5.2 Centered Differences for a Boundary-Layer Problem 67
1.5.3 Upwind Differences for a Boundary-Layer Problem 68

1.6 About Programming with Objects . 69
1.6.1 Motivation for the Object Concept 71
1.6.2 Example: Implementation of a Vector Class in C++ 77
1.6.3 Arrays in Diffpack . 85
1.6.4 Example: Design of an ODE Solver Environment 92
1.6.5 Abstractions for Grids and Fields . 103

1.7 Coding the PDE Simulator as a Class . 107
1.7.1 Steady 1D Heat Conduction Revisited 108
1.7.2 Nonlinear 1D Heat Conduction Revisited 114
1.7.3 Empirical Investigation of a Numerical Method 116

XVI Table of Contents

1.7.4 Simulation of 1D Waves Revisited 121
1.7.5 Simulation of 2D Waves Revisited 127
1.7.6 Transient Heat Conduction . 129

1.8 Projects . 139
1.8.1 Transient Flow Between Moving Plates 139
1.8.2 Transient Channel Flow . 141
1.8.3 Coupled Heat and Fluid Flow . 142
1.8.4 Difference Schemes for Transport Equations 144
1.8.5 3D Sound Waves . 146

2 Introduction to Finite Element Discretization 149
2.1 Weighted Residual Methods . 150

2.1.1 Basic Principles . 150
2.1.2 Example: A 1D Poisson Equation . 152
2.1.3 Treatment of Boundary Conditions 156

2.2 Time Dependent Problems . 160
2.2.1 A Wave Equation . 161
2.2.2 A Heat Equation . 163

2.3 Finite Elements in One Space Dimension . 165
2.3.1 Piecewise Polynomials . 165
2.3.2 Handling of Essential Boundary Conditions 168
2.3.3 Direct Computation of the Linear System 169
2.3.4 Element-by-Element Formulation . 171
2.3.5 Extending the Concepts to Quadratic Elements 179
2.3.6 Summary of the Element-by-Element Algorithm 183

2.4 Example: A 1D Wave Equation . 185
2.4.1 The Finite Element Equations . 185
2.4.2 Interpretation of the Discrete Equations 186
2.4.3 Accuracy and Stability . 188

2.5 Naive Implementation . 192
2.6 Projects . 199

2.6.1 Steady Heat Conduction with Cooling Law 199
2.6.2 Stationary Pipe Flow . 200
2.6.3 Transient Pipe Flow. 201
2.6.4 Retardation of a Well-Bore . 203

2.7 Higher-Dimensional Finite Elements . 204
2.7.1 The Bilinear Element and Generalizations 205
2.7.2 The Linear Triangle . 208
2.7.3 Example: A 2D Wave Equation . 210
2.7.4 Other Two-Dimensional Element Types 213
2.7.5 Three-Dimensional Elements . 214

2.8 Calculation of Derivatives . 216
2.8.1 Global Least-Squares Smoothing . 217
2.8.2 Flux Computations in Heterogeneous Media 218

2.9 Convection-Diffusion Equations . 222
2.9.1 A One-Dimensional Model Problem 224

Table of Contents XVII

2.9.2 Multi-Dimensional Equations . 226
2.9.3 Time-Dependent Problems . 228

2.10 Analysis of the Finite Element Method . 230
2.10.1 Weak Formulations . 231
2.10.2 Variational Problems . 233
2.10.3 Results for Continuous Problems . 236
2.10.4 Results for Discrete Problems . 242
2.10.5 A Priori Error Estimates . 248
2.10.6 Numerical Experiments . 251
2.10.7 Adaptive Finite Element Methods 253

3 Programming of Finite Element Solvers 261
3.1 A Simple Program for the Poisson Equation 262

3.1.1 Discretization . 262
3.1.2 Basic Parts of a Simulator Class . 263

3.2 Increasing the Flexibility . 272
3.2.1 A Generalized Model Problem . 273
3.2.2 Using the Menu System . 274
3.2.3 Creating the Grid Object . 278

3.3 Some Visualization Tools . 280
3.3.1 Storing Fields for Later Visualization 281
3.3.2 Filtering Simres Data . 281
3.3.3 Visualizing Diffpack Data in Plotmtv 284
3.3.4 Visualizing Diffpack Data in Gnuplot 288
3.3.5 Visualizing Diffpack Data in Matlab 289
3.3.6 Visualizing Diffpack Data in Vtk . 289
3.3.7 Visualizing Diffpack Data in IRIS Explorer 291
3.3.8 Plotting Fields along Lines . 292

3.4 Some Useful Diffpack Features . 293
3.4.1 The Menu System . 293
3.4.2 Multiple Loops . 297
3.4.3 Computing Numerical Errors . 298
3.4.4 Functors . 299
3.4.5 Computing Derivatives of Finite Element Fields 301
3.4.6 Specializing Code in Subclass Solvers 304

3.5 Introducing More Flexibility . 307
3.5.1 Setting Boundary Condition Information in the Grid . . . 308
3.5.2 Line and Surface Integrals . 314
3.5.3 Simple Mesh Generation Tools . 317
3.5.4 Grid Generation by Super Elements 323
3.5.5 Debugging . 330
3.5.6 Automatic Report Generation . 333
3.5.7 Specializing Code in Subclass Solvers 335
3.5.8 Overriding Menu Answers in the Program 340
3.5.9 Estimating Convergence Rates . 343
3.5.10 Axisymmetric Formulations and Cartesian 2D Code 345

XVIII Table of Contents

3.5.11 Summary . 348
3.6 Step-by-Step Development of a Diffpack Solver 349

3.6.1 Physical and Mathematical Problem 350
3.6.2 Editing and Writing Source Code . 351
3.6.3 A Simplified Test Case . 360
3.6.4 Creating the Grid . 366
3.6.5 Running Some Initial 2D Simulations 370
3.6.6 Running Real Simulations . 378

3.7 Adaptive Grids . 380
3.7.1 Grid Classes with Local Mesh Refinements 380
3.7.2 How to Extend an Existing Simulator 382
3.7.3 Organization of Refinement Criteria 386
3.7.4 Grid Refinements as a Preprocessor 391
3.7.5 Example: Corner-Flow Singularity 393
3.7.6 User-Defined Refinement Criteria . 395
3.7.7 Transient Problems . 396

3.8 Projects . 399
3.8.1 Flow in an Open Inclined Channel 399
3.8.2 Stress Concentration due to Geometric Imperfections . . . 401
3.8.3 A Poisson Problem with Pure Neumann Conditions 402
3.8.4 Lifting Airfoil . 404

3.9 A Convection-Diffusion Solver . 406
3.10 A Heat Equation Solver . 411

3.10.1 Discretization . 411
3.10.2 Implementation . 412

3.11 A More Flexible Heat Equation Solver . 419
3.11.1 About the Model Problem and the Simulator 419
3.11.2 Variable Time Step Size . 421
3.11.3 Applying a Transient Solver to a Stationary PDE 421
3.11.4 Thermal Conditions During Welding 422

3.12 Visualization of Time-Dependent Fields . 422
3.12.1 Filtering Time-Dependent Simres Data 423
3.12.2 Storing Fields at Selected Time Points 424
3.12.3 Time Series at Selected Spatial Points 424
3.12.4 Using ImageMagick Tools . 426
3.12.5 Animation Using Plotmtv . 427
3.12.6 Animation Using Vtk . 429
3.12.7 Animation Using Matlab . 430
3.12.8 Real-Time Visualization . 431
3.12.9 Handling Simulation and Visualization from a Script . . . 433
3.12.10 Heat Transfer Exercises . 437

3.13 A Transient Heat Transfer Application . 439
3.13.1 The Mathematical and Physical Model 440
3.13.2 Implementation . 441
3.13.3 Testing and Debugging the Initial State 447

Table of Contents XIX

3.13.4 Creating the Grid . 449
3.13.5 Running Time-Dependent Simulations 449
3.13.6 A Scripting Interface for Automating Simulations 455

3.14 Projects . 466
3.14.1 Transient Heat Transfer in a Two-Material Structure . . 466
3.14.2 Transient Flow with Non-Circular Cross Section 468
3.14.3 Transient Groundwater Flow . 469

3.15 Efficient Solution of the Wave Equation . 471
3.15.1 Discretization . 471
3.15.2 Implementation . 472
3.15.3 Extensions of the Model Problem . 476
3.15.4 Flexible Representation of Variable Coefficients 477

4 Nonlinear Problems . 483
4.1 Discretization and Solution of Nonlinear PDEs 483

4.1.1 Finite Difference Discretization . 483
4.1.2 Finite Element Discretization . 484
4.1.3 The Group Finite Element Method 486
4.1.4 Successive Substitutions . 488
4.1.5 Newton-Raphson’s Method . 488
4.1.6 A Transient Nonlinear Heat Conduction Problem 494
4.1.7 Iteration Methods at the PDE Level 497
4.1.8 Continuation Methods . 500

4.2 Software Tools for Nonlinear Finite Element Problems 501
4.2.1 A Solver for a Nonlinear Heat Equation 501
4.2.2 Extending the Solver . 508

4.3 Projects . 513
4.3.1 Operator Splitting for a Reaction-Diffusion Model 513
4.3.2 Compressible Potential Flow . 515

5 Solid Mechanics Applications . 519
5.1 Linear Thermo-Elasticity . 520

5.1.1 The Physical and Mathematical Model 520
5.1.2 A Finite Element Method . 523
5.1.3 Engineering Finite Element Notation 525
5.1.4 Implementation . 528
5.1.5 Examples . 537
5.1.6 Elastic Vibrations . 545

5.2 Elasto-Viscoplasticity . 550
5.2.1 Basic Physical Features of Elasto-Viscoplasticity 550
5.2.2 A Three-Dimensional Elasto-Viscoplastic Model 553
5.2.3 Simplification; a Forward Scheme in Time 557
5.2.4 Numerical Handling of Yield Criteria 558
5.2.5 Implementation . 561
5.2.6 Examples . 562

XX Table of Contents

6 Fluid Mechanics Applications . 567
6.1 Convection-Diffusion Equations . 567

6.1.1 The Physical and Mathematical Model 567
6.1.2 A Finite Element Method . 569
6.1.3 Incorporation of Nonlinearities . 569
6.1.4 Software Tools . 570
6.1.5 Melting and Solidification . 572

6.2 Shallow Water Equations . 575
6.2.1 The Physical and Mathematical Model 575
6.2.2 Finite Difference Methods on Staggered Grids 577
6.2.3 Implementation . 580
6.2.4 Nonlinear and Dispersive Terms . 584
6.2.5 Finite Element Methods . 586

6.3 An Implicit Finite Element Navier-Stokes Solver 590
6.3.1 The Physical and Mathematical Model 591
6.3.2 A Finite Element Method . 592
6.3.3 Solution of the Nonlinear Systems 595
6.3.4 Implementation . 597

6.4 A Classical Finite Difference Navier-Stokes Solver 605
6.4.1 Operator Splitting . 605
6.4.2 Finite Differences on 3D Staggered Grids 607
6.4.3 A Multigrid Solver for the Pressure Equation 611
6.4.4 Implementation . 611

6.5 A Fast Finite Element Navier-Stokes Solver 615
6.5.1 Operator Splitting and Finite Element Discretization . . . 615
6.5.2 An Optimized Implementation . 618

6.6 Projects . 621
6.6.1 Analysis of Discrete Shallow Water Waves 621
6.6.2 Approximating the Navier-Stokes Equations by a Laplace Equation622

7 Coupled Problems . 624
7.1 Fluid-Structure Interaction; Squeeze-Film Damping 624

7.1.1 The Physical and Mathematical Model 624
7.1.2 Numerical Methods . 630
7.1.3 Implementation . 632

7.2 Fluid Flow and Heat Conduction in Pipes 641
7.2.1 The Physical and Mathematical Model 641
7.2.2 Numerical Methods . 645
7.2.3 Implementation . 649

7.3 Projects . 657
7.3.1 Transient Spherical-Symmetric Thermo-Elasticity 657
7.3.2 Transient 2D/3D Thermo-Elasticity 659
7.3.3 Convective-Diffusive Transport in Viscous Flow 660
7.3.4 Chemically Reacting Fluid . 661

Table of Contents XXI

A Mathematical Topics . 663
A.1 Scaling and Dimensionless Variables . 663
A.2 Indicial Notation . 671
A.3 Compact Notation for Difference Equations 674
A.4 Stability and Accuracy of Difference Approximations 676

A.4.1 Typical Solutions of Simple Prototype PDEs 676
A.4.2 Physical Significance of Parameters in the Solution 679
A.4.3 Analytical Dispersion Relations . 681
A.4.4 Solution of Discrete Equations . 683
A.4.5 Numerical Dispersion Relations . 686
A.4.6 Convergence . 688
A.4.7 Stability . 688
A.4.8 Accuracy . 689
A.4.9 Truncation Error . 693
A.4.10 Traditional von Neumann Stability Analysis 695
A.4.11 Examples: Analysis of the Heat Equation 697

A.5 Exploring the Nature of Some PDEs . 701
A.5.1 A Hyperbolic Equation . 701
A.5.2 An Elliptic Equation . 705
A.5.3 A Parabolic Equation . 705
A.5.4 The Laplace Equation Solved by a Wave Simulator 708
A.5.5 Well-Posed Problems . 711

B Diffpack Topics . 713
B.1 Brief Overview of Important Diffpack Classes 713
B.2 Diffpack-Related Operating System Interaction 718

B.2.1 Unix . 718
B.2.2 Windows . 721

B.3 Combining Diffpack with Other Types of Software 727
B.3.1 Calling Other Software Packages from Diffpack 727
B.3.2 Calling Diffpack from Other Types of Software 731

B.4 Basic Diffpack Features . 733
B.4.1 Diffpack Man Pages . 733
B.4.2 Standard Command-Line Options . 733
B.4.3 Generalized Input and Output . 736
B.4.4 Automatic Verification of a Code . 740

B.5 Visualization Support . 741
B.5.1 Curves . 742
B.5.2 Scalar and Vector Fields . 747

B.6 Details on Finite Element Programming . 750
B.6.1 Basic Functions for Finite Element Assembly 750
B.6.2 Using Functors for the Integrands . 753
B.6.3 Integrating Quantities over the Grid or the Boundary . . 754
B.6.4 Class Relations in the Finite Element Engine 758

B.7 Optimizing Diffpack Codes . 760
B.7.1 Avoiding Repeated Matrix Factorizations 761

XXII Table of Contents

B.7.2 Avoiding Repeated Assembly of Linear Systems 763
B.7.3 Optimizing the Assembly Process . 773
B.7.4 Optimizing Array Indexing . 778

C Iterative Methods for Sparse Linear Systems 785
C.1 Classical Iterative Methods . 786

C.1.1 A General Framework . 787
C.1.2 Jacobi, Gauss-Seidel, SOR, and SSOR Iteration 788

C.2 Conjugate Gradient-Like Iterative Methods 795
C.2.1 Galerkin and Least-Squares Methods 795
C.2.2 Summary of the Algorithms . 799
C.2.3 A Framework Based on the Error . 801

C.3 Preconditioning . 803
C.3.1 Motivation and Basic Principles . 803
C.3.2 Classical Iterative Methods as Preconditioners 805
C.3.3 Incomplete Factorization Preconditioners 806

C.4 Multigrid and Domain Decomposition Methods 808
C.4.1 Domain Decomposition . 809
C.4.2 Multigrid Methods . 810

D Software Tools for Solving Linear Systems 817
D.1 Storing and Initializing Linear Systems . 817

D.1.1 Vector and Matrix Formats . 818
D.1.2 Detailed Matrix Examples . 825
D.1.3 Representation of Linear Systems . 831

D.2 Programming with Linear Solvers . 835
D.2.1 Gaussian Elimination . 835
D.2.2 A Simple Demo Program . 836
D.2.3 A 3D Poisson Equation Solver . 838

D.3 Classical Iterative Methods . 843
D.4 Conjugate Gradient-like Methods . 844

D.4.1 Symmetric Systems . 845
D.4.2 Nonsymmetric Systems . 845

D.5 Preconditioning Strategies . 847
D.6 Convergence History and Stopping Criteria 851
D.7 Example: Implicit Methods for Transient Diffusion 861
D.8 High-Level Stencil Programming of Finite Difference Schemes . . 863

D.8.1 Finite Difference Stencils . 864
D.8.2 Basic Structure of a Stencil-Based Simulator 865
D.8.3 Defining the Stencils . 869

Bibliography . 833

Index . 844

List of Exercises

Exercise 1.1 . 23
Exercise 1.2 . 23
Exercise 1.3 . 23
Exercise 1.4 . 24
Exercise 1.5 . 27
Exercise 1.6 . 28
Exercise 1.7 . 32
Exercise 1.8 . 46
Exercise 1.9 . 59
Exercise 1.10 . 65
Exercise 1.11 . 85
Exercise 1.12 . 85
Exercise 1.13 . 85
Exercise 1.14 . 102
Exercise 1.15 . 103
Exercise 1.16 . 112
Exercise 1.17 . 113
Exercise 1.18 . 121
Exercise 1.19 . 124
Exercise 1.20 . 125
Exercise 1.21 . 128
Exercise 1.22 . 134
Exercise 2.1 . 155
Exercise 2.2 . 159
Exercise 2.3 . 161
Exercise 2.4 . 163
Exercise 2.5 . 164
Exercise 2.6 . 164
Exercise 2.7 . 178
Exercise 2.8 . 182
Exercise 2.9 . 182
Exercise 2.10 . 183
Exercise 2.11 . 189
Exercise 2.12 . 190
Exercise 2.13 . 191
Exercise 2.14 . 197
Exercise 2.15 . 197
Exercise 2.16 . 198
Exercise 2.17 . 213
Exercise 2.18 . 213

XXIV List of Exercises

Exercise 2.19 . 219
Exercise 2.20 . 230
Exercise 2.21 . 238
Exercise 2.22 . 242
Exercise 2.23 . 242
Exercise 2.24 . 242
Exercise 2.25 . 247
Exercise 3.1 . 272
Exercise 3.2 . 296
Exercise 3.3 . 307
Exercise 3.4 . 331
Exercise 3.5 . 342
Exercise 3.6 . 345
Exercise 3.7 . 347
Exercise 3.8 . 348
Exercise 3.9 . 391
Exercise 3.10 . 392
Exercise 3.11 . 417
Exercise 3.12 . 418
Exercise 3.13 . 419
Exercise 3.14 . 420
Exercise 3.15 . 437
Exercise 3.16 . 437
Exercise 3.17 . 438
Exercise 3.18 . 438
Exercise 3.19 . 439
Exercise 3.20 . 439
Exercise 3.21 . 463
Exercise 3.22 . 476
Exercise 3.23 . 477
Exercise 4.1 . 486
Exercise 4.2 . 487
Exercise 4.3 . 493
Exercise 4.4 . 493
Exercise 4.5 . 493
Exercise 4.6 . 493
Exercise 4.7 . 493
Exercise 4.8 . 493
Exercise 4.9 . 495
Exercise 4.10 . 495
Exercise 4.11 . 495
Exercise 4.12 . 495
Exercise 4.13 . 496
Exercise 4.14 . 496
Exercise 4.15 . 498

List of Exercises XXV

Exercise 4.16 . 499
Exercise 4.17 . 499
Exercise 4.18 . 500
Exercise 4.19 . 512
Exercise 4.20 . 512
Exercise 4.21 . 513
Exercise 4.22 . 513
Exercise 5.1 . 528
Exercise 5.2 . 544
Exercise 5.3 . 544
Exercise 5.4 . 545
Exercise 5.5 . 552
Exercise 5.6 . 562
Exercise 5.7 . 564
Exercise 6.1 . 569
Exercise 6.2 . 570
Exercise 6.3 . 571
Exercise 6.4 . 579
Exercise 6.5 . 580
Exercise 6.6 . 580
Exercise 6.7 . 582
Exercise 6.8 . 586
Exercise 6.9 . 587
Exercise 6.10 . 589
Exercise 6.11 . 590
Exercise 6.12 . 596
Exercise 6.13 . 601
Exercise 6.14 . 601
Exercise 6.15 . 602
Exercise 6.16 . 602
Exercise 7.1 . 627
Exercise 7.2 . 628
Exercise 7.3 . 628
Exercise 7.4 . 630
Exercise 7.5 . 632
Exercise 7.6 . 638
Exercise 7.7 . 638
Exercise 7.8 . 647
Exercise A.1 . 666
Exercise A.2 . 670
Exercise A.3 . 671
Exercise A.4 . 673
Exercise A.5 . 673
Exercise A.6 . 673
Exercise A.7 . 673

XXVI List of Exercises

Exercise A.8 . 673
Exercise A.9 . 673
Exercise A.10 . 673
Exercise A.11 . 673
Exercise A.12 . 683
Exercise A.13 . 686
Exercise A.14 . 694
Exercise A.15 . 694
Exercise A.16 . 695
Exercise A.17 . 695
Exercise A.18 . 695
Exercise A.19 . 697
Exercise A.20 . 704
Exercise B.1 . 764
Exercise C.1 . 794
Exercise C.2 . 800
Exercise C.3 . 802
Exercise C.4 . 811
Exercise D.1 . 831
Exercise D.2 . 843
Exercise D.3 . 873
Exercise D.4 . 873

Chapter 1

Getting Started

This chapter introduces the reader to various basic aspects of numerical sim-
ulation, including derivation of partial differential equations, construction of
finite difference schemes, implementation in Diffpack, and visualization of
the simulation results. Particular attention is paid to fundamental concepts
in Diffpack and C++ programming that will be needed for further reading
of the book.

We start out with some trivial programs to make sure that C++ and Diff-
pack are correctly installed on your computer system. Thereafter we present
the various aspects of the numerical simulation process illustrated for heat
conduction (also with nonlinear effects), vibration of strings, and water sur-
face waves. Although the finite element method will be a central numerical
technique in most parts of the book, the examples in the present chapter
apply finite differences on uniform grids to keep the numerics simple and
enable focus on software issues. Topics like numerical stability and accuracy
are illustrated through computational experiments, but readers wanting a
theoretical treatment of these concepts can study Appendix A.4 in parallel
with the present chapter.

The Diffpack-based simulation codes in Chapters 1.3 and 1.4 are made
quite close to the ones you would create in plain Fortran 77 or C. However,
throughout this text we advocate programming at a higher abstraction level
than just manipulating plain arrays in the usual Fortran 77 and C style.
Such high-level abstractions involve programming with objects. A brief in-
troduction to programming with objects in the C++ language is provided
in Chapter 1.6. Thereafter, in Chapter 1.7, the examples from Chapters 1.3
and 1.4 are reprogrammed using high-level abstractions in Diffpack and a
programming standard that we will make use of throughout the rest of the
text.

All the source code files included or referred to in this book are located
in subdirectories of $NOR/doc/Book, where $NOR is an environment variable
that is available to any Diffpack user on Unix systems. All code references
are given relative to this path. For example, when we state that the source
code of an example is found in the directory src/fdm/intro/Wave1D it actually
means that the directory is

$NOR/doc/Book/src/fdm/intro/Wave1D

Windows Remark 1.1: Users on the Win32 platform will normally not make direct

use of the NOR environment variable (if it is used, its value is obtained by the syntax

2 1. Getting Started

%NOR%). Whenever $NOR occurs in the following discussions, simply replace it by the

root directory for your Diffpack installation, e.g., C:\Program Files\WinDP\Src. Re-

member that Windows-specific utilities uses the backslash (\) rather than a slash (/)

as delimiter in file paths. �
Throughout this book, details dependending on your computer’s oper-

ating system are primarily discussed in the context of Unix. However, the
Diffpack software is also available for the recent Windows 32 bit platforms.
To the extent that the discussion in the main text does not cover this plat-
form, specific Win32 remarks are given. Further Win32-specific details can
be found in Appendix B.2.2.

1.1. The First Diffpack Encounter 3

1.1 The First Diffpack Encounter

1.1.1 What is Diffpack?

Diffpack [35] is a sophisticated tool for developing numerical software, with
main emphasis on numerical solution of partial differential equations. For a
programmer, Diffpack acts as a numerical library consisting of C++ classes.
We shall in this book try to demonstrate that programming with classes
is easier and more flexible than shuffling data in and out of subroutines in
the traditional Fortran or C way. The C++ classes can be combined into
application codes to solve problems in diverse fields, including engineering,
natural sciences, economics, and medicine. Since the application codes make
extensive use of well-tested libraries and high-level abstractions, the time
spent on writing and debugging code is significantly reduced compared with
traditional software development in Fortran or C. This enables the compu-
tational scientist or engineer to concentrate more on modeling, algorithms,
and numerical experimentation. Rapid prototyping, that is, spending only a
couple of days on developing the first test version of a fairly general simulator
for a system of partial differential equations, is one important application of
Diffpack. Nevertheless, the same software development tools can be used to
create specialized simulators for industrial use, where the development efforts
span several man years.

Diffpack contains a large collection of useful abstractions, such as vec-
tors, matrices, general multi-index arrays, strings, improved and simplified
I/O, a menu system for getting data into programs, management of result
files, couplings to visualization tools, representation of linear systems (partic-
ularly large sparse linear systems arising in finite element, finite volume, and
finite difference methods), a large number of state-of-the-art iterative meth-
ods for sparse linear systems, solvers for nonlinear systems, finite difference,
element and volume grids, scalar and vector fields over grids, a collection of
finite elements, various finite element algorithms and useful data structures,
probability distributions, random number generators, solution methods for
stochastic ordinary differential equations, support for random fields, adaptive
grids, error estimation, multigrid methods, domain decomposition methods,
generalized (mixed) finite element methods, parallel computing support, and
numerous examples on simulators for problems like heat transfer, elasticity,
and fluid flow1. Reference [21] gives an overview of the basic parts of Diff-
pack, but the package has been continuously developed since that overview
was written.

Here is a list of some simulation codes that have been implemented using
Diffpack.

– The Laplace, Poisson, Helmholtz, heat, and wave equations in general
1D/2D/3D geometries,

1 Not all of the functionality mentioned here is available in the public access version
of Diffpack.

4 1. Getting Started

– structural analysis described by 2D/3D linear elasticity theory,

– compressible and incompressible 2D/3D Newtonian fluid flow,

– incompressible 2D non-Newtonian fluid flow between two plates, so-called
Hele-Shaw flow for injection molding processes,

– Stefan problems in heat transfer,

– squeeze-film fluid-structure interaction,

– large plastic deformation in forming processes,

– optimal control and optimization problems in forming processes,

– electrical activity in the heart,

– deformation of tissue during surgery,

– shallow water waves and tsunami propagation, also with weakly disper-
sive and nonlinear effects,

– fully nonlinear 3D water waves,

– mild slope equations in the modeling of wave power plants,

– run-up of waves on beaches,

– solidification during aluminum casting,

– quasi 1D model for free surface flow of a non-Newtonian polymer,

– two- and three-phase flow in oil reservoirs,

– two-phase, thermally driven flow in porous media,

– compositional flow in porous chemical reactors,

– poroelastic processes and earthquake analysis,

– heat and fluid flow in deformable rocks,

– nonlinear ultrasound models,

– Black-Scholes PDEs for option pricing,

– continuous Markov processes, modeling e.g. random vibrations of simple
structures,

– the 1D linear advection equation with random advection velocity,

– stochastic groundwater flow.

Several of these applications have been adapted to parallel computers us-
ing a method for reusing sequential Diffpack solvers in parallel computing
environments [81].

Although usage of Diffpack requires programming in C++, only minor
C++ knowledge is required to start using Diffpack, but experience with gen-
eral programming is necessary.

1.1. The First Diffpack Encounter 5

1.1.2 A Simple C++ Program

Let us make a very simple C++ program that writes the obligatory “Hello,
World!” message, but in addition asks the user for a real number r and then
writes the value of sin r on the screen. The program can look like this:

#include <iostream> // make input/output functionality available

#include <cmath> // make math functions available: e.g. sin(x)

int main () // function "main" is always the main program

{

std::cout << "Hello, World! Give a number: ";

double r; std::cin >> r; // read number into double precision r

double s = sin(r); // declare s and initialize with sin(r)

std::cout << "\nThe value of sin(" << r << ") is " << s << "\n";

}

This is a pure C++ program – it does not make use of Diffpack. We store
the program in a file, here called hw.cpp. The suffix .cpp is used throughout
this book to indicate C++ source code files.

C++ programs must be compiled and linked before they can be executed.
The C++ compilation procedure first calls a preprocessor to process each
line that begins with a # character. For example, #include <cmath> means
that the preprocessor should copy the file cmath, found in some system di-
rectory, into the program file hw.cpp. The #include statements make various
standard C++ functionality available to the program: cmath gives access to
mathematical functions, like the sine function, and iostream enables input
from the keyboard and output to the terminal screen. It is not necessary for
the reader to locate and study the files iostream or cmath; a C++ textbook
[10,112,136] is the right source for learning about tools for input/output in
C++.

After the preprocessor has processed all lines starting with #, the compiler
starts compilation of the source code. This results in an object file hw.o.
Finally, the compiler calls a linker to link hw.o to the C++ libraries where
the code associated with iostream and cmath is located.

The variable std::cout represents standard output (the terminal screen)
defined in iostream, whereas std::cin is standard input (the keyboard). The
operators << and >> direct texts and variables to std::cout or from std::cin.
The symbol \n signifies a newline character. A double precision variable in
C and C++ has the name double, and C++ allows you to declare variables
wherever you want, provided that the variable is declared before it is used.

This hw.cpp program is compiled, linked, and run by the Unix commands

g++ -c hw.cpp # compile: make object file hw.o

g++ -o app hw.o -lm # link hw.o and the C/C++ math library

./app # run the program

6 1. Getting Started

Here, g++ is the name of the GNU C++ compiler, which is available for free
on most platforms. On some Unix systems, other names are used for this
compiler, e.g., CC or xlC.

We will refer to numerical computer programs as applications. This is
reflected in our choice of the name of the executable: app. The application is
run by typing ./app. If the steps above work, we can proceed with your first
Diffpack application.

Windows Remark 1.2: Type the program into a file hw.cpp. Load one of the

workspace definitions (files of type *.dsw) into Visual Studio and compile the program

by use of the Build menu. Within the Visual Studio environment the resulting exe-

cutable can be started from the same Build menu. Alternatively, the application can

be run as any other Windows program simply by double-clicking the application icon.

�

1.1.3 A Simple Diffpack Program

We can write the previous “scientific” Hello World program in the Diffpack
environment, using some convenient Diffpack utilities that extend ordinary
C++. This rewrite implies four modifications:

1. Diffpack applications must start with a call to the initDiffpack function,

2. std::cout and std::cin are replaced by the Diffpack equivalents s o and
s i2,

3. real variables in Diffpack are of type real3,

4. Diffpack applications must be located in special directories.

However, before you can start programming with Diffpack, you need to cus-
tomize your computer environment as explained in the paragraphs Customiz-
ing Your Unix Environment or Customizing the Visual C++ Environment in
Appendix B.2.

To create a Diffpack application directory, type Mkdir hw, where hw is the
name of the directory. The capital M in Mkdir is important; Mkdir is a Diffpack
script (command) that runs the standard Unix command mkdir and sets up
a correct makefile for compiling Diffpack applications (there is no need for
the user to edit Makefile4). Move to the subdirectory hw and prepare a file
hw.cpp containing the following program:

#include <IsOs.h> // Diffpack tools for input/output

#include <cmath> // make math functions available: e.g. sin(x)

2 These more advanced objects facilitate input/output on parallel computers too.
3 This allows transparent use of single or double precision.
4 You are not constrained by creating special Diffpack directories and using Diff-

pack’s automatically generated makefiles. Chapter B.3.2 indicates how to call
Diffpack from other applications and use non-Diffpack makefiles.

1.2. Overview of Application Examples 7

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv); // should always be performed

s_o << "Hello, World! Give a number: ";

real r; s_i >> r; // read real number into r

real s = sin(r);

s_o << "\nThe value of sin(" << r << ") is " << s << "\n";

}

The arguments argc and argv passed to main allow the user to give input
data as a part of the execution command and will be used later. To compile
and link this Diffpack application, type Make (capital M is again important).
Instead of Make, you can type the name of GNU’s make program on your
computer.

Windows Remark 1.3: Users on the Win32 platform will normally prefer to make

new application directories by either copying the project folder for one of the supplied

demo applications or by running the AppWizard in Visual C++. The steps for compila-

tion was outlined in Remark 1.2 on page 6. Further information is available in Appendix

B.2.2. �
The Make command prints out the various steps of the compilation and

linking phases. The result is an executable file with the name app. To run
the program, just type ./app. In the directory, you may notice that files like
SIMULATION.dp and SIMULATION.files have been generated by app. You can
ignore these files at the present stage.

For novice C++ programmers it can be confusing to detect whether a
program statement refers to standard C++ or to Diffpack functionality. One
solution to this problem is to learn the C++ language well; everything that is
not recognized as pure C++ is then a part of Diffpack. Another solution is to
prefix all Diffpack classes and functions with the namespace [136] identifier
dp::. In the present book we have found the namespace prefix to fill up too
much text space, and it is therefore dropped. We mention that all native
C++ constructions can of course be used in Diffpack programs.

1.2 Overview of Application Examples

Most of the material on Diffpack programming in this book is centered around
specific simulation codes. There are numerous different simulators for differ-
ent PDEs, different discretizations, different levels of sophistication, and so
on. To help the reader navigate in the jungle of example programs associated
with the book, we have created a tabular overview, which is presented on the
forthcoming pages. An entry in this overview typically contains the name of
an example program, which coincides with the name of a directory, a short
form of the PDE or mathematical problem to be solved, a reference to the
page in the book where the solver is described, the parent directory of the

8 1. Getting Started

application, and a comment describing some keywords reflecting the purpose
of the application. FD, FE, and OO are abbreviations for “finite differences”,
“finite elements”, and “object oriented”.

1.2.1 Very Simple Introductory Program Examples

application dir. problem page parent directory

HelloWorld2 printing, sin(x) 6 src/start

the very basic start

intro/HeatSteady1D/dense −u′′ = f 18 src/fdm

simple 1D FD programming in Diffpack

intro/HeatSteady1D/tri −u′′ = f 24 src/fdm

work with tridiagonal linear systems

intro/HeatSteady1D/varcoeff −(λ(x)u′)′ = f 24 src/fdm

treatment of variable coefficients (FD)

intro/HeatSteady1D/nonlin −(λ(u)u′)′ = f 28 src/fdm

treatment of a nonlinear PDE (FD)

intro/Wave1D u,tt = γ2u,xx 39 src/fdm

simple programming of a 1D explicit FD scheme

intro/Wave2D u,tt = ∇ · [γ2∇u] 59 src/fdm

programming of a 2D explicit FD scheme; ∂u/∂n = 0 B.C.

MyVector a vector class 77 src/start

detailed explanation of a C++ class for vectors

ode ẏ(t) = f(y, t) 92 src/start

intro-example to OO programming; ODE problems and ODE solvers

MyFirstFEM −u′′ = f 192 src/fem

intro to basic FE programming, without Diffpack FE tools

Poisson0 −∇2u = f 262 src/fem

intro to basic FE programming, with Diffpack FE tools

LinSys1 Ax = b 836 src/linalg

demo of linear system storage and solver tools

1.2. Overview of Application Examples 9

1.2.2 Finite Difference Simulators

application dir. problem page parent directory

HeatSteady1D −u′′ = f 108 src/fdm

basic intro to reimplementing a FD solver as a class

NlHeatSteady1D −(λ(u)u′)′ = f 114 src/fdm

reimplementation of a nonlinear FD solver as a class

Wave1D/string u,tt = γ2u,xx 121 src/fdm

reimplementation of a 1D FD wave equation solver as a class

Wave2D u,tt = ∇ · (γ2∇u) 127 src/fdm

reimplementation of a 2D FD wave equation solver as a class

Heat1D u,t = ku,xx 129 src/fdm

a flexible time-dep. 1D heat equation solver (FD)

GaussSeidelDemo −∇2u = f 791 src/linalg

demo of slow convergence of Gauss-Seidel iteration

LinSys2 −∇2u = f 838 src/linalg

3D FD Poisson eq.; set-up and solution of linear systems

LinSys3 −∇2u = f 848 src/linalg

extension of LinSys2 with preconditioning

LinSys4 −∇2u = f 851 src/linalg

extension of LinSys3 with convergence monitors

Diffusion2D u,t = ∇2u 861 src/linalg

2D implicit FD method for the heat/diffusion equation

Diffusion2DStencil u,t = ∇2u 863 src/fdm/stencil

programming with FD stencils and FE-like FD tools

Wave1D/steep1 u,tt = γ2u,xx 691 src/fdm

1D FD wave simulator with steep initial condition

Wave1D/steep2 u,tt = γ2u,xx 692 src/fdm

1D FD wave simulator with steep initial condition

Wave1D/ill-posed u,yy = −u,xx 708 src/fdm

solution of a Laplace equation as a wave equation

Wave1D/bc u,tt = γ2u,xx 701 src/fdm

demo of the effect of different boundary conditions

10 1. Getting Started

1.2.3 Finite Element Simulators

application dir. problem page parent directory

Poisson1 −∇ · [k∇u] = f 272 src/fem

simple template for 1D/2D/3D scalar stationary FE solvers

Poisson2 −∇ · [k∇u] + βu = f 307 src/fem

more advanced template for 1D/2D/3D stationary FE solvers

SteadyHeating −∇ · [k∇u] = 0 439 src/examples

step-by-step example: how to develop and test a real application

Heat1 u,t = ∇ · [k∇u] + f 411 src/fem

simple template for 1D/2D/3D time-dependent FE solvers

Heat2 u,t = ∇ · [k∇u] + f 419 src/fem

more advanced template for 1D/2D/3D time-dependent FE solvers

TransientHeating u,t = ∇ · [k∇u] 439 src/examples

step-by-step example: how to develop and test a real application

PoissonA −∇ · [k∇u] = f 380 src/fem/adaptive

intro to adaptive FE grid tools in Diffpack

AdvecA u,t + v · ∇u = 0 396 src/fem/adaptive

use of adaptive FE grid tools in a time-dependent application

ConvDiff1 v · ∇u = ∇ · [k∇u] 406 src/fem

simple convection-diffusion solver with upwind finite elements

Wave0 u,tt = ∇ · [k∇u] 472 src/fem

1D/2D/3D FE wave equation solver

Wave1 u,tt = ∇ · [k∇u] 476 src/fem

flexible template for 1D/2D/3D FE wave equation solvers

Wave1/restart u,tt = ∇ · [k∇u] 481 src/fem

version of Wave1 that can restart a previous simulation

NlHeat1 u,t = ∇ · [λ(u)∇u] 501 src/fem

simple FE solver for a time-dependent nonlinear PDE

NlHeat1e u,t = ∇ · [λ(u)∇u] 508 src/fem/NlHeat1

more flexible FE solver for a time-dependent nonlinear PDE

1.2. Overview of Application Examples 11

1.2.4 More Advanced Applications

application dir. problem page parent directory

CdBase, CdNonlin, CdEff u,t + v · ∇u = ∇ · [k∇u] + · · · 570 src/app/Cd

flexible linear/nonlinear convection-diffusion FE solvers

CdStefan melting/solidification 572 src/app/Cd

extension of CdNonlin with phase changes

LongWave1 linear shallow water eq. 580 src/app

explicit FD solver for 3 PDEs on staggered grids

LongWave1/opt linear shallow water eq. (778) src/app

optimization of FD schemes in Diffpack

Elasticity1 stationary elasticity 528 src/app

2D/3D linear stationary elasticity FE solver

Elasticity2 stationary elasticity 536 src/app

more flexible version of Elasticity1

ElasticVib1 elastic vibrations 545 src/app

2D plane strain and 3D FE solver for elastic vibrations

ElastoVP1 elasto-viscoplasticity 561 src/app

2D/3D FE solver for elasto-viscoplasticity/plasticity

ElastoVP2 elasto-viscoplasticity 562 src/app

more flexible version of ElastoVP1

NsPenalty1 Navier-Stokes eq. 597 src/app

2D/3D time-dep./nonlinear penalty FE method

NsFD Navier-Stokes eq. 611 src/app

3D FD operator splitting solver on staggered grids

SqueezeFilm coupled fluid–structure 632 src/app

coupling of ODE vibration solver and thin-film fluid solver

Pipeflow coupled flow–heat 649 src/app

intro to solving PDE systems by coupling simulators

12 1. Getting Started

1.3 Steady One-Dimensional Heat Conduction

Our first simulation program deals with a simple differential equation, namely
−u′′(x) = f(x) for x ∈ (a, b). To ensure that the solution of this differential
equation exists and is unique, we need to assign boundary conditions at x = a
and x = b. The conditions can be that either u or u′ is known, but only one
condition can be prescribed at each boundary point. That we actually need
two boundary conditions becomes evident when solving the differential equa-
tion by integrating twice; for each integration we get an integration constant
that must be determined by some additional condition. The collection of a
differential equation and its boundary conditions makes up a boundary-value
problem. A one-dimensional (1D) boundary-value problem is often referred
to as a two-point boundary-value problem.

We start by motivating our two-point boundary-value problem from an
application in geology involving heat transfer in the continental crust. Af-
ter having derived the differential equations and boundary conditions from
physical principles, we outline the basic steps in a finite difference method
for numerical solution of the problem. Thereafter, the numerical algorithm is
implemented in a simulation program, using Diffpack tools.

1.3.1 The Physical and Mathematical Model

The differential equation −u′′(x) = f(x) arises in several physical contexts.
Some examples are listed next.

– Channel flow between two flat plates. The function u is in this case the
fluid velocity, f(x) = constant is the pressure gradient that “drives” the
flow, and x is a coordinate normal to the planes x = a, b (and the velocity
direction). Appropriate boundary conditions are that the fluid velocity
coincides with the velocity of the plates. If the plates are at rest, we have
u(a) = u(b) = 0.

– Deflection of a string under the load f(x). Here u is the displacement of
a point on the string, and x is a coordinate running along the string. If
the string is fixed at the ends, we have the boundary conditions u(a) =
u(b) = 0.

– Bending moment in a beam due to the load f(x). Now u is the bending
moment (closely related to the stress) in a cross section of the beam, and
x is a coordinate along the beam. For a simply supported beam we have
the boundary conditions u(a) = u(b) = 0.

– Heat conduction. In this case u is the temperature, x is a coordinate along
the direction of heat conduction, and f(x) models heat generation, e.g.,
due to chemical reactions or radioactivity. The boundary conditions are
of two types: The temperature u is known or u′ (being proportional to
the heat flux) is known.

1.3. Steady One-Dimensional Heat Conduction 13

Derivation of a Model. We shall deal with the latter example in more detail
to show how the differential equation arises from physical principles. Our
application area is heat conduction in the continental crust as depicted in
Figure 1.1 (from now on we choose a = 0). Heat is flowing through the crust
with a velocity q(x), referred to as the heat flux. The rocks that make up the
mantle contain radioactive elements that release heat by an amount s(x) per
time and mass unit. We assume that the heat flow is steady in time. The first
law of thermodynamics applied to this time-independent problem requires
that the net flow of heat out of an arbitrary volume must be balanced by the
total heat generation in that volume. This reflects that energy is conserved.

Considering the small box in Figure 1.1, with height h and widths wy and
wz , the net outflow of heat is (q(x+ h/2)− q(x− h/2))wywz . The total heat
generation is

∫
box s(x)dxdydz ≈ s(x)hwywz . Putting these quantities equal

to each other and dividing by the volume hwywz gives

q(x+ h
2)− q(x − h

2)

h
= s(x) . (1.1)

Letting h→ 0, the left-hand side approaches q′(x), which can easily be seen
from a Taylor-series expansion of the two q terms around the point x,

q(x+ h
2)− q(x− h

2)

h
= q′(x) +

1

24
q′′′(x)h2 + · · · (1.2)

In computer simulations, a finite h must be applied. We then see that q′(x)

x

sT

hs(x)

x=b

x=0

q(x+h/2)

q(x-h/2)

-Q

Fig. 1.1. Sketch of a simplified model for the heat conduction in the con-
tinental crust, with a surface temperature Ts and a heat flux −Q from the
mantle. The small box is used for deriving the governing differential equation.

in a differential equation can in general be replaced by the finite difference on
the left-hand side of (1.2), resulting in an error whose leading term behaves

14 1. Getting Started

as h2 times the third derivative of q (which in practice means that halving h
reduces the error in the approximation by a factor of four).

The boundary conditions are that q is known at the bottom: q(b) = −Q,
while the temperature u equals Ts at the earth’s surface: u(0) = Ts. The
equation q′(x) = s(x) is in this case incomplete for solving the problem; we
need to relate q to u. This is normally done using Fourier’s law, which states
that heat flows from hot to cold regions: q(x) = −λu′(x). The quantity λ > 0
reflects the medium’s ability to transport heat by conduction and varies with
the rock type. Here we assume that the rock type, and thereby λ, varies with
x only. Inserting q = −λu′ in q′ = s gives the governing differential equation
for u in this physical problem:

− d

dx

(
λ(x)

du

dx

)
= s(x), (1.3)

The associated boundary conditions read

u(0) = Ts, −λ(b)u′(b) = −Q. (1.4)

The boundary condition where u is known, u(0) = Ts, is often referred to
as a Dirichlet condition, whereas the boundary condition that expresses the
value of the derivative of u, −λ(b)u′(b) = −Q, is called a Neumann condition.

Let us from now on, for simplicity, assume that λ is constant. In reality,
λ varies with x since the continental crust is made up of many geological
layers with different physical properties. However, we postpone discretization
methods for a space-varying λ to Chapter 1.3.6 for pedagogical reasons.

Another assumption stems from the fact that heat generation due to
the radioactive elements normally decreases exponentially with depth [141,
Ch. 4], such that we can set s(x) = R exp (−x/LR), where R is the generation
at the earth’s surface, and LR is the position where s is 1/e of its surface
value.

Scaling. The current model problem can easily be solved by straightforward
integration, yielding a compact formula for the temperature u and its varia-
tion with x, λ, R, LR, b, Ts, andQ. However, in most scientific and engineering
problems the solution must be found using a computer. In the present case,
we would end up investigating a function u(x;λ,R, LR, b, Ts, Q) through nu-
merical simulations. Letting each of the six physical parameters λ, R, LR, b,
Ts, and Q vary among three values, results in a demand of 36 = 729 com-
puter experiments! Scaling constitutes a means for reducing the number of
seemingly independent physical parameters in a problem. This consists in
introducing new dimensionless variables

x̄ = x/b, ū = λ
u− Ts

Qb
, s̄(x̄) =

1

R
s(bx̄),

leading to
−ū′′(x̄) = γe−βx̄, ū(0) = 0, ū′(1) = 1,

1.3. Steady One-Dimensional Heat Conduction 15

where β and γ are dimensionless parameters: β = b/LR and γ = bR/Q.
Observe that λ does not enter the scaled problem.

At this stage it is common practice to drop the bars for notational con-
venience and just write

− u′′(x) = γe−βx, u(0) = 0, u′(1) = 1 . (1.5)

Appendix A.1 presents the details of scaling in general and this example in
particular. To summarize, the model (1.3)–(1.4) with six physical parame-
ters has been reduced to (1.5), containing only two dimensionless physical
parameters.

We can also scale the original problem (1.3)–(1.4) with a space-varying
heat conduction λ(x). Introducing x̄ = x/b, ū = λ(b)(u − Ts)/(Qb), λ̄(x̄) =
λ(x/b)/λ(b), and s̄(x̄) = s(bx̄)/R gives

− d

dx̄

(
λ̄(x̄)

dū

dx̄

)
= γe−βx̄, ū(0) = 0, ū′(1) = 1 .

As usual, we drop the bars and write

− (λu′)′ = γe−βx, u(0) = 0, u′(1) = 1 . (1.6)

1.3.2 A Finite Difference Method

In the following we shall formulate a numerical method for the scaled boundary-
value problem

− u′′(x) = f(x), 0 < x < 1, (1.7)

u(0) = 0, (1.8)

u′(1) = 1 . (1.9)

Application of the finite difference method to (1.7)–(1.9) consists of six basic
steps:

1. The domain (0, 1) is partitioned into n−1 cells [xi, xi+1], i = 1, . . . , n−1,
with x1 = 0 and xn = 1. The points xi will be referred to as nodes or
grid points. The discrete representation of the domain is called a mesh or
grid.

2. A numerical approximation ui to the exact solution u(xi) is sought for
i = 1, . . . , n.

u

u u

u u
3

4 5
1

2

x=1x=0
x

16 1. Getting Started

3. The derivatives in the differential equation are replaced by finite differ-
ence approximations. For example, we may set

u′′(xi) ≈
ui+1 − 2ui + ui−1

h2
,

where the cell length h = xi+1 − xi is assumed to be constant, h =
1/(n− 1). The error in this approximation to u′′ is of order h2.

4. The differential equation is required to be fulfilled at the nodes:

−u′′(xi) = f(xi), i = 1, . . . , n .

5. The condition (1.8) is implemented by replacing the difference equation
for i = 1 by u1 = 0.

6. The condition (1.9) is implemented by using a centered finite difference
approximation

un+1 − un−1

2h
= 1,

in combination with the difference approximation to the differential equa-
tion, for i = n, and eliminating the fictitious value un+1.

Carrying out steps 1-6 above with a constant cell length h results in the
following algebraic equations:

u1 = 0, (1.10)

ui+1 − 2ui + ui−1 = −h2f(xi), i = 2, . . . , n− 1, (1.11)

2un−1 − 2un = −2h− h2f(xn) . (1.12)

Equations (1.10)–(1.12) constitute a coupled system of n linear algebraic
equations for the n unknowns u1, u2, . . . , un. One often refers to (1.10)–(1.12)
as a linear system. We could of course eliminate (1.10) and obtain a linear
system with n − 1 unknowns, but for compatibility with our treatment of
finite element methods later, we keep u1 as an unknown in the system.

Throughout this text, we shall refer to the underlying boundary-value
problem, here (1.7)–(1.9), as the continuous problem. The discretized version,
here (1.10)–(1.12), is then the corresponding discrete problem.

Example 1.1. The discrete equations can also be derived directly from the
underlying physical principles. Considering the heat conduction problem from
Chapter 1.3.1, energy conservation in a small box implies (1.1). This equation
is to be combined with Fourier’s law, q = −λu′, which in discrete form reads

q(x +
h

2
) = −λ(x+

h

2
)
1

h

(
u((x+

h

2
) +

h

2
)− u((x+

h

2
)− h

2
)

)

= −λ(x+
h

2
)
u(x+ h)− u(x)

h
= −λi+ 1

2

ui+1 − ui

h
.

1.3. Steady One-Dimensional Heat Conduction 17

A similar formula can easily be derived for q(x − h/2). Inserting these ex-
pressions in (1.1) yields

− 1

h

(
λi+ 1

2

ui+1 − ui

h
− λi− 1

2

ui − ui−1

h

)
= si . (1.13)

When λ is constant, we recover (1.11). This example shows that a discrete
model can be obtained directly from physics, without first taking the limit
h → 0 to obtain a differential equation and then discretizing this equation.
The ideas here are fundamental to finite volume methods. �

The discrete equations (1.10)–(1.12) can be written in matrix form Au =
b, where A is an n× n matrix defined as

A =

A1,1 0 0 · · · · · · · · · · · · · · · 0

A2,1 A2,2 A2,3
. . .

...

0 A3,2 A3,3 A3,4
. . .

...
...

. . .
. . .

. . . 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 Ai,i−1 Ai,i Ai,i+1

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . . An−1,n

0 · · · · · · · · · · · · · · · 0 An,n−1 An,n

.

The entries Ai,j are easily identified from the scheme (1.10)–(1.12):

A1,1 = 1, (1.14)

Ai,i−1 = 1, i = 2, . . . , n− 1, (1.15)

Ai,i = −2, i = 2, . . . , n, (1.16)

Ai,i+1 = 1, i = 2, . . . , n− 1, (1.17)

An,n−1 = 2 . (1.18)

The rest of the Ai,j entries are zero. The unknown vector, i.e. the numerical
solution, is u = (u1, u2, . . . , un)T . The right-hand side vector b is given by
b = (b1, b2, . . . , bn)T , where

b1 = 0, bi = −h2f(xi), i = 2, . . . , n− 1, bn = −2h− h2f(xn) . (1.19)

To solve a system Au = b, we can apply Gaussian elimination [33,
Ch. 5.3.4]. The solution procedure consists first of an LU factorization of the
coefficient matrix. That is, we compute factors L and U such that A = LU ,
where L is a lower triangular matrix and U is an upper triangular matrix.

18 1. Getting Started

The system LUu = b can now be solved in two steps; first solve Ly = b with
respect to y (forward substitution) and then solve Ux = y with respect to x

(back substitution). The LU factorization and forward-back substitution is in
general a slow method for solving linear systems arising from partial differen-
tial equations in more than one space dimension. More appropriate iterative
solution methods are described in Appendix C. Nevertheless, in the present
problem the coefficient matrix A is tridiagonal, and Gaussian elimination
tailored to tridiagonal matrices constitutes an optimal solution method, see
[43, Ch. 6.2.2] or [143, Ch. 2.2.3] for details regarding the algorithm. There
is no particular need now for understanding the details of such algorithms,
as we in the forthcoming programs will just call Diffpack library routines for
carrying out the Gaussian elimination process.

1.3.3 Implementation in Diffpack

We shall now create a simulator for (1.7)–(1.9), which here means devel-
oping a computer program that generates and solves the discrete equations
(1.10)–(1.12). The program will be implemented in Diffpack/C++, adopting
a coding style close to plain Fortran 77 or C.

Constructing a Test Problem. Unfortunately, very few programmers are able
to write an error-free program at first attempt. Syntax errors are found by
the C++ compiler, but logical errors can only be removed by testing the
code carefully. To this end, we need a suitable test problem where an exact
solution is known. Our original heat conduction problem from Chapter 1.3.1
has a right-hand side f(x) = γ exp (−βx), and this simple choice of f(x)
makes it easy to find an exact solution to (1.7)–(1.9). Integrating twice and
using the two boundary conditions to determine the two integration constants
gives the following solution:

u(x) =
γ

β2

(
1− e−βx

)
+

(
1− γ

β
e−β

)
x . (1.20)

This solution is only valid if β 6= 0. In case β = 0, we derive, by the same
procedure,

u(x) = x

(
1 + γ

(
1− 1

2
x

))
. (1.21)

To debug the program, it is convenient to first work with only one cell, i.e.,
n = 2 and h = 1. The discrete equations to be solved then take the form

u1 = 0, 2u1 − 2u2 = −2h− h2γe−β .

Solving for u2 gives

u2 = 1 +
γ

2
e−β .

1.3. Steady One-Dimensional Heat Conduction 19

By writing out the coefficient matrix, the right-hand side, and the solution,
we can easily check the correctness of all these quantities in detail for the
n = 2 case.

A very attractive feature of our model problem (1.7)–(1.9) with f(x) =
γ exp (−βx) is that the numerical solution becomes exact when β = 0, re-
gardless of the values of n and γ. That is, substituting

ui = (i− 1)h

(
1 + γ

(
1− 1

2
(i− 1)h

))
(1.22)

in the discrete equations (1.10)–(1.12) shows that these equations are fulfilled.
We should therefore obtain a zero error (within machine precision) when we
run the code with β = 0. This result is useful for partially verifying the
implementation.

The Diffpack Code. We now present a simple Diffpack program for setting
up the matrix system Au = b, according to the formulas in (1.14)–(1.19),
solving the linear system, and writing the solution to file.

#include <Arrays_real.h> // for array functionality (and I/O)

#include <cmath> // for the exponential function

int main(int argc, const char* argv[])

{

initDiffpack(argc, argv);

s_o << "Give number of solution points: "; // write to the screen

int n; // declare an integer n (no of grid points)

s_i >> n; // read n from s_i, i.e. the keyboard

real h=1.0/(n-1); // note: 1/(n-1) gives integer division (=0)

Mat(real) A(n,n); // create an nxn matrix

ArrayGen(real) b(n); // create a vector of length n.

ArrayGen(real) u(n); // the grid point values

s_o << "Give beta: "; real beta; s_i >> beta;

s_o << "Give gamma: "; real gamma; s_i >> gamma;

// --- Set up matrix A and vector b ---

A.fill(0.0); // set all entries in A equal to 0.0

b.fill(0.0); // set all entries in b equal to 0.0

real x; int i;

i = 1;

A(i,i) = 1;

b(i) = 0;

// inner grid points:

for (i = 2; i <= n-1; i++) // i++ means i=i+1

{

20 1. Getting Started

x = (i-1)*h;

A(i,i-1) = 1; A(i,i) = -2; A(i,i+1) = 1;

b(i) = - h*h*gamma*exp(-beta*x);

}

// i = n:

i = n; x = (i-1)*h;

A(i,i-1) = 2; A(i,i) = -2;

b(i) = - 2*h - h*h*gamma*exp(-beta*x);

if (n <= 10) {

A.print (s_o,"A matrix"); // print matrix to the screen

b.print (s_o,"right-hand side"); // print vector to the screen

}

A.factLU(); A.forwBack(b,u); // Gaussian elimination

// write out the solution and the error

s_o << "\n\n x numerical error:\n";

real u_exact;

for (i = 1; i <= n; i++) { // \n is newline

x = (i-1)*h;

if (beta < 1.0E-09) { // is beta zero?

u_exact = x*(1 + gamma*(1 - 0.5*x));

} else {

u_exact = gamma/(beta*beta)*(1 - exp(-beta*x)) +

(1 - gamma/beta*exp(-beta))*x;

}

s_o << oform("%4.3f %8.5f %12.5e\n",

x,u(i),u_exact-u(i));

}

// test for the case of only one cell:

if (n == 2) { s_o << "u(2)=" << 1+0.5*gamma*exp(-beta) << "\n"; }

// write results to the file "SIMULATION.res"

Os file ("SIMULATION.res", NEWFILE); // open file

for (i = 1; i <= n; i++)

file << (i-1)*h << " " << u(i) << "\n";

file->close();

}

If your Diffpack implementation applies true C++ templates, the notation
Mat(real) and ArrayGen(real) should be replaced by the true template syntax
Mat<real> and ArrayGen<real> in the source code. Throughout this text we
shall stick to () rather than <> in parameterized types (templates).

The reader should first create a Diffpack directory with Mkdir and there-
after generate a file in this directory containing the statements above. The

1.3. Steady One-Dimensional Heat Conduction 21

filename extension should be .cpp (which works fine on both Unix and Win-
dows systems). The source code file can be obtained from

src/fdm/intro/HeatSteady1D/dense/main.cpp

but we strongly encourage the reader to type the program by hand in an
editor, because this will give valuable practical hands-on experience with the
C++ syntax and probably some error messages from the compiler.

Compiling the Program. To compile this Diffpack application, one types Make

as usual (see Chapter 1.1.3). However, on Unix systems we recommend com-
piling programs in the Emacs editor, see page 720, as this brings you directly
to the location in the source code where the compiler errors have occurred.

Windows Remark 1.4: For instructions on how to compile a Diffpack program on

Win32 platforms, see remark 1.2 on page 6 and Appendix B.2.2. Notice that by double-

clicking the error messages displayed in the Build window the text editor in Visual

Studio will load the file in question and put the cursor at the relevant line. �
On Unix systems, Diffpack applications are compiled using makefiles [89,

Ch. 7]. The name of the main makefile in an application directory is Makefile.
This file should not be edited! Unless you are well experienced with advanced
make utilities, you should not even look into this file. One can steer the com-
pilation process by giving special options to Make. By default, Make turns on
some internal time-consuming Diffpack safety checks to assist you in debug-
ging the code. When the program is verified, you can turn off these safety
checks and turn on the compiler’s optimization features by giving the option
MODE=opt to Make, i.e.,

Make MODE=opt

By default, MODE equals nopt, which means no optimization. More information
about useful Make commands are given in Chapter 3.5.5 and Appendix B.2.1.

Windows Remark 1.5: Using Visual C++, each project can be compiled in at least

two different modes, Release and Debug. These modes correspond to the opt and nopt

modes on Unix. The resulting executables are placed in subdirectories named Release

and Debug, respectively. To change between the different compilation modes, use the

option Set Active Configuration on the Build menu. �

Running the Program and Visualizing the Results. After having successfully
compiled the program, there should be an executable file app that can be
run; just type ./app. The program will ask questions and prompt you for
answers. Try to give n = 3, β = 0, and an arbitrary γ as input to validate
that the numerical solution is exact even for such a coarse grid. Thereafter

22 1. Getting Started

you can play with other values of n, β, and γ and observe the behavior of
the numerical errors.

The app program generates a file SIMULATION.res containing two columns
with the data pairs (x, u(x)). You can use almost any program for curve
plotting to visualize the results. For example, here is a session with Gnuplot,
which is a free program that works on Windows and Unix (type gnuplot to
start the program):

gnuplot> plot ’SIMULATION.res’ title ’u’ with lines

gnuplot> exit

Matlab is another alternative for visualization; just issue the following com-
mands inside Matlab:

load ’SIMULATION.res’ % load file into SIMULATION array

x = SIMULATION(:,1); y = SIMULATION(:,2)

plot(x,y)

Figure 1.2 shows the resulting Matlab plot. In later chapters (1.4.4, 1.6.5,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

400

450

Fig. 1.2. Finite difference solution of the model problem −u′′ = γ exp (−βx),
u(0) = 0, u′(1) = 1, for β = 0.2, γ = 1000, and 20 grid points.

3.3, and 3.12) we describe several tools that make it easy to invoke various
visualization programs with Diffpack-generated simulation data.

1.3.4 Dissection of the Program

Let us have a closer look at our program. The first line

1.3. Steady One-Dimensional Heat Conduction 23

#include <Arrays_real.h>

enables access to array classes in Diffpack5. This file includes several other
files as well, such as IsOs.h for Diffpack’s I/O functionality. Inclusion of cmath
gives access to the exp function, which is needed in our code.

Flexible output formats are available through a Diffpack function oform,
which combines numbers and text into a string, using the same syntax as in
the printf function in C. Numbers in the string are indicated by the special
character % proceeded by a format specification. For example, %4.3f indicates
a real number with 3 decimals written in a field of width 4. The variables to
be written in the string are listed after the string. Obviously, the sequence
of arguments is crucial. Other formatting commands include %s for a string
(char*) and %d for an integer. Real numbers can also be written in “scientific
notation”, like 1.0453e-4, represented by the format %12.4e, which implies
4 decimals written in a field of width 12. Finally, %g denotes a real number
written as compactly as possible. Actually, the oform function supports the
same syntax as the standard printf function in C, so a textbook on the C
programming language can give further information about the formatting
strings in oform. Diffpack also has an aform function, which is identical to
oform, except that it returns a String object rather than a char* pointer to
a character array, making aform safer than oform. Class String is a Diffpack
utility for representation and manipulation of strings in a program.

At the end of the main function the reader should observe that there is
no difference in syntax when writing to a file or to the screen, apart from the
need to open and close files.

Exercise 1.1. .
Compilation in non-optimized mode turns on array index checking and

thereby increases the CPU time. Choose n = 500 and compare the CPU time
of the optimized and non-optimized versions of the program. (The CPU time
used by a Diffpack simulator is written at the end of the file SIMULATION.dp.)
�
Exercise 1.2. .

Change the upper limit of a loop in the program to i<=n+1, compile the
application in non-optimized mode, make a run, and observe the error mes-
sage that is written when trying to access the invalid array entry n+1. What
happens when you run the optimized version with this wrong loop limit? �
Exercise 1.3. .

Instead of writing the numerical error for every grid point, it may be more
convenient to report the error measure

e =

(
n−1

n∑

i=1

(u(xi)− ui)
2

) 1
2

, (1.23)

5 A brief overview of some relevant array classes in Diffpack are given in Chap-
ter 1.6.3.

24 1. Getting Started

where ui and u(xi) denote the numerical and exact solution, respectively, at
the point xi. Modify the program accordingly. �

1.3.5 Tridiagonal Matrices

Our program has one serious drawback. As seen from the discrete equations,
the matrix A is tridiagonal, that is, each row has at most three nonzero
entries. Matrices where most of the entries are zero are classified as sparse
matrices. The efficiency of many numerical algorithms can be dramatically
improved by utilizing the fact that the matrix is sparse. The current two-
point boundary-value problem is a good example. Solving a system of n
equations using Gaussian elimination (LU factorization) on a standard dense
matrix, requires of the order n3 arithmetic operations. However, if we know
that the matrix is tridiagonal, the Gaussian elimination algorithm need only
operate on the nonzero entries [43, Ch. 6.2.2], and the total work becomes
of order n. In a problem with 1000 grid points this leads to an increase in
the computational efficiency by a factor of order one million. Moreover, the
computer memory requirement is reduced 1/1000 of that demanded by the
dense matrix.

The statement Mat(real) A(n,n) allocates memory for a full n × n ma-
trix. To specify a tridiagonal matrix instead, simply change the declaration to
MatTri(real) A(n). The MatTri(real) matrix type is defined in Arrays real.h.
A MatTri object assumes indices of the form A(i,k) for k=-1,0,1, where k=-1

corresponds to Ai,i−1, k=0 refers to the main diagonal Ai,i, and k=1 corre-
sponds to Ai,i+1. Besides tridiagonal matrices, Diffpack has many matrix
formats that utilize the sparsity patterns usually encountered when solving
partial differential equations numerically, see Appendix D.1.1.

Exercise 1.4. .
Replace the dense matrix Mat by a tridiagonal matrix MatTri in the test

program. To this end, make a new Diffpack application directory, copy the
original test program6 to this new directory, and edit the copy. Then compile
the program in non-optimized mode and check that the numerical results
remain unchanged. Determine the speed-up by using tridiagonal matrices
instead of dense matrices when n = 800 and n = 1600. Use the optimized
compilation mode for this test. (The CPU time of an execution appears in
the file SIMULATION.dp.) �

1.3.6 Variable Coefficients

The heat conduction problem from Chapter 1.3.1 is supposed to take place
in geological materials where the heat conduction coefficient λ usually varies

6 The directory src/fdm/intro/HeatSteady1D/tri contains an answer to this
exercise.

1.3. Steady One-Dimensional Heat Conduction 25

significantly with the depth. Hence, for our physical application, the assump-
tion of a constant λ in Chapters 1.3.2–1.3.5 is not physically relevant. We
shall therefore now address the scaled model problem (1.6), which allows λ
to vary with x. This gives rise to a differential equation with a variable coeffi-
cient λ. Differential equations for physical processes in heterogeneous media
will in general involve variable coefficients, so it is important to know how
to deal with variable coefficients numerically. Geological media are typically
built of layers with highly different physical properties. A corresponding λ(x)
function can thus be constant in each layer, with possibly severe jumps at
the interfaces between the layers.

Finite Difference Discretization. We look at a model problem stated as

− d

dx

(
λ(x)

du

dx

)
= f(x), 0 < x < 1, (1.24)

u(0) = 0, (1.25)

u′(1) = 1 . (1.26)

When discretizing (λu′)′ one must avoid expanding the term to λ′u′ + λu′′.
Instead, we discretize (λu′)′ in two steps. First, the “outer derivative” is
discretized according to

d

dx

(
λ(x)

du

dx

)∣∣∣∣
x=xi

≈ 1

h

λdu

dx

∣∣∣∣
x=x

i+1
2

− λ
du

dx

∣∣∣∣
x=x

i− 1
2

 .

Here, the points xi± 1
2

are x = (i − 1)h ± h/2, i = 1, . . . , n, where the grid

spacing h is 1/(n− 1). The λu′ term is discretized by a centered difference,

λ
du

dx

∣∣∣∣
x=x

i+1
2

≈ λi+ 1
2

ui+1 − ui

h
.

Combining these basic ideas gives the discrete approximation to (1.24)–(1.26):

u1 = 0, (1.27)

λi+ 1
2
(ui+1 − ui)− λi− 1

2
(ui − ui−1) = −h2f(xi), (1.28)

i = 2, . . . , n− 1,

2λn(un−1 − un) = −2hλn+ 1
2
− h2f(xn) . (1.29)

In the latter equation, we have approximated λn− 1
2

+ λn+ 1
2

by 2λn. We still

have the quantity λn+ 1
2
, which needs a value of λ outside the domain7.

If λ(x) is known as an explicit function, we can simply set λi+ 1
2

= λ(xi+ 1
2
).

However, in many cases λ is a discrete function or contains a discontinuity

7 A specific example on evaluation of λn+ 1
2

appears later in Chapter 1.3.7.

26 1. Getting Started

at xi+ 1
2
. It can then be necessary to express λi+ 1

2
in terms of λi and λi+1.

This is in particular the case in nonlinear problems where λ = λ(u), see
Chapter 1.3.7. The most obvious choice is the arithmetic mean

λi+ 1
2

=
1

2
(λi + λi+1) . (1.30)

When λ exhibits severe jumps, the harmonic mean is often preferred [63,
p. 227],

1

λi+ 1
2

=
1

2

(
1

λi
+

1

λi+1

)
. (1.31)

The geometric mean is also a possibility:

λi+ 1
2

= (λiλi+1)
1/2 . (1.32)

The arithmetic, harmonic, and geometric means of more than two quantities
follow from generalization of the preceding formulas.

Our particular discretization of (λu′)′, leading to (1.28), is strongly sup-
ported by Example 1.1 on page 16, where we actually derive (1.28) directly
from physical principles.

Diffpack Implementation. Equations (1.27)–(1.29) constitute a linear system
Au = b of algebraic equations for the unknown parameters u = (u1, . . . , un)T .
To solve the system we must fill A and b with appropriate values and then
apply Gaussian elimination to compute u. Therefore, we can use a program
similar to the one presented in Chapter 1.3.3. The coefficient matrix A is
tridiagonal, and the version of the program outlined in Chapter 1.3.5 and
(hopefully) realized in Exercise 1.4 is therefore a better starting point. The
only new feature is that we need to evaluate a function λ(x) in the expres-
sions for the entries in the coefficient matrix and the right-hand side. To this
end, it will be convenient to implement λ(x) as a C++ function. An example,
reflecting different constant heat conduction properties in different layers of
the medium, is shown here:

real lambda (real x)

{

real r;

if (x <= 0.1) {

r = 0.1;

} else if (x > 0.1 && x < 0.3) {

r = 10.0;

} else if (x > 0.3 && x < 0.4) {

r = 100.0;

} else { // x > 0.4

r = 1.0;

}

1.3. Steady One-Dimensional Heat Conduction 27

return r;

}

Exercise 1.5. .
Write down the formulas for the entries in the coefficient matrix A and

the right-hand side b of the linear system for u1, . . . , un. (The answer is in
the code below.) �

The “heart” of the solver, i.e., setting up A and b and solving Au = b,
can be expressed as follows in a Diffpack code.

A.fill(0.0); b.fill(0.0); // initialize A and b

i = 1;

A(i,0) = 1;

b(i) = 0;

for (i = 2; i <= n-1; i++) // inner grid points

{

x = (i-1)*h;

lambda1 = lambda(x-h);

lambda2 = lambda(x);

lambda3 = lambda(x+h);

A(i,-1) = 0.5*(lambda1 + lambda2);

A(i, 0) = -0.5*(lambda1 + 2*lambda2 + lambda3);

A(i, 1) = 0.5*(lambda2 + lambda3);

b(i) = - h*h*f(x, beta, gamma);

}

i = n; x = (i-1)*h;

A(i,-1) = 2*lambda(x);

A(i, 0) = - A(i,-1);

b(i) = -2*h*lambda(x+h/2.0) - h*h*f(x, beta, gamma);

A.factLU(); A.forwBack(b,u); // Gaussian elimination

Observe that we have also written f(x) as a C++ function f. The complete
code is found in

src/fdm/intro/HeatSteady1D/varcoeff/main.cpp

Running the code and displaying the solution reveals that the curve y =
u(x) becomes much more interesting when we have variable coefficients, see
Figure 1.3. Note that maxx |u| ∼ 103, despite the fact that the problem is
scaled. When γ � 1, as in the present numerical example, we should base the
characteristic temperature on b2R/λ(b). The reason is explained in the case
starting on page 665. The resulting boundary-value problem for the scaled
temperature û reads

−(λû′)′ = e−βx, û(0) = 0, û′(b) = 1/γ .

28 1. Getting Started

We see that û = u/γ, which demonstrate that the latter scaling is more
appropriate (i.e., û is of order unity).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

Fig. 1.3. Finite difference solution of the model problem −(λ(x)u′(x))′ =
γ exp (−βx), u(0) = 0, u′(1) = 1, for β = 0.2, γ = 1000, 100 grid points, and
λ(x) = 0.1 in [0, 0.1], 10 in (0.1, 0.3), 100 in [0.3, 0.4], and 1 for x > 0.4.

Exercise 1.6. .
Derive an analytical solution of (1.24)–(1.26), for the case f(x) = γ exp (−βx),

by integrating (1.24) twice and using (1.25)–(1.26) to determine the integra-
tion constants. Use this solution to verify the code referred to in the preceding
text. �

1.3.7 A Nonlinear Heat Conduction Problem

A Nonlinear Model. The mathematical model (1.24)–(1.26) was derived in
Chapter 1.3.1 for heat conduction in a geological medium. Of course, this
model also applies to heat conduction in other media, for example, metals.
Physical experiments show that the heat conduction properties of metals
vary with the temperature. If the total temperature variation throughout the
medium is significant, we may need to take the dependence of λ on u into
account. The corresponding governing differential equation takes the form

− d

dx

(
λ(u)

du

dx

)
= f(x), 0 < x < 1 . (1.33)

Equation (1.33) contains products of the primary unknown u or its deriva-
tives, which makes the equation nonlinear. For example, if λ(u) = 1+u2 and

1.3. Steady One-Dimensional Heat Conduction 29

we expand the factorized derivative, we end up with u′′ +u2u′′ +2uu′ on the
left-hand side. The terms u2u′′ and 2uu′ contain products of u or its deriva-
tives and are hence nonlinear. We can of course apply the same discretization
as in Chapter 1.3.6, but we end up with a nonlinear counterpart to (1.28); we
cannot write the discrete equations as a linear system Au = b, because λi+ 1

2

and λi− 1
2

in (1.28) now contain the unknown u itself. Instead, the discretiza-
tion leads to a system of nonlinear algebraic equations. The next paragraph
outlines a simple method for turning the nonlinear problem into a sequence
of linear problems.

Numerical Algorithm. The most efficient numerical methods for dealing with
nonlinear differential equations lead to somewhat technically complicated
schemes, which are described in Chapter 4. However, we can devise a simple
recipe for how to create a simulator that solves the nonlinear equation (1.33)
by repeatedly solving linear problems of the same type as we covered in Chap-
ter 1.3.6. The idea consists in starting with some guess of the solution, called
u0. Inserting u0 in λ gives a differential equation −(λ(u0)u′)′ = f , which is
seen to be linear since λ(u0) is now a known function. This differential equa-
tion can be discretized by the techniques we used for (1.24) and leads to a
linear system that we can solve with Gaussian elimination. Let us name the
solution u1. Of course, u1 is not the correct solution of (1.33), because the
coefficient λ(u0) was wrong, but hopefully u1 is a better approximation than
u0 to the exact solution u. We can then repeat the process, that is, insert u1

in λ and solve a linear differential equation for a new approximation u2. The
ideas can be summarized in the following iteration scheme:

− d

dx

(
λ(uk−1)

du

dx

k
)

= f(x), uk(0) = 0,
du

dx

k

(1) = 1, (1.34)

for k = 1, 2, 3, . . . This simple iteration technique is called Successive Substi-
tutions. We describe this method in more detail in Chapter 4.

The associated finite difference scheme is similar to (1.28), but λi+ 1
2

must
now be expressed in terms of ui and ui+1, e.g.,

λi+ 1
2

=
1

2
(λ(ui) + λ(ui+1)) .

This results in the following discrete version of (1.34):

1

2

(
λ(uk−1

i) + λ(uk−1
i+1)

)
(uk

i+1 − uk
i)−

1

2

(
λ(uk−1

i−1) + λ(uk−1
i)

)
(uk

i − uk
i−1) = −h2f(xi) . (1.35)

For the last point i = n, we get as in (1.29):

2λ(uk−1
n)(uk

n−1 − uk
n) = −2hλn+ 1

2
− h2f(xn) . (1.36)

30 1. Getting Started

The quantity λn+ 1
2

can be approximated as usual by an average, (λ(uk−1
n) +

λ(uk−1
n+1))/2, but this involves a quantity uk−1

n+1 outside the mesh. From the
boundary condition at x = 1,

uk−1
n+1 − uk−1

n−1

2h
= 1, k > 1,

we can approximate uk−1
n+1 by uk−1

n−1 + 2h, resulting in

λn+ 1
2

=
1

2

(
λ(uk−1

n) + λ(uk−1
n−1 + 2h)

)
.

To terminate the iteration, we need a stopping criterion, for example,

√√√√
n∑

j=1

|uk
j − uk−1

j |2 ≤ ε, (1.37)

where ε is a prescribed tolerance. Since the iteration procedure is not guar-
anteed to converge at all, we should also terminate the iteration after kmax

iterations.
The ε in the criterion (1.37) depends on the magnitude of uk, which is

expected to be unity in a properly scaled problem. If the magnitude differs
significantly from unity, we should use a relative criterion, where the left-hand
side is divided by the norm of uk.

Implementation. The implementation can make use of the program from
Chapter 1.3.6, with the following modifications:

1. We need to work with two arrays, uk and ukm, representing uk
i and uk−1

i ,
respectively, for i = 1, . . . , n.

2. The array ukm must be initialized by the guess u0.

3. Several additional variables are needed: an iteration counter, the maxi-
mum allowed number of iterations, variables in the termination criterion,
etc.

4. The evaluation of λ is conveniently done in a separate function. For exam-
ple, if λ(u) = um, where m is a user-given real number, m ≥ 0, this func-
tion can take the form real lambda(real u,real m) {return pow(u,m);}
in C++.

5. The formulas for the matrix entries and the right-hand side must be
updated according to the present scheme.

6. The Gaussian elimination process is performed by calling A.factLU() and
A.forwBack(b,uk). However, the matrix object will not allow us to re-
peatedly perform the LU factorization unless we explicitly tell the matrix
that the entries have been reinitialized and that the old factorization is

1.3. Steady One-Dimensional Heat Conduction 31

erased. This is done by the call A.resetFact(), which must appear prior to
A.factLU(). (Forgetting to call A.resetFact() is one of the most common
errors in nonlinear or time-dependent problems.)

7. The difference between the uk
i and uk−1

i values must be computed and
reported.

8. We must set uk−1
i = uk

i , i = 1, . . . , n, such that we are ready for a new
iteration.

9. A while loop must be wrapped around the linear system generation and
the actions 6, 7, and 8.

10. The error measure e in (1.23) can be reported, if an analytical solution
to the problem is available.

Before starting the implementation, we should have a test example with exact
solution. It appears that if λ(u) = um and f(x) = 0, we can integrate (1.33)
and apply u(0) = 0 and u′(1) = 1 to find that u(x) = (m+ 1)x1/(m+1).

The core part of the solver might look as follows.

int k = 0; // iteration counter

const int k_max = 200; // max no of iterations

real lambda1, lambda2, lambda3; // help variables

real udiff = INFINITY; // udiff = ||uk - ukm||

const real epsilon = 0.0000001; // tolerance in termination crit.

while (udiff > epsilon && k <= k_max)

{

k++; // increase iteration counter by 1

A.fill(0.0); b.fill(0.0); // initialize A and b

i = 1;

A(i,0) = 1;

for (i = 2; i <= n-1; i++)

{

lambda1 = lambda(ukm(i-1), m);

lambda2 = lambda(ukm(i), m);

lambda3 = lambda(ukm(i+1), m);

A(i,-1) = 0.5*(lambda1 + lambda2);

A(i, 0) = -0.5*(lambda1 + 2*lambda2 + lambda3);

A(i, 1) = 0.5*(lambda2 + lambda3);

}

i = n;

A(i,-1) = 2*lambda(ukm(i), m);

A(i, 0) = - A(i,-1);

b(i) = -h*(lambda(ukm(i-1)+2*h,m)+lambda(ukm(i),m));

32 1. Getting Started

A.resetFact(); // ready for new factLU

A.factLU(); A.forwBack(b,uk); // Gaussian elimination

// check termination criterion:

udiff = 0;

for (i = 1; i <= n; i++)

udiff += sqr(uk(i) - ukm(i));

udiff = sqrt(udiff);

s_o << "iteration " << k << ": udiff = " << udiff << "\n";

ukm = uk; // ready for next iteration

}

The complete code is found in src/fdm/intro/HeatSteady1D/nonlin. Run this
code with m = 0 and observe that the exact solution is obtained after the
first iteration (udiff vanishes in the second iteration). The solution can be
plotted as explained on page 22. Let us try m = 5 and n = 10, 100, 1000. The
error is reduced when n is increased from 10 to 100, as expected, but with
n = 1000 the program encounters fundamental problems with the solution
of the linear systems. Lowering m to 4.2 results in a successful execution.
With m = 8 and n = 10 the program terminates normally, but the nonlinear
iteration process diverges, i.e., udiff becomes constant and the maximum
number of iterations (200) is reached. Reducing m to 7 helps the nonlinear
iteration process to converge, although at a very slow rate.

From these examples we see that numerical solution of nonlinear differ-
ential equations can be a difficult task. We shall return to this example in
Chapter 1.7.2 and perform more comprehensive experimentation and see how
the numerical error depends on m, n, and alternative choices of the λ func-
tion. For that purpose, we need a more flexible program than what has been
shown here.

Exercise 1.7. .
Assume that λ is a computationally expensive function to evaluate. Ex-

plain how one can reduce the number of λ evaluations in the code. �

Model Extensions. In the derivation of the heat conduction model in Chap-
ters 1.3.1 we neglected two- and three-dimensional as well as time-dependent
effects. Taking such effects into account results in a partial differential equa-
tion on the form

β
∂u

∂t
=

∂

∂x

(
λ(u)

∂u

∂x

)
+
∂

∂y

(
λ(u)

∂u

∂y

)
+
∂

∂z

(
λ(u)

∂u

∂z

)
+f(x, y, z) . (1.38)

This equation can be used to compute the temperature u in arbitrary three-
dimensional solids. Later in the text we shall describe numerical methods

1.4. Simulation of Waves 33

and develop simulation software for such problems. Two-dimensional finite
difference schemes will be explained already in Chapters 1.4.6 and 1.4.7, but
we restrict the treatment of higher-dimensional finite difference methods to
explicit difference schemes, where new values at a grid point are computed
by an explicit analytical formula and not by solving a linear system like we
encountered in the present 1D heat conduction model. Schemes which involve
solution of coupled systems of algebraic equations are classified as implicit 8.
In 2D and 3D, implicit schemes lead to large algebraic systems of equations,
and the solution of such systems frequently constitutes the computational
bottleneck in simulation software. Fortunately, sophisticated methods tai-
lored to the properties of linear systems arising from finite difference and
finite element methods can speed up the solution process, often in a dra-
matic way (if we compare the efficiency with that of Gaussian elimination).
The description of such specialized algorithms for linear systems is provided
in Appendix C, whereas the implementational aspects of 2D and 3D implicit
finite difference schemes are covered in Appendix D.

1.4 Simulation of Waves

The next introductory simulation example concerns vibrations of a string.
This physical phenomenon can be modeled in terms of the partial differential
equation (PDE)

∂2u

∂t2
= γ2 ∂

2u

∂x2
, x ∈ (a, b),

commonly known as the wave equation. Now the unknown function u depends
on both x and t, i.e., space and time. The boundary conditions are similar to
those in Chapter 1.3; u or ∂u/∂x must be prescribed at x = a and x = b, with
exactly one condition at each point. In addition, we need initial conditions
for u(x, 0) and ∂u(x, 0)/∂t, x ∈ [a, b]. The collection of a partial differential
equation with initial and boundary conditions is referred to as an initial-
boundary value problem.

1.4.1 Modeling Vibrations of a String

While the first law of thermodynamics (energy balance) constituted the start-
ing point for the heat conduction model in Chapter 1.3.1, the model for vi-
brating strings arises from Newton’s second law. Consider a small part of the
string as depicted in Figure 1.4. Newton’s second law states that the total
sum of forces on this string element balances the mass of the element times its
acceleration. There is a tension force T (x, t) directed along the string (notice

8 This terminology is subject to debate; in Chapter 2.2.1 and (5.2) we apply explicit
finite difference schemes in time, but the spatial discretization leads to systems
of algebraic equations, i.e., the method is implicit according to our definition.
However, many practitioners will consider such methods as explicit.

34 1. Getting Started

that T is a vector). Neglecting gravity and air resistance, which are usually
much smaller forces than the string tension, the total sum of forces on the
element becomes T (x + h/2) − T (x − h/2). The mass per unit length is %,

y

x

θ (x+h/2)

θ (x-h/2)T

T

(x-h/2)

(x+h/2)

u(x,t)

∆ uρ
∆ s

h

Fig. 1.4. Sketch of a part of a string, with length ∆s (projected on to h and
∆u in the x and y directions), tension T , displacement u(x, t), and density
(mass per unit length) %. The angle between the string and x axis is denoted
by θ(x, t).

and the length is ∆s, leading to %∆s as the total mass of the string element.
We assume that the element moves up and down in y direction only9. The
position r of the element is given by r = xi + u(x, t)j, where i and j are
unit vectors along the x and y axis, respectively. The velocity v and the
acceleration a of the element are then given by

v =
∂r

∂t
=
∂u

∂t
j, a =

∂2r

∂t2
=
∂2u

∂t2
j .

Newton’s second law applied to the string element now takes the form

T (x+
h

2
)− T (x− h

2
) = %(x)∆s

∂2

∂t2
u(x, t)j . (1.39)

This is a vector equation with two scalar component equations. The next step
is to express T in terms of the unit vectors i and j. From Figure 1.4 we see
that

T (x) = T (x) cos θ(x) i + T (x) sin θ(x) j,

9 This is only an approximation, but the displacement in the x direction is very
small, and the corresponding error will not dominate over the errors due to
neglecting gravity or the approximations to come for small displacements in the
y direction.

1.4. Simulation of Waves 35

where T is the magnitude of T . Each of the vector components in (1.39) must
balance, leading to

T (x+
h

2
) cos θ(x +

h

2
)− T (x− h

2
) cos θ(x− h

2
) = 0, (1.40)

T (x+
h

2
) sin θ(x+

h

2
)− T (x− h

2
) sin θ(x− h

2
) = %(x)∆s

∂2u

∂t2
. (1.41)

Dividing (1.40) by h and taking the limit h→ 0, i.e.,

lim
h→0

1

h

(
T (x+

h

2
) cos θ(x+

h

2
)− T (x− h

2
) cos θ(x− h

2
)

)
= 0,

leads to
∂

∂x
(T cos θ) = 0 (1.42)

by a Taylor-series argument as we used in (1.2). The component (1.41), after
division by h, has the limit equation

∂

∂x
(T sin θ) = %(x)

(
lim
h→0

∆s

h

)
∂2u

∂t2
. (1.43)

To estimate limh→0∆s/h, we have from Figure 1.4 that

∆s2 = h2 +∆u2 ⇒ lim
h→0

∆s

h
=

√

1 +

(
∂u

∂x

)2

. (1.44)

Moreover,

tan θ =
∂u

∂x
, sin θ =

tan θ√
1 + tan2 θ

=
∂u
∂x√

1 +
(

∂u
∂x

)2 . (1.45)

Inserting (1.44) and (1.45) in (1.43) leads to the following governing PDE for
the string motion:

%

[
1 +

(
∂u

∂x

)2
] 1

2
∂2u

∂t2
=

∂

∂x

T

[
1 +

(
∂u

∂x

)2
]− 1

2
∂u

∂x

 . (1.46)

This is a nonlinear PDE because the primary unknown u enters in products
with itself or its derivatives10.

Vibrations of a string are normally recognized as being small. Therefore
we expect that (∂u/∂x)2 is small compared with unity. This suggests that
the bracket terms (square roots) can be approximated by 1. If we further

10 This is perhaps more obvious if we expand the bracket terms in Taylor series.

36 1. Getting Started

assume that the tension T is constant11 we obtain the linear wave equation
for u:

∂u2

∂t2
= c2

∂2u

∂x2
, (1.47)

where c =
√
T/%, known as the phase velocity, reflects the speed of distur-

bances along the string. The boundary conditions follow from the fact that
the string is fixed at the ends: u(a, t) = u(b, t) = 0. Initially, we may assume
that the string is at rest, ∂u/∂t = 0, with a prescribed shape u(x, 0) = I(x).

As in Chapter 1.3.1, it is advantageous to scale the model. The details of
such a scaling are presented on page 668. The resulting scaled problem that
we aim to solve numerically is listed next.

∂2u

∂t2
= γ2 ∂

2u

∂x2
, x ∈ (0, 1), t > 0, (1.48)

u(x, 0) = I(x), x ∈ (0, 1), (1.49)

∂

∂t
u(x, 0) = 0, x ∈ (0, 1), (1.50)

u(0, t) = 0, t > 0, (1.51)

u(1, t) = 0, t > 0 . (1.52)

The γ parameter is dimensionless and equals unity, but we keep it in the
PDE for labeling the spatial derivative term.

1.4.2 A Finite Difference Method

Finite difference discretization of the problem (1.48)–(1.52) starts with in-
troducing a grid in space, 0 = x1 < x2 < · · · < xn = 1, and in time,
0 = t0 < t1 < t2 · · ·. For simplicity, we assume constant grid spacings h and
∆t such that xi = (i− 1)h and t` = `∆t. The grid is sketched in Figure 1.5.
The governing equation (1.48) is to be satisfied at the discrete grid points
(xi, t`), i = 1, . . . , n, ` = 0, 1, 2, . . .:

∂2

∂t2
u(xi, t`) = γ2 ∂

2

∂x2
u(xi, t`) .

At each (xi, t`) point, we replace the derivatives by finite differences:

∂2

∂x2
u(xi, t`) ≈

u`
i−1 − 2u`

i + u`
i+1

h2
, (1.53)

∂2

∂t2
u(xi, t`) ≈

u`−1
i − 2u`

i + u`+1
i

∆t2
. (1.54)

The errors in the approximations (1.53)–(1.54) are of order h2 and ∆t2, re-
spectively. Inserting the finite difference approximations in the partial differ-
ential equations yields

u`−1
i − 2u`

i + u`+1
i

∆t2
= γ2u

`
i−1 − 2u`

i + u`
i+1

h2
. (1.55)

11 This is evident from (1.42), since cos θ ≈ 1 for small displacements.

1.4. Simulation of Waves 37

This equation is to be fulfilled at all internal grid points, i.e., i = 2, . . . , n− 1
and t = ∆t, `∆t, 2`∆t, . . . The original wave equation, which we can view
as an equation with an infinite number of unknown function values u(x, t)
has, by the finite difference discretization, been turned into a set of algebraic
equations (1.55) with a finite number of unknowns u`

i . This is a tremendous
simplification of the original problem. The cost of the simplification is loss of
accuracy, in u`

i compared with u(x), but this loss can be controlled through
the parameters h and ∆t.

The finite difference equation (1.55) can be solved with respect to u`+1
i :

u`+1
i = 2u`

i − u`−1
i + γ2∆t

2

h2

(
u`

i−1 − 2u`
i + u`

i+1

)
. (1.56)

Assuming that all values at time levels `−1 and ` are known, equation (1.56)
yields an explicit updating formula for the new values u`+1

i , i = 2, . . . , n− 1.
There is no need to solve a coupled system of algebraic equations, as we had
to in Chapter 1.3, and (1.56) is referred to as an explicit finite difference
scheme. Figure 1.5 sketches the grid and illustrates that the finite difference
scheme involves five neighboring points. The uppermost circle denotes the
point with an unknown value at the new time level (u`+1

i), and this quantity
is calculated from four previously computed values at the other points marked
with circles. As soon as we have computed a new value u`+1

i , we can move
the whole computational molecule one step to the right and find u`+1

i+1 . When
all values at time level `+ 1 have been computed, we move the molecule to
the left-most end and one step upwards to start computing values at time
level `+ 2.

h x

t

∆ t

Fig. 1.5. Computational grid in the x, t-plane. The finite difference scheme
for the 1D wave equation involves points with circles.

38 1. Getting Started

The boundary conditions (1.51)–(1.52) take the discrete form u`
1 = u`

n =
0 and are used directly in (1.56) when i = 2 and i = n − 1. The initial
condition (1.49) yields u0

i = I(xi), i = 1, . . . , n. The other initial condition,
given by equation (1.50), needs some more consideration. A finite difference
approximation to ∂u/∂t at t = 0 gives

u1
i − u−1

i

2∆t
= 0 ⇒ u−1

i = u1
i . (1.57)

Combining (1.57) with (1.56) for ` = 0 makes it possible to eliminate the
fictitious value u−1

i and obtain a special formula for the first time step:

u1
i = u0

i + γ2∆t
2

2h2

(
u0

i−1 − 2u0
i + u0

i+1

)
. (1.58)

Apparently, we need two schemes in the program, one for the first time level
and one for the other levels. However, we can in fact apply the general scheme
(1.56) also for ` = 0 to compute u1

i , provided that u−1
i has the value

u−1
i = u0

i +
1

2
γ2∆t

2

h2
(u0

i+1 − 2u0
i + u0

i−1) . (1.59)

We shall use this latter approach in the simulation program. You can verify
that inserting (1.59) in (1.56) yields (1.58).

After having derived the finite difference approximations to the PDE and
the initial and boundary conditions, it is a good habit to summarize the com-
plete scheme in algorithmic form. This is done in Algorithm 1.1. To make the
formulas more compact, we have introduced the so-called Courant number,

C = γ
∆t

h
.

The Courant number C combines all the physical and numerical parameters
in the problem into a single dimensionless number. Therefore, the accuracy
and stability properties of the numerical solution can be expressed in terms
of C, as shown in Appendix A.4.

1.4. Simulation of Waves 39

Algorithm 1.1.

Explicit scheme for the 1D wave equation.

define u+
i , ui and u−i to represent u`+1

i , u`
i and u`−1

i , respectively
set the initial conditions:

ui = I(xi), for i = 1, . . . , n
define the value of the artificial quantity u−i :
u−i = ui + 1

2C
2(ui+1 − 2ui + ui−1) for i = 2, . . . , n− 1

t = 0
while time t ≤ tstop

t← t+∆t
update all inner points:

u+
i = 2ui − u−i + C2(ui+1 − 2ui + ui−1) for i = 2, . . . , n− 1

insert boundary conditions:

u+
1 = 0, u+

n = 0
initialize for next step:

u−i = ui, ui = u+
i , for i = 1, . . . , n

dump the solution (ui, i = 1, . . . , n) to file

1.4.3 Implementation

Algorithm 1.1 for finite difference solution of the one-dimensional wave equa-
tion can easily be coded using basic array operations in almost any program-
ming language. One advantage of using Diffpack for the present case is its
handling of a large number of curve plots. If you want to make an animation
of the string motion, you need perhaps several hundred plots. Each plot is
typically a curve consisting of x and y points stored on files. In Diffpack there
are tools for administering large amounts of curve plots and combining them
into movies.

A simulation program for the vibrating string will now be presented
in its complete form. The electronic version of the code can be found in
src/fdm/intro/Wave1D/main.cpp. As an extension of the programming style
from Chapter 1.3, we now split the code into functions. Functions in C++
(and C) that do not return any value are declared with void as “return” value
in the function heading. Such functions hence correspond to subroutines in
Fortran. Function arguments are listed with the type and the variable name,
for example,

void setIC (real C, ArrayGen(real)& u0, ArrayGen(real)& um);

40 1. Getting Started

The argument real C leads to a local copy of the C value in the routine.
Changing C inside setIC has no effect in the calling code12. The ampersand
& means that the arrays u0 and um are transferred to the setIC function by
their addresses13 only. This allows the function to alter the contents of u0

and um, which is the purpose of the function. Moreover, transferring only the
address is always important for efficiency if the vector is large, as we then
avoid internal memory allocation and copying of the vector in the routine.

With this short introduction to functions in C++ and the previous pro-
gram example for −u′′ = f fresh in mind, the source code below should be
possible to understand. The fundamental quantities u+, u, and u− in the
algorithm are represented by the arrays up, u, and um in the program.

#include <Arrays_real.h>

#include <CurvePlot.h>

// forward declarations:

// (we need to define function names and arguments before the

// functions can be called)

void timeLoop (ArrayGen(real)& up, ArrayGen(real)& u,

ArrayGen(real)& um, real tstop, real C);

void setIC (real C, ArrayGen(real)& u0, ArrayGen(real)& um);

void dumpSolution (ArrayGen(real)& u, CurvePlotFile& plotfile,

real t, real C);

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

s_o << "Give number of intervals in (0,1): ";

int i; s_i >> i; int n = i+1; // number of points;

ArrayGen(real) up (n); // u at time level l+1

ArrayGen(real) u (n); // u at time level l

ArrayGen(real) um (n); // u at time level l-1

s_o << "Give Courant number: "; real C; s_i >> C;

s_o << "Compute u(x,t) for t <= tstop, where tstop = ";

real tstop; s_i >> tstop;

timeLoop (up, u, um, tstop, C); // finite difference scheme

return 0;

}

void timeLoop (ArrayGen(real)& up, ArrayGen(real)& u,

ArrayGen(real)& um, real tstop, real C)

12 This is different from Fortran, where changes in any argument inside a subroutine
are visible outside the routine.

13 In C++ terminology, the term references is used rather than addresses.

1.4. Simulation of Waves 41

{

int n = u.size(); // length of the vector u (no of grid points)

real h = 1.0/(n-1); // length of grid intervals

real dt = C*h; // time step, assumes unit wave velocity!!

real t = 0; // time

CurvePlotFile plotfile(casename); // "databank" (file) with all plots

setIC (C, u, um); // set initial conditions

dumpSolution (u, plotfile, t, C); // dump initial displacement

int i; // loop counter over grid points

int step_no = 0; // current step number

while (t <= tstop)

{

t += dt; // increase time by the time step

step_no++; // increase step number by 1

// update inner points according to finite difference scheme:

for (i = 2; i <= n-1; i++)

up(i) = 2*u(i) - um(i) + sqr(C) * (u(i+1) - 2*u(i) + u(i-1));

up(1) = 0; up(n) = 0; // update boundary points:

um = u; u = up; // update data struct. for next step

dumpSolution (up, plotfile, t, C);

if (step_no % 100 == 0) { // write a message every 100th step:

s_o << oform("time step %4d: u(x,t=%6.3f) is computed.\n",

step_no,t); // recall that \n is newline

s_o.flush(); // flush forces immediate output

}

}

}

void setIC (real C, ArrayGen(real)& u0, ArrayGen(real)& um)

{

int n = u0.size(); // length of the vector u

real x; // coordinate of a grid point

real h = 1.0/(n-1); // length of grid intervals

real umax = 0.05; // max string displacement

int i; // loop counter over grid points

for (i = 1; i <= n; i++) { // set the initial displacement u(x,0)

x = (i-1)*h;

if (x < 0.7) u0(i) = (umax/0.7) * x;

else u0(i) = (umax/0.3) * (1 - x);

}

42 1. Getting Started

for (i = 2; i <= n-1; i++) // set the help variable um:

um(i) = u0(i) + 0.5*sqr(C) * (u0(i+1) - 2*u0(i) + u0(i-1));

um(1) = 0; um(n) = 0; // dummy values, not used in the scheme

}

void dumpSolution (ArrayGen(real)& u, CurvePlotFile& plotfile,

real t, real C)

{

int n = u.size(); // the number of unknowns

real h = 1.0/(n-1); // length of grid intervals

CurvePlot plot (plotfile); // a single plot, tied to the "databank"

plot.initPair ("displacement", // plot title

oform("u(x,%.4f)",t), // name of function

"x", // name of indep. var.

oform("C=%g, h=%g",C,h)); // comment

for (int i = 1; i <= n; i++) // add (x,y) data points

plot.addPair (h*(i-1) /* x-value */, u(i) /* y value */);

plot.finish();

}

Notice that the program defines the interfaces of the functions timeLoop,
setIC, and dumpSolution prior to the main function. These forward declara-
tions could be avoided if we moved the main function to the end of the file.
However, in this example we keep the Fortran-style approach of defining the
main program at the beginning of the file.

Some C programmers will perhaps find the updating of the arrays for the
next step a bit strange; the statement um=u implies that we copy elements
from u into um, while a more efficient way would be to switch the underlying
array pointers. However, in all our introductory programs we shall pay more
attention to safety than optimization as long as the constructions do not have
severe performance penalties14.

1.4.4 Visualizing the Results

Animation of the Wave Motion. Compile and run the program, using 20
intervals, unit Courant number, and tstop equal to 6. After the execution
there should be a file SIMULATION.map in your directory. This file contains a
“map” of all the 122 curves produced by the program. On Unix systems,
you can now animate the computed string movement either using Gnuplot
or Matlab. Animation in Gnuplot is most easily accomplished by the special
Diffpack script curveplotmovie:

14 A profiling (see page 721) of the wave equation solver reveals that updating
statements like um=u are not the most important place to start optimizing. Nev-
ertheless, we address optimization and switching of array pointers on page 583.

1.4. Simulation of Waves 43

curveplotmovie gnuplot SIMULATION.map -0.1 0.1

The first argument is the map file, whereas the two next arguments are the
minimum and maximum values of the y-values in the plot. You should see
a nice movie on the screen. Alternatively, we may use Matlab for anima-
tion; simply replace gnuplot by matlab15. The command curveplotmovie is
a simplified version of the much more powerful curveplot script that comes
with Diffpack. With this latter script you can set various Gnuplot or Mat-
lab options to customize the plot, select only a subset of all the curves to
be included in the animation, and produce MPEG movies. A brief example
appears later in this section, whereas Appendix B.5.1 documents the plotting
features in more detail.

Setting the Casename. The stem of the files generated by the program
(SIMULATION in the preceding example) can be changed by the user with-
out recompiling the program. If we want the name C0.3, e.g. indicating a
simulation with C = 0.3, we type

./app --casename C0.3

The --casename option sets a casename for the simulation, and SIMULATION

is the default casename. Anywhere in a Diffpack program you can access the
casename of the current execution by the global variable casename. For exam-
ple, in the demo program listed in the preceding section, we used casename to
initialize the plotfile object, which then ensures that all the plot files have
names containing casename.

Sometimes you will prefer to have all the casename-related files in a sep-
arate directory. The command-line option --casedir mydir to app creates a
subdirectory mydir, which is used as current working directory during the
simulation. Try, for example,

./app --casename C0.3 --casedir C0.3

To clean up all files generated by a computer experiment, you can use the
Diffpack script RmCase with the casename as argument. Simply type RmCase

C0.3 in the present example. The RmCase script searches the current directory
and all its subdirectories for files containing the stem C0.3, implying that files
generated in the subdirectory C0.3 will also be deleted.

Graphical Interface to Curve Plotting. There is a flexible Diffpack script, also
with a graphical interface, that enables plotting of selected items from the
collection of curves in the map file. First we describe the graphical interface
called curveplotgui. Thereafter we explain how the plotting tool can be used
without the graphical interface.

15 You need to issue an exit command to leave Matlab after the movie is shown.

44 1. Getting Started

Let us generate a small number of curves, just for demonstration purposes.
Run the program with casename plotex, Courant number 0.3, and tstop equal
to 1.5. Then you will have a file plotex.map. Invoke the graphical curve plot-
ting interface by typing curveplotgui plotex.map. The graphical menu allows
you to select individual curves from the execution and plot them. Each curve
is recognized by its three items: The plot title, the function or curve name,
and the comment. You can now click on some individual curves, for exam-
ple, those with function names u(x,0.1650), u(x,0.3600), and u(x,0.5700).
The chosen curves can be plotted using one of the listed plotting programs:
Gnuplot, Xmgr, Matlab, and Plotmtv16. Figure 1.6 shows the result when
Gnuplot is used. Clicking the Help button results in a description of the var-
ious features in curveplotgui. The fine details of a plot can be adjusted as
outlined on page 745 under the option -c.

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 0.2 0.4 0.6 0.8 1

displacement

u(x,0.165)
u(x,0.36)
u(x,0.57)

Fig. 1.6. Three snapshots of the waves on the string. The plot is made by
Gnuplot.

Windows Remark 1.6: The Diffpack GUI on Win32 platforms supports functionality

for selecting and plotting curves, much like the curveplotgui tool. �

Scripting Interfaces to Curve Plotting. The generation of the curve plot in
Figure 1.6 can alternatively be made by the command

curveplot gnuplot -f plotex.map -r ’.’ ’u\(x,0\.1650\)’ ’.’

16 Only the plotting program available on your computer system is listed.

1.4. Simulation of Waves 45

-r ’.’ ’u\(x,0\.3600\)’ ’.’ -r ’.’ ’u\(x,0\.5700\)’ ’.’

-ps myplot.ps

With identical syntax we can make plots with other plotting packages as well,
for example, Matlab, Plotmtv, or Xmgr; just replace gnuplot with matlab,
plotmtv, or xmgr. The -f option is used to give the name of mapfiles, and
the -r option is followed by three regular expressions [46,146] for the ti-
tle, the function name, and the comment of the desired curves. Here, ’.’

’u\(x,0\.3600\)’ ’.’ means curves with any title (’.’), function name that
matches the string ’u(x,0.3600)’, and any comment (’.’). It is necessary to pre-
cede the parentheses and the dots by backslashes, such as in u\(x,0\.3600\),
because (,), and . have special meanings in regular expressions.

To make an animation of the curves, we simply insert the -animate option
and specify that the regular expression is to match all titles, all functions
with name u, and all comments. In addition we need to fix the scale on the
y axis by giving the special Gnuplot command set yrange [-0.1:0.1]. This
command is transferred to Gnuplot through the -o option to curveplot. The
appropriate curveplot call then reads17

curveplot gnuplot -f plotex.map -r ’.’ ’u’ ’.’ -animate

-o ’set yrange [-0.1:0.1];’

To make animations in Matlab instead, we just replace gnuplot by matlab.
The specification of the axis is different in Matlab and Gnuplot so the -o

must also be changed,

curveplot matlab -f plotex.map -r ’.’ ’u’ ’.’ -animate

-o ’axis([0 1 -0.1 0.1]);’ # [xmin xmax ymin ymax]

Sometimes it is convenient to store the animation in an appropriate file for-
mat. Widely used formats on most platforms are animated GIF images and
MPEG movies. We can generate such files from a collection of PostScript
files. To this end, replace -animate by -psanimate in the curveplot command.
All the plots, which are going to be frames in an animation, are then available
as PostScript files with names of the form tmpdpc*.ps, where the * denotes a
Unix shell-style wildcard symbol that matches any character. Typically, the
file names are

tmpdpc0000.ps tmpdpc0001.ps tmpdpc0002.ps tmpdpc0003.ps ...

To make an animated GIF image, we can apply the convert program that
comes with the ImageMagick package:

convert -delay 50 -loop 10 -crop 0x0 tmpdpc*.ps movie.gif

17 You can run the animation in slow motion by addition the command -fps 1

(giving one frame per second).

46 1. Getting Started

The delay parameter controls the delay between each frame, here set to
50/100 sec. The -loop argument forces the animation to repeat itself, here 10
times. The -crop 0x0 argument removes all surrounding white space in the
frames and reduces the size of the animated GIF file. The final argument is
the name of the animated GIF file. You can view this file by the animate or
display programs (both come with ImageMagick):

animate movie.gif # run movie

display movie.gif # display frames one by one

Animated GIF files can also be viewed in a Web browser; just insert the file
as an image in an HTML page.

MPEG movies can be generated from the PostScript plots using the Diff-
pack scripts ps2mpeg or ps2mpeg.py. Just list the PostScript files as argu-
ments, as in ps2mpeg tmpdpc*.ps. The result is an MPEG movie file named
movie.mpeg. Any MPEG player can be used to show the movie, try mpeg play

movie.mpeg, for instance. We refer to Appendix B.5 for additional informa-
tion about curve plotting in Diffpack. For example, the movie can easily be
equipped with your own drawings on a front page (see page 746).

The movie making results in a lot of scratch files that can be removed
using the Diffpack command

Clean .

See page 719 for more information about Clean, which is a useful script for
cleaning directories in general.

Visualizing Numerical Errors. It is interesting to run the program again
with another Courant number. It appears that C = 1 gives a numerical
solution which is exact at all the grid points, regardless of the grid size!
Trying C > 1 results in unstable solutions that have no physical relevance, see
Figure 1.7 for an example. This illustrates that numerical solution methods
may have a stability restriction on ∆t. Here the stability criterion reads
C ≤ 1, implying that ∆t ≤ h/γ. If C < 1 the numerical solution will contain
an error, visible as small-amplitude nonphysical waves superimposed on the
exact solution. You can easily see this effect by running the code with smaller
Courant numbers. For example, give the same answers to the questions again,
except 0.3 for the Courant number, plot the solution and compare the visible
accuracy with the case C = 1. Appendix A.4 describes theoretical tools for
investigating stability and accuracy of finite difference schemes. In particular,
Appendix A.4.8 applies these tools to our present simulation model.

Exercise 1.8. .
It can be of interest to make a plot that compares the numerical solution

for C = 0.25 with the exact solution (the latter can be obtained by run-
ning the program with C = 1). Perform two simulations, one with C = 1

1.4. Simulation of Waves 47

(casename C1) and one with C = 0.25 (casename C0.25). Of course, such
comparisons only make sense if the curves u(x, ·) for a particular time point
are present in both the C = 1 and the C = 0.25 simulations. A plot of
u(x, t = 0.5) for the two choices of C (i.e. ∆t) is enabled by the curveplot

script with the file options -f C1.map -f C0.25.map and a regex option -r

’.’ ’,0\.5\)’ ’.’. (Notice the backslash that precedes the dot; without the
backslash the dot is interpreted as “any character”, resulting in matches for,
e.g., 0.025 and 0.075 as well.) �

As a prolongation of Exercise 1.8, we might want to show a movie of the
C = 0.25 solution simultaneously with the exact solution. Noting that each
frame in the C1 case corresponds to every four frame in the C0.25 case, we
must first extract the lines in C0.25.map that match those of C1.map. To this
end, we can use the Diffpack script ExtractLines (extracting every 4 line,
starting with line 1):

ExtractLines C0.25.map 4 1 > C0.25x.map

Each frame in the resulting movie consists of two curves, where each curve
must be specified with its own regex set:

curveplot gnuplot -f C1.map -r ’.’ ’u’ ’C=1’ -f C0.25x.map

-r ’.’ ’u’ ’C=0\.25’ -animate -o ’set yrange [-0.05:0.05];’ -fps 1

1.4.5 Automating Simulation and Visualization in Scripts

The tools we have presented for running the 1D wave simulator and visu-
alizing the solution demand quite long commands to be written. To reduce
the manual work and the danger of errors, it is a good idea to write a small
script for automating the execution of the commands.

Bourne Shell Scripts. The very simplest type of such a script is a file con-
taining the straight Unix commands for simulation and visualization, e.g.,

./app --casename tmpsim1

curveplot gnuplot -f tmpsim1.map -r ’.’ ’u’ ’.’ -animate \

-o ’set yrange [-0.05:0.05]’

Putting these three lines in a file auto1.sh and making the file executable
(chmod a+rx auto1.sh), you can just write

./auto1.sh

48 1. Getting Started

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

displacement

u(x,0.0000)

(a)

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

displacement

u(x,0.2550)

(b)

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

displacement

u(x,0.4080)

(c)

-0.1

-0.05

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

displacement

u(x,0.8670)

(d)

Fig. 1.7. Simulation of waves on a string with C = 1.02, i.e., slightly larger
than the stability limit C = 1. (a) Initial condition; (b) small noise can be
seen; (c) the noise has been amplified; (d) the noise has been further ampli-
fied and the solution is destroyed. (101 grid points were used in the simu-
lation, and the particular plots shown here were generated by Gnuplot, us-
ing the special option -o ’set yrange [-0.1:0.1]; set data style lines;’

to curveplot.)

1.4. Simulation of Waves 49

to run the simulator and display the movie.
The Unix command interpreter, referred to as the shell, can do much more

than executing commands. The shell is actually a programming language.
There are many different dialects of Unix shells: Bourne shell (sh), Bourne
Again shell (bash), C shell (csh), Korn shell (ksh), to mention some. The
extension .sh in the script’s filename is used to indicate that the script follows
the Bourne shell syntax. To ensure that the Bourne shell is used to interpret
the commands in the script, we can write

#!/bin/sh

as the first line of the script.
Suppose you want to view the impact of different values of C on the so-

lution of the wave equation. It would be convenient to have a script (say)
auto2.sh taking C as a command-line argument, and then running the sim-
ulator with this C as input and displaying the movie. We could write a title
in the movie, containing the C value, and also generate a hardcopy of the
animation. An appropriate script may look as follows.

#!/bin/sh

command-line args are stored in $1, $2, ... :

C=$1 # Courant number (first command-line argument)

n=41 # number of grid points

tstop=4.0

make input file; C, n and tstop on separate lines:

cat > tmp.i <<EOF

$n

$C

$tstop

EOF

casename="tmp_C=$C"

run simulation:

./app --casename $casename < tmp.i

visualize movie on the screen:

curveplot gnuplot -f $casename.map -r ’.’ ’u’ ’.’ -animate \

-o "set yrange [-0.05:0.05]; set title ’Courant number $C’;"

make hardcopy (MPEG movie) if the second command-line argument

equals "mpeg":

if [$# -eq 2]; then # two command-line arguments

if [$2 = "mpeg"]; then

rm -f tmpdpc*.ps # clean up old files

curveplot gnuplot -f $casename.map -r ’.’ ’u’ ’.’ -psanimate \

-o "set yrange [-0.05:0.05]; set title ’Courant number $C’;"

50 1. Getting Started

ps2mpeg tmpdpc*.ps

mv movie.mpeg $casename.mpeg # make a more descriptive name

fi

fi

Even if you are not familiar with variables and Bourne shell constructs, there
is a good chance that you can modify the script to suit your own needs.
Unless you already know Bourne shell programming quite well, I recommend
you to use Perl or Python for more advanced scripts. Perl and Python are
very powerful programming languages and available on most computer plat-
forms, including Unix and Windows. Perl is very widespread and popular,
but many find Python considerable easier to learn and master. C++ and
Java programmers may also find Python’s easy-to-use and flexible support
for classes and object-oriented programming particularly attractive. In this
book we have therefore chosen Python as the primary scripting language.
Readers who want to learn more about Python, especially in a scientific
computing setting, should address the book [68].

Python Scripts. The auto1.sh script presented above, which executes two
commands app and curveplot, can be written as follows in Python:

#!/usr/bin/env python

import os

os.system("./app --casename tmpsim1")

os.system("curveplot gnuplot -f tmpsim1.map -r ’.’ ’u’ ’.’ "\

"-animate -o ’set yrange [-0.05:0.05]’")

Plain operating system commands are run by calling os.system. The script
is executed by

./auto1.py

if the name of the script is auto1.py (Python scripts normally have the ex-
tension .py) and the file auto1.py is executable. Alternatively, we can always
write

python auto1.py

This is also the way to run the script on Windows machines (from a DOS
command prompt).

Python is an advanced programming language with control statements,
lists, hashes (called dictionaries), classes, single and multiple inheritance,
widgets for GUI building, and lots of add-on modules. To get a bit more feel
for Python we present the auto2.sh script with Python syntax:

1.4. Simulation of Waves 51

#!/usr/bin/env python

import os, sys

command-line arguments are stored in the sys.argv[1:] array

C = float(sys.argv[1]) # Courant number (1st command-line arg.)

n = 41 # number of grid points

tstop = 4.0

make input file; C, n and tstop on separate lines:

f = open("tmp.i", "w") # open file for writing

f.write("""

%d

%g

%g

""" % (n, C, tstop)) # printf-type statement

f.close()

casename="tmp_C=%g" % C

run simulation:

os.system("./app --casename %s < tmp.i" % casename)

visualize movie on the screen:

os.system("curveplot gnuplot -f %s.map -r ’.’ ’u’ ’.’ "\

"-animate -o \"set yrange [-0.05:0.05]; "\

"set title ’Courant number %g’;\" " % (casename,C))

make hardcopy (MPEG movie) if 2nd command-line argument

equals "mpeg":

if len(sys.argv[1:]) == 2:

if sys.argv[2] == "mpeg":

os.system("rm -f tmpdpc*.ps") # clean up old files

os.system("curveplot gnuplot -f %s.map -r "\

"’.’ ’u’ ’.’ -psanimate -o \"set yrange [-0.05:0.05]; "\

"set title ’Courant number %g’;\" " % (casename, C))

os.system("ps2mpeg tmpdpc*.ps")

make a more descriptive filename:

os.rename("movie.mpeg", "%s.mpeg" % casename)

We will not use further space on explaining the basics of Python, but instead
encourage the reader to consult [68] or a standard Python language book
[55,91]. Working with Diffpack becomes easier and more convenient if you
write Python scripts to automate your manual work with the computer. The
next paragraph shows another example about automating simulation and
visualization.

A Script for Comparing Curves. Suppose we want to compare solution curves
corresponding to different values of the Courant numbers. The relevant com-
mands to be executed are explained in Chapter 1.4.4, but we now want to

52 1. Getting Started

make a human-efficient interface to the problem solving process. First we
decide upon the interface. It would be nice to just list a set of Courant num-
bers on the command line and have the script running the simulator for
each Courant number and finally making a PostScript plot comparing the
solutions. As an example, writing

./compare_C.py 1.0 0.9 0.4 0.2

makes our script compare C.py run the simulator four times with Courant
numbers 1.0, 0.9, 0.4, and 0.2. The result is a PostScript plot containing the
various solution curves with appropriate labels.

The usual way of running the program would be to keep the number of
grid points (n) fixed and let the program adjust the time step (∆t) according
to the Courant number. However, different values of ∆t makes the plotting of
curves at the same time level difficult. It is easier to keep ∆t fixed and vary n
according to the Courant number. This must be done “outside” the simulator
since the Diffpack program reads n and computes ∆t. Let n1 be the chosen
number of grid points for a unit Courant number. The corresponding time
step is ∆t = h = 1/(n1 − 1). Given a Courant number Ĉ, the corresponding
n value becomes n = int(1 + Ĉ/∆t), where int means the largest integer less
than the argument. The associated Courant number C̃ = (n− 1)∆t may be
slightly different from the prescribed Ĉ, so we use C̃ as input to the simulator.

According to our simulation program (the dumpSolution function), all
curves have the same title. Curves at the same time point also get the same
curve name, regardless of ∆t, n, or C. To distinguish curves at the same
time point, but corresponding to different Courant numbers, we need to have
the Courant number reflected in the curve labels. To this end, we could of
course edit the Diffpack code and recompile the program. However, we can
also perform such adjustments in a script, outside the simulator. Two possi-
bilities are relevant: we can automatically edit the mapfiles or we can edit the
command file generated by curveplot18. In the present introductory scripting
example we find it easiest to manipulate the mapfile items. What we want
is just to add the Courant number to the curve name. Scripting languages
make it easy to read the mapfile file line by line, split a line into words, or
in our case strings separated by @, edit the strings, join the strings to a line
again, and write out the line.

The basic tasks of the script are:

1. For all given Courant numbers: compute n and the adjusted Courant
number (C̃), make an input file, make a casename reflecting the adjusted
Courant number, run the simulator.

2. Add the Courant number value to the curve names in the mapfile. For
example, edit “u(x,0.3100)” to “u(x,0.3100), C=0.8”.

18 See Chapter 3.6.5 for an example on how to perform this type of fine tuning of
plots by editing the generated command file. (.gnuplot.commands is the default
name of this file if curveplot applies Gnuplot as plotting program. See page 745.)

1.4. Simulation of Waves 53

3. For some selected points of time: format the curve name properly, add up
-f mapfilename options to curveplot, construct the complete curveplot

command, and run curveplot.

The complete script, available in a file compare C.py, is listed next.

54 1. Getting Started

#!/usr/bin/env python

import os, sys, re, string

if len(sys.argv) < 3:

print "Usage: %s ngridpoints C1 C2 C3 C4 ..." % sys.argv[0]

sys.exit(1) # exit if too few command-line arguments

n_1 = 50 # no of grid intervals for C=1

dt = 1.0/n_1 # fixed time step (C=1 and n_1 points)

nsteps = 100 # total no of time steps

tstop = nsteps*dt

check that we have compiled the simulator:

if not os.path.isfile("app"):

print "The simulator is not compiled!"; sys.exit(1)

run the simulator:

casenames = [] # list of all casenames

for Courant_no in sys.argv[1:]:

C = float(Courant_no) # need a float C to compute with

n = int(C/dt) # no of grid points (dt is fixed)

C = dt*n # new, slightly adjusted C

casename = "tmp_C=%g" % C

casenames.append(casename)

file = open("tmp.i", "w")

file.write("%d\n%g\n%g\n" % (n,C,tstop))

file.close()

os.system("./app --casename %s < tmp.i" % casename)

edit the mapfile (add Courant number to curvenames):

mapfile = casename + ".map"

os.rename(mapfile, mapfile + ".old~")

fold = open(mapfile + ".old~", "r")

fnew = open(mapfile, "w")

for line in fold.readlines():

c = line.split(’@’) # split line wrt @

c[2] += ", C=%g" % C # add Courant number to curvename

line = string.join(c, ’@’) # join columns to form new line

fnew.write(line)

fold.close(); fnew.close()

def plot(time):

"make a plot containing all curves at t=time"

time is written with %.4f in the mapfile and

curveplot uses regex matching to find the curvename

t = "%.4f" % time

1.4. Simulation of Waves 55

t = re.sub(r"\.", r"\.", t) # quote the dot

curvename_regex = r"u\(x,%s" % t

f_opt = "" # construct -f option to curveplot

for c in casenames:

f_opt += "-f " + c + ".map "

opt = f_opt + "-r ’.’ ’%s’ ’.’" % curvename_regex

psfile = "tmp_t%s.ps" % str(time)

cmd = "curveplot gnuplot " + opt + " -ps " + psfile

print cmd

os.system(cmd)

return psfile # can make use of the plotfile name elsewhere...

plot solutions at three different times:

for t in [10*dt, tstop/2, tstop]:

file = plot(t)

os.system("gv " + file + "&") # display PostScript file

A sample plot is shown in Figure 1.8. There is quite some boring and

-0.055

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0 0.2 0.4 0.6 0.8 1

displacement

u(x,1.0000), C=1
u(x,1.0000), C=0.7
u(x,1.0000), C=0.2

Fig. 1.8. Comparison of solutions of the 1D wave equation (51 grid points).

error-prone manual work related to producing such plots. A script automates
the work and increases the reliability (since the plot in this case is tagged with
the correct Courant numbers). The most important benefit, nevertheless, is
the ease of running experiments. With a script you will most likely run many
more cases than if the commands are typed manually. It is also very easy to
produce new plots if it turns out that some parameters need adjustment.

We mention that as soon a script gets some size and modifies the results
of curveplot, one should consider replacing curveplot by one’s own tailored

56 1. Getting Started

scripts. The chapter “Creating Efficient Working Environments” in the au-
thor’s book [68] explains how to develop a series of tailored scripts for working
with mapfiles and plotfiles generated by Diffpack’s CurvePlot facility. These
scripts are more advanced than curveplot. The cited chapter also shows how
to combine such scripts with an effective GUI to form simple problem solving
environments.

1.4.6 A 2D Wave Equation with Variable Wave Velocity

Multi-dimensional waves in heterogeneous media can be modeled by the wave
equation

∂2u

∂t2
= ∇ · [γ2∇u] . (1.60)

The wave velocity γ now varies with the properties of the medium and there-
fore becomes a function of the spatial variables: γ = γ(x). For notational
simplicity, we shall introduce λ = γ2 in the following.

The variable-coefficient operator ∇ · λ(x)∇, for some prescribed function
λ(x), appears frequently in the present text, simply because this is a common
operator in a wide range of mathematical models. It is hence important to be
familiar with the detailed meaning of this expression. In 1D we simply have

∇ · [λ(x)∇u] =
∂

∂x

(
λ(x)

∂u

∂x

)
, (1.61)

whereas we in a 2D problem get

∇ · [λ(x, y)∇u] =
∂

∂x

(
λ(x, y)

∂u

∂x

)
+

∂

∂y

(
λ(x, y)

∂u

∂y

)
. (1.62)

The 3D version has a third term, similar to those involving x and y, but with
differentiation with respect to z. In the case λ is constant, we achieve the
well-known (constant-coefficient) Laplace term:

∇ · [λ∇u] = λ∇ · [∇u] = λ∇2u .

Equation (1.60) arises in a number of applications involving waves. The
1D version of the equation describes not only waves on a string, but also sound
waves in tubes, e.g., in a flute or organ pipe. With two spatial dimensions,
(1.60) describes vibrations of a membrane, e.g. a drum, as a generalization
of the model for vibrations of a string. Another possible physical application
of (1.60) in 2D, which will be studied in Chapter 1.4.7, corresponds to large
destructive ocean waves. The 3D version of (1.60) models radio, light, and
sound waves.

Let us show how straightforward it is to discretize a 2D version of the
PDE (1.60) by combining elements from Chapters 1.3.6 and 1.4.2. To begin
with, we assume that u = 0 on the boundary, u is prescribed as I(x, y) at

1.4. Simulation of Waves 57

t = 0, with ∂u/∂t = 0, and the domain is the rectangle Ω = (0, wx)× (0, wy).
The boundary condition u = 0 is relevant for vibrations of a membrane.

The 2D medium is given a uniform partition with nx and ny grid points
in each of the two space directions x and y. The approximation to u(x, y, t)
at grid point (i, j) at time t` is denoted by u`

i,j . We can set

xi = (i− 1)∆x, yj = (j − 1)∆y, t` = `∆t,

where ∆t is the constant time step and the constant space increments ∆x
and ∆y are given by ∆x = wx/(nx − 1) and ∆y = wy/(ny − 1). The index i
runs from 1 to nx and j runs from 1 to ny.

We see that (1.62) is essentially a sum of two “one-dimensional” terms,
where each term can be discretized as in the left-hand side of (1.28). For
example, the discrete version of the last term in (1.62) becomes

∂

∂y

(
λ
∂u

∂y

)
≈ 1

∆y

(
λi,j+ 1

2

(
u`

i,j+1 − u`
i,j

∆y

)
− λi,j− 1

2

(
u`

i,j − u`
i,j−1

∆y

))
.

For the time derivative in the wave equation we use the standard three-
point approximation as explained in Chapter 1.4.2. Putting the elements
together, we arrive at a finite difference method for the 2D wave equation with
variable coefficients. Algorithm 1.2 lists the details and is a slight extension
of Algorithm 1.1. The following abbreviation is used in the algorithm:

[4u]i,j ≡
(
∆t

∆x

)2

(λi+ 1
2 ,j(ui+1,j − ui,j)− λi− 1

2 ,j(ui,j − ui−1,j)) +

(
∆t

∆y

)2

(λi,j+ 1
2
(ui,j+1 − ui,j)− λi,j− 1

2
(ui,j − ui,j−1)) . (1.63)

58 1. Getting Started

Algorithm 1.2.

Explicit scheme for the 2D wave equation with u = 0 on the
boundary.

define u+
i,j , ui,j and u−i,j to represent u`+1

i,j , u`
i,j and u`−1

i,j , resp.

define [4u]i,j as in (1.63)
define (i, j) ∈ Ī to be i = 1, . . . , nx, j = 1, . . . , ny

define (i, j) ∈ I to be i = 2, . . . , nx − 1, j = 2, . . . , ny − 1
set ui,j = 0, (i, j) ∈ Ī
set the initial conditions:

ui,j = I(xi, yj), (i, j) ∈ I
define the value of the artificial quantity u−i,j :

u−i,j = ui,j + 1
2 [4u]i,j , (i, j) ∈ I

t = 0
while time t ≤ tstop

t← t+∆t
update all inner points:

u+
i,j = 2ui,j − u−i,j + [4u]i,j , (i, j) ∈ I

initialize for next step:

u−i,j = ui,j , ui,j = u+
i,j , (i, j) ∈ I

Notice that we do not explicitly set ui,j = 0 at the boundary. Instead, we
set ui,j = 0 initially and never touch the boundary values.

We remark that if λ is constant and ∆x = ∆y = h, the numerical scheme
simplifies, and the Laplace term ∇ · [λ∇u] = λ∇2u takes the well-known
discrete form

[4u]i,j = λ

(
∆t

h

)2

(ui−1,j + ui,j−1 + ui+1,j + ui,j+1 − 4ui,j) . (1.64)

This formula for approximating λ∇2u can be graphically illustrated as in
Figure 1.9. The circles denote the points in the grid that are used in the
approximation, and the numbers reflect the weight of the point in the finite
difference formula. In the more general case when λ is not constant, the same
stencil arises, except that the weights are different.

The implementation of the two-dimensional explicit finite difference scheme
is easily accomplished by a slight extension of the one-dimensional wave equa-
tion solver. Now we need to declare 2D arrays, like

ArrayGen(real) u (nx,ny);

and use two nested loops, one for each index, for accessing all the spatial
points at each time level. The entries in the ArrayGen object are stored
column-wise (as in Fortran). Therefore, when running through the grid points

1.4. Simulation of Waves 59

h

h

1 1

1

1

−4

Fig. 1.9. Illustration of the finite difference stencil for approximating the
Laplace operator ∇2u in a regular grid.

in nested loops, the first index should have the fastest variation such that we
run through the u(i,j) as they are stored in memory:

for (j = 1; j <= ny; j++)

for (i = 1; i <= nx; i++)

u(i,j) = ...

More details regarding implementation of the 2D wave equation are provided
in the next section.

Exercise 1.9. .
When using (1.60) to model vibrations of a membrane, e.g. a drum, rel-

evant initial conditions are u = 0 and ∂u/∂t = I(x, y), where I(x, y) 6= 0
in a small area. This I(x, y) models a localized initial velocity of the drum
skin (e.g., when hit by a drum stick). The relevant boundary condition is
u = 0. Modify the algorithm for numerical computations such that an initial
condition ∂u/∂t 6= 0 can be taken into account. �

1.4.7 A Model for Water Waves

Some water wave phenomena are recognized as long waves in shallow water,
meaning that the typical wave length is much larger than the depth. This fea-
ture simplifies models for water waves considerably and reduces the original
3D problem in the time-varying water volume to a 2D equation like (1.60)19.
Shallow water models are used for simulating storm surges, tides, swells in
coastal regions, and tsunamis20.

19 The reduction to the particular form (1.60) also requires that nonlinear effects
due to wave steepness or high amplitude/depth ratio can be neglected.

20 Tsunamis are destructive ocean waves generated by earthquakes, faulting, or
slides.

60 1. Getting Started

When (1.60) is used to model water waves, the primary unknown u(x, y, t)
is the surface elevation, while the variable coefficient λ is related to the water
depth: λ = gH(x, y), where g is the acceleration of gravity and H(x, y) is the
still-water depth. A relevant boundary condition at the coastline is

∂u

∂n
≡ ∇u · n = 0 .

The notation ∂u
∂n for the derivative in the direction normal to the boundary is

frequently used throughout this text. As initial condition we shall here take
u as prescribed and ∂u/∂t = 0. The assumptions behind the model (1.60)
and more advanced wave models are discussed in Chapter 6.2.

The basic finite difference scheme for (1.60) was treated in Chapter 1.4.6.
The extension here concerns the handling of the boundary condition ∂u/∂n =
0, often referred to as a homogeneous Neumann condition. This boundary
condition can be implemented in a way similar to what we did in Chap-
ter 1.3.2, i.e., the boundary condition is discretized by a centered difference
at the boundary. At the line i = 1 we then require

u`
2,j − u`

0,j

2∆x
= 0 ⇒ u`

0,j = u`
2,j .

Notice that this involves a fictitious value u`
0,j outside the grid. Using the

discrete PDE at the same boundary point, with u`
0,j = u`

2,j from the boundary
condition, enables elimination of the fictitious value. The [4u]i,j operator is
then modified to

[4u]1,j:i−1→i+1 ≡
(
∆t

∆x

)2

(λ1+ 1
2 ,j(u2,j − u1,j)− λ1− 1

2 ,j(u1,j − u2,j)) +

(
∆t

∆y

)2

(λ1,j+ 1
2
(u1,j+1 − u1,j)− λ1,j− 1

2
(u1,j − u1,j−1)), j 6= 1, ny . (1.65)

At the boundary i = nx we would then apply the modification [4u]nx,j:i+1→i−1.
Similarly, for j = 1 and j = ny we replace the original [4u]i,j operator by
[4u]i,1:j−1→j+1 and [4u]i,ny:j+1→j−1, respectively. The corner points of the
grid require modification of both indices, for example, the i = j = 1 point
leads to [4u]1,1:i−1→i+1,j−1→j+1.

Algorithm 1.3 precisely explains the updating of internal and boundary
points in terms of a function WAVE(u+, u, u−, a, b, c). As a special case, the
call WAVE(u+, u, u−, 1, 1, 1) reproduces the original finite difference scheme
with modifications due to homogeneous Neumann conditions ∂u/∂n = 0.

1.4. Simulation of Waves 61

Algorithm 1.3.

Basic finite difference updating formula for the 2D wave equa-
tion with ∂u

∂n = 0 on the boundary.

define [4u]i,j as in (1.63)
define [4u]1,j:i−1→i+1, [4u]nx,j:i+1→i−1, [4u]i,1:j−1→j+1,

and [4u]i,ny:j+1→j−1 according to (1.65)
define (i, j) ∈ I to be i = 2, . . . , nx − 1, j = 2, . . . , ny − 1

define u+
i,j , ui,j and u−i,j to represent u`+1

i,j , u`
i,j and u`−1

i,j , resp.

function WAVE(u+, u, u−, a, b, c):
update all inner points:

u+
i,j = 2aui,j − bu−i,j + c[4u]i,j , (i, j) ∈ I

update boundary points:

i = 1; u+
i,j = 2aui,j − bu−i,j + c[4u]i,j:i−1→i+1, j = 2, . . . , ny − 1

i = nx; u+
i,j = 2aui,j − bu−i,j + c[4u]i,j:i+1→i−1, j = 2, . . . , ny − 1

j = 1; u+
i,j = 2aui,j − bu−i,j + c[4u]i,j:j−1→j+1, i = 2, . . . , nx − 1

j = ny; u+
i,j = 2aui,j − bu−i,j + c[4u]i,j:j+1→j−1, i = 2, . . . , nx − 1

update corner points on the boundary:

i = 1, j = 1; u+
i,j = 2aui,j − bu−i,j + c[4u]i,j:i−1→i+1,j−1→j+1

i = nx, j = 1; u+
i,j = 2aui,j − bu−i,j + c[4u]i,j:i+1→i−1,j−1→j+1

i = 1, j = ny; u+
i,j = 2aui,j − bu−i,j + c[4u]i,j:i−1→i+1,j+1→j−1

i = nx, j = ny; u
+
i,j = 2aui,j − bu−i,j + c[4u]i,j:i+1→i−1,j+1→j−1

In the implementation of Algorithm 1.3, two issues are important for
computational efficiency: (i) the (i, j)-loop over the grid points is split into
separate loops for the internal and boundary points, and (ii) the grid points
should be visited in the sequence they are stored in memory. As an alternative
to point (i), one could have one (i, j)-loop over all grid points and perform
tests inside the loop whether a grid point is on the boundary or not. How-
ever, compilers have problems optimizing loops with if-tests, so such tests are
better moved outside the loops. Regarding point (ii), it is important to know
the underlying storage structure of the array entries.

Some readers experienced with finite difference programming would per-
haps used an array for u that also includes the fictitious boundary points.
Instead of using special finite difference stencils on the boundary, we then use
the same stencil as in the interior. After the new values of u are computed,
one needs to update the fictitious points, e.g., u0,j = u2,j such that the dis-
crete normal derivative vanishes. However, computing with fictitious points
results in array structures that cannot directly be sent to visualization soft-
ware, since they contain nonphysical grid-point values, and this is the main
reason for our choice of special stencils on the boundaries in Algorithm 1.3.

In the implementation of the WAVE function in Algorithm 1.3 it can be
convenient to apply C macros for the operator [4u]i,j , for example,

62 1. Getting Started

#define LaplaceU(i,j, im1,ip1,jm1,jp1) \

sqr(dt/dx)* \

(0.5*(lambda(ip1,j)+lambda(i ,j))*(u(ip1,j)-u(i ,j)) \

-0.5*(lambda(i ,j)+lambda(im1,j))*(u(i ,j)-u(im1,j)))\

+sqr(dt/dy)* \

(0.5*(lambda(i ,jp1)+lambda(i ,j))*(u(i ,jp1)-u(i ,j)) \

-0.5*(lambda(i ,j)+lambda(i ,jm1))*(u(i ,j)-u(i ,jm1)))

This statement defines a macro LaplaceU with six parameters. The C/C++
preprocessor will substitute each occurrence of expressions like

LaplaceU(i,j, i-1,i+1,j-1,j+1)

by the defined formula involving lambda and u, where in this particular exam-
ple im1 is replaced by i-1, ip1 by i+1, and so on. The LaplaceU macro saves
a lot of typing and makes the implementation of the scheme clearer:

// update inner points according to finite difference scheme:

for (j = 2; j <= ny-1; j++)

for (i = 2; i <= nx-1; i++)

up(i,j) = a*2*u(i,j) - b*um(i,j)

+ c*LaplaceU(i,j,i-1,i+1,j-1,j+1);

// update boundary points (modified finite difference schemes):

for (j = 2; j <= ny-1; j++) {

// (run through j=const points in the sequence they are stored)

i=1;

up(i,j) = a*2*u(i,j)-b*um(i,j) + c*LaplaceU(i,j,i+1,i+1,j-1,j+1);

i=nx;

up(i,j) = a*2*u(i,j)-b*um(i,j) + c*LaplaceU(i,j,i-1,i-1,j-1,j+1);

}

j=1;

for (i = 2; i <= nx-1; i++)

up(i,j) = a*2*u(i,j)-b*um(i,j) + c*LaplaceU(i,j,i-1,i+1,j+1,j+1);

j=ny;

for (i = 2; i <= nx-1; i++)

up(i,j) = a*2*u(i,j)-b*um(i,j) + c*LaplaceU(i,j,i-1,i+1,j-1,j-1);

// corners:

i=1; j=1;

up(i,j) = a*2*u(i,j)-b*um(i,j) + c*LaplaceU(i,j,i+1,i+1,j+1,j+1);

i=nx; j=1;

up(i,j) = a*2*u(i,j)-b*um(i,j) + c*LaplaceU(i,j,i-1,i-1,j+1,j+1);

i=1; j=ny;

up(i,j) = a*2*u(i,j)-b*um(i,j) + c*LaplaceU(i,j,i+1,i+1,j-1,j-1);

i=nx; j=ny;

up(i,j) = a*2*u(i,j)-b*um(i,j) + c*LaplaceU(i,j,i-1,i-1,j-1,j-1);

1.4. Simulation of Waves 63

We can now use the WAVE function to devise a compact description of all
the computational tasks for the discrete 2D wave equation with homoge-
neous Neumann conditions. The steps are listed in Algorithm 1.4, which has
been implemented in a simple demo program that can be found in the di-
rectory src/fdm/intro/Wave2D. The implemented equations have been scaled
with the characteristic depth Hc as length scale and Hc/

√
gHc as time scale.

We remark that the explicit finite difference scheme is subject to stability re-
strictions in the same manner as the one-dimensional scheme. In two space di-
mensions the stability criterion becomes (see e.g. Example A.15 on page 689)

∆t ≤
(

max
(x,y)∈Ω

λ(x, y)

)− 1
2
(

1

∆x2
+

1

∆y2

)− 1
2

. (1.66)

Algorithm 1.4.

Complete scheme for the 2D wave equation with ∂u
∂n = 0 on

the boundary.

define quantities in Algorithm 1.3
define (i, j) ∈ Ī to be i = 1, . . . , nx, j = 1, . . . , ny

set ui,j = 0, (i, j) ∈ Ī
set the initial conditions:

ui,j = I(xi, yj), (i, j) ∈ I
define the value of the artificial quantity u−i,j :

WAVE(u−, u, u−, 0.5, 0, 0.5)
t = 0
while time t ≤ tstop

t← t+∆t
update all points:

WAVE(u+, u, u−, 1, 1, 1)
initialize for next step:

u−i,j = ui,j , ui,j = u+
i,j , (i, j) ∈ I

Let us apply the suggested algorithm to a physical problem involving
ocean waves generated by an underwater earthquake. In this example the
domain Ω = (sx, sx + wx) × (sy , sy + wy) is a scaled segment of an ocean
basin in which we want to study propagating wave patterns. The bound-
ary condition ∂u/∂n = 0 principally requires that the boundary ∂Ω of Ω
really approximates the coastline. This is not the case in the present applica-
tion; what we need is a type of boundary condition that transmits the waves
through the boundaries without any reflection. Such conditions, often called
radiation or open boundary conditions, constitute a difficult topic that we
briefly address in Example A.22 on page 704. Generalization of the condition
in that example to the present variable-coefficient 2D wave equation is not
easy and clearly beyond the scope of this text. However, the nature of the

64 1. Getting Started

wave equation allows us to use the currently nonphysical boundary condition
∂u/∂n = 0.

If the waves generated by the earthquake start from the interior of Ω,
the impact of the boundary condition will not be visible before the waves hit
the boundary. The condition ∂u/∂n = 0 results in complete reflection of the
waves, so when the reflected wave arrives at a point in the interior part of the
domain, the value of u at this point is no longer physical. On the other hand, if
we had applied a “wrong” boundary condition in the heat conduction problem
in Chapter 1.3, the solution would be affected at all points in the domain.
The different nature of the heat conduction PDE and the wave equation
is fundamental for numerical solution techniques. Appendix A.5 deals with
this topic, including the impact of changing boundary conditions in the wave
equations. The results from Appendix A.5 should make the reader confident
that the physically irrelevant ∂u/∂n = 0 condition can be used for simulating
earthquake-generated waves out in the open sea.

The impact of the earthquake on the sea water is typically modeled by an
elevation of the bottom, but if the movement of the bottom is rapid compared
with the time scale of wave propagation, which is usually the case, we may
translate the bottom elevation into a corresponding initial surface elevation.
Our initial conditions will hence be that ∂u/∂t = 0 and u(x, y, t) = I(x, y),
i.e., the surface is at rest with shape I(x, y). A particular choice of I is the
Gaussian bell function, centered at (xc

u, y
c
u) with amplitude Au and “standard

deviation” σux and σuy in the x and y directions:

I(x, y) = Au exp

(
−1

2

(
x− xc

u

σux

)2

− 1

2

(
y − yc

u

σuy

)2
)
. (1.67)

We shall here assume that the earthquake takes place in the vicinity of an
underwater seamount, with the shape of a Gaussian bell function21:

H(x, y) = 1−AH exp

(
−1

2

(
x− xc

H

σHx

)2

− 1

2

(
y − yc

H

σHy

)2
)
. (1.68)

With the scaling used in the implemented equations, the scaled depth ap-
proaches unity far from the seamount. The characteristic wave length of the
resulting waves should then be much larger than unity for the model to de-
scribe the wave propagation well.

For simulating and visualizing the wave motion we could extend the sim-
ple program in src/fdm/intro/Wave2D. However, better flexibility both with
respect to usage and modifications is obtained by using the high-level ab-
stractions outlined in Chapter 1.7. The associated simulator is found in

21 This simulation case is in fact inspired by the geometry of the Gorringe Bank
southwest of Portugal. Severe ocean waves have been generated due to earth-
quakes in this region.

1.4. Simulation of Waves 65

src/fdm/Wave2D. It is not necessary to understand these programming tech-
niques at the present stage when just playing around with the wave simulator
in the forthcoming text.

In our first test, we try a circular bell shape for both H and the initial
u, with center yc

H = yc
u = xc

H = xc
u = 0. The solution is then expected to

be symmetric with respect to the lines x = 0 and y = 0. Therefore, we only
need to simulate the wave motion for x, y ≥ 0, thereby reducing the size of
the domain and the computational work by a factor of four. The boundary
condition at the symmetry lines is (also) ∂u/∂n = 0. The recommended
simulator is located in the directory src/fdm/Wave2D. Here is an appropriate
execution command for that simulator:

./app --casename circles -nx 31 -ny 31 -sx 0 -wx 20 -sy 0 -wy 20

-dt 0 -t 20 -A_H 0.7 -A_u 0.5 -xc_H 0 -yc_H 0 -xc_u 0 -yc_u 0

-sigma_ux 2 -sigma_uy 2 -sigma_Hx 2 -sigma_Hy 2

The option -dt 0 causes the program to find the optimal value of ∆t that
fulfills the stability criterion in each cell. The script u-plotmtv.py take the
output from a run and visualizes the results. Try u-plotmtv.py; some snap-
shots of u and H are plotted22 on the screen and an MPEG movie is made.
After the script has finished, use some MPEG player to visualize the anima-
tion of the wave motion in movie.mpeg.

Let us choose yc
H = yc

u, such that y = 0 is still an expected symmetry
line, but now with the generated surface disturbance displaced slightly to the
right, e.g., xc

u = σHx. The modified command-line options become -nx 61

-sx -20 -wx 40 -xc u 2. To make a visually attractive plot, one can simulate
the motion in the total physical domain and scale the initial amplitude Au

such that the propagating waves exhibit significant visible displacement of
the surface23, see Figure 1.10 for an example. Notice that the geometry in
Figure 1.10 is actually very thin; the z scale ranges from -1 to 0.2, whereas
the horizontal extent is [−20, 20] × [−20, 20]. The waves are therefore long
compared with the depth, and our visualization of the geometry in a cube
can be misleading at first sight.

Exercise 1.10. .
Replace the boundary conditions (1.51) and (1.52) in the problem (1.48)–

(1.52) by homogeneous Neumann conditions: ∂u/∂x = 0. Derive the numer-
ical scheme and write it in a form similar to Algorithm 1.1. (You should pay
particular attention to the formula for u1

i , especially at the boundary points
(assume that the initial condition has zero normal derivative at the bound-
ary). Develop a formula for u−1

i , i = 1, . . . , n, such that the general scheme
for u`+1

i is valid also for ` = 0.) �
22 A brief guide to the plotting program Plotmtv, which is used by u-plotmtv.py,

appears in Chapter 3.3.3.
23 Observe that multiplying Au by an arbitrary factor f just leads to multiplying

u(x, y, t) by f as well.

66 1. Getting Started

−0.15

−0.105

−0.06

−0.015

0.03

0.075

0.12

0.165

0.21

0.255

0.3

X

Y

Z

−1

0

0.2

−20
−10

0
10

20 −20 −10 0 10 20

Fig. 1.10. Surface elevation (exaggerated scale) and bottom topography sim-
ulated by the Wave2D solver on a 61× 61 grid (plotted with Plotmtv).

1.5 Projects

1.5.1 A Uni-Directional Wave Equation

Mathematical Problem. In this project, we consider the uni-directional wave
equation

∂u

∂t
+ γ

∂u

∂x
= 0, (1.69)

where u = u(x, t) and γ is a dimensionless number that equals unity (used
for just labeling the ∂u/∂x term). The equation is to be solved for x ∈ (0, 1)
and t ∈ (0, T), with u(0, t) = 1 for t ≥ 0 and u(x, 0) = 0 for x > 0.

Physical Model. The mathematical problem may model one-dimensional ad-
vective transport of heat or of a contaminant. Choose an interpretation,
present the full 3D model, demonstrate the simplifications, and introduce
a suitable scaling.

1.5. Projects 67

Numerical Method. We solve (1.69) by an explicit upwind finite difference
method:

u`+1
i = (1− C)u`

i + Cu`
i−1, (1.70)

where C = γ∆t/h is the Courant number. Explain how the formula (1.70) can
be derived (hint: recollect terms and identify the difference approximations
to the space and time derivatives). Formulate a numerical algorithm for the
complete discrete problem, including initial and boundary values.

Analysis. Show that the analytical solution of (1.69) is in general u(x, t) =
f(x − γt), where f(x) is the initial condition. Specialize this solution to the
current problem. Demonstrate that the analytical solution of (1.69) fulfills
the discrete equations when C = 1, regardless of the mesh partition. As an
optional analysis, derive a stability criterion for the numerical scheme and a
measure of the error (Appendix A.4 gives suitable background material on
stability and accuracy).

Implementation. The implementation should be as simple as possible; one
can, for instance, simplify the program from Chapter 1.4. Demonstrate that
the program reproduces the analytical solution of the continuous problem
when C = 1. Provide plots of u when C = 0.8, 1.0, 1.2.

1.5.2 Centered Differences for a Boundary-Layer Problem

Mathematical Problem. In this project we shall work with the boundary-value
problem

u′(x) = εu′′(x), x ∈ (0, 1), u(0) = 0, u(1) = 1, (1.71)

where ε > 0 is a prescribed constant. The physical relevance of this problem is
somewhat limited, but one can think of (1.71) as the simplest possible model
for an important phenomenon called boundary layers that appear in a wide
range of fluid flow applications24. The boundary layer is a region of small
extent, usually close to the boundary, where the solution changes rapidly. As
will be evident from this project, simulation of boundary-layer phenomena
may easily lead to qualitatively wrong results.

Numerical Method. A standard centered finite difference scheme for (1.71)
takes the form

ui+1 − ui−1

2h
=

ε

h2
(ui−1 − 2ui + ui+1) , (1.72)

for i = 2, . . . , n− 1, h = 1/(n− 1), with u1 = 0 and un = 1.

24 See [149, Ch. 3-6.1] for a fluid flow application where (1.71) occurs.

68 1. Getting Started

Implementation. Implement the scheme (1.72) in a Diffpack program based
on the code from Chapter 1.3. The program should dump the ui values for

plotting and compute the error e =
(
n−1

∑`
k=1(u(xk)− uk)2

)1/2

, where uk

is the numerical solution at the grid point xk , and u(xk) is the corresponding
analytical solution of the PDE problem. Perform a partial verification of the
program by letting ε → ∞ and observe that the limiting problem u′′ = 0 is
solved exactly (choose, e.g., n = 4).

Analysis. Find the analytical solution of the continuous problem and show
that the solution u(x) is monotone. Consider the limit ε→ 0 in (1.72) when
n is an even integer. Demonstrate that in this limit the following “saw-tooth”
solution is possible:

u1 = u3 = u5 = · · · = un−1 = 0, u2 = u4 = · · · = un = 1.

Find the analytical solution of the discrete equations (see Appendix A.4.4)
and find a criterion, involving ε and h, such that the numerical solution is
non-oscillatory, i.e., it exhibits the same qualitative features as the solution
of the continuous problem. Find the truncation error of the scheme (1.72)
(see Appendix A.4.9).

Computer Experiments. Demonstrate first what happens to the numerical
solution, computed by the program, when h = 2ε− δ, 2ε, 2ε+ δ, where δ > 0
is a small number. In addition, show a plot of the solution with h� 2ε.

Set ε > h/2 and make a table of e as a function of the grid spacing
hk = 2−k, for k = 4, 5, 6, 7. Assuming in general a model e(h) = Chr for
the leading-order error term, we can estimate r from two values e(hk) and
e(hk+1) by

r =
ln(e(hk)/e(hk+1))

ln(hk/hk+1).

List r for k = 4, 5, 6 together with e in the table. How does the estimates
compare with the expressions found for the truncation error? (Diffpack hack-
ers might appreciate class ErrorRate for automated computation of r, see the
man page for class ErrorRate or consult Chapter 3.5.9.)

1.5.3 Upwind Differences for a Boundary-Layer Problem

Mathematical Problem. This is a continuation of Project 1.5.2. We consider
the same mathematical problem, but the finite difference discretization is
different.

Numerical Method. The oscillating solutions that occurred in Project 1.5.2
when the cells were not sufficiently small, can be avoided by using so-called
upwind differences [43, Ch. 9.1.2]. When ε > 0, we use the approximation

u′(xi) ≈
ui − ui−1

h
, (1.73)

1.6. About Programming with Objects 69

which has an error of order h. The unscaled differential equation correspond-
ing to (1.71) reads vu′ = ku′′, and numerical instabilities occur when the
term vu′ dominates over ku′′. Physically, ku′′ models diffusion in positive
and negative x direction, whereas vu′ models transport of u in a flow with
velocity v in positive x-direction (if v > 0). When forming the difference ap-
proximation to vu′ at point xi, one can apply the upstream or upwind value
ui−1, and avoid the downstream or downwind value ui+1, to reflect transport
of information from left to right also in the discrete version of vu′. Changing
the sign of v (and thereby ε) means changing the direction of the flow and
the upwind difference at xi must then be based on ui+1 − ui.

Implementation. Implement the upwind scheme in the same program as used
for the centered scheme.

Analysis. Find the analytical solution of the discrete equations in this case
and demonstrate that the numerical solution is monotone, like the solution of
the continuous problem, regardless of the mesh size. Find also the truncation
error of the upwind scheme.

Artificial Diffusion Interpretation. The upwind scheme may also arise from
the following different reasoning: Add a diffusion term ε̂u′′ to the original
equation and discretize the modified equation by standard centered finite
differences. Find the value of ε̂ that recovers the upwind scheme. In other
words, this alternative view shows that adding artificial diffusion ε̂u′′ can
stabilize a scheme and produce the same effect as upwind differences.

Computer Experiments. Demonstrate that the upwind scheme, computed
by the program, gives qualitatively correct solution profiles also in the case
h > 2ε. Produce a table of the error and convergence rate versus h, like in
Project 1.5.2. Discuss the merits of the two schemes.

1.6 About Programming with Objects

The programming examples so far in the book reflect traditional scientific
programming, where a problem is solved in terms of algorithms realized as
subroutines. Data structures, usually in the form of arrays and scalar vari-
ables, are shuffled in and out of the subroutines. The use of C++ changes the
syntax in comparison with Fortran 77 and C, but the programming concepts
remain the same. The only slight advantage of using C++ over Fortran 77
is that the compiler checks the number and type of arguments when call-
ing functions and that the validity of array indices can be controlled at run
time. This removes many of the subtle errors in Fortran 77 programs. Since
the way of thinking about programming is the same, experienced Fortran 77
programmers will quickly get used to the new C++ syntax after some hours
with coding on their own.

70 1. Getting Started

Shuffling data in and out of subroutines is often referred to as procedural
programming. This is an intuitive implementation technique that allows the
programmer to get started and be productive at once. The problem is that
PDE codes tend to be large, and procedural-oriented programming loses its
human efficiency as code size increases. At some point, even small changes
and extensions require substantial modification of existing code, with the
danger of introducing errors in thoroughly debugged parts. Many experienced
programmers will recognize this scenario, but take the unfortunate situation
for granted. Redesign and reimplementation is a possible, but very expensive,
recipe.

The basic problem is that procedural programming easily involves too
many visible details. When the complexity of a program or problem grows,
successful further management relies on introducing new high-level abstrac-
tions and hiding the details of more primitive parts. Researchers and practi-
tioners in computer science have established software development techniques
that help to increase the abstraction level. Such techniques have proven to
be superior to procedural-oriented programming and result in significantly
increased human efficiency associated with developing and maintaining com-
puter codes. This may mean higher productivity for researchers who do pro-
gramming of PDEs, with the opportunity to focus more on models and algo-
rithms and less on debugging code.

Some of the keywords associated with successful modern software de-
velopment techniques are object-oriented programming, object-based pro-
gramming, user-defined (or abstract) data types, generic programming (tem-
plates), data encapsulation, and inheritance. We refer to Stroustrup [136,
Ch. 2] for introductory examples on what these keywords mean. Unfortu-
nately, such techniques have not been adopted in the scientific community
until recently. One of the main reasons for the delay is obvious; the program-
ming languages that supported the new techniques were too inefficient for
number crunching until C++ became available.

Fortran 90 offers many of the features in C++, but lacks virtual func-
tions (see Norton [104, Ch. 4] for a thorough discussion). Virtual functions
are widely used in Diffpack for enhancing software flexibility. In fact, the use
of the term object-oriented programming (OOP) normally implies utilization
of virtual functions, and this is how we use the term in the present text.
Several new languages with true support for OOP have become popular dur-
ing the 90’s. We can mention Java, Perl, Python, Ruby, and Tcl25. These
languages are in general too slow for number crunching, but they offer some
very powerful features that can be useful when developing simulation and
visualization software. For example, graphical user interfaces, combination of
simulation and visualization codes, distribution of computational tasks over
a network, text file processing, and operating system interactions are usually
more conveniently handled by these languages than by C++. Java, Python,

25 Object orientation in Tcl is supported by a module called [incr tcl].

1.6. About Programming with Objects 71

and Ruby have a syntax and class concept close to that of C++ and are
hence quite easy to learn for a C++ programmer (or vice versa). The syn-
tax and principles of Perl and Tcl require some time to get used to, but the
languages are well worth a close study. Diffpack makes much use of Perl for
non-numerical tasks.

Many students are now exposed to Java in their introductory program-
ming course. Java coding implies object-oriented programming, because Java
does not allow traditional procedural programming. A new generation of sci-
entists and engineers will hence be trained in object-oriented concepts. This
will definitely make an impact on scientific computing software and create
demands for tools like Diffpack. Introductory Java programming is perhaps
an optimal background for taking up C++ and Diffpack; the programming
concepts are identical, the syntax is similar, and Diffpack supports many
of the convenient features found in Java, e.g., garbage collection, platform-
independent operating system interface, distibuted programming, and most
important, large libraries of ready-made generic modules.

Software for PDEs, based on the OOP paradigm, has attracted signifi-
cant attention in recent years, and several large-scale packages have emerged.
Some of these are described in [6]. A collection of object-oriented numerics
software in general can be found on the web page [105]. We remark that our
discussion and emphasis in this text center around software tools embedded
in programming languages, contrary to very user-friendly special-purpose in-
terfaces or languages for solving PDEs, like Fastflo [39], FreeFEM [45,90],
and the Matlab-based FEMLAB package [40]. Tools directly embedded in a
standard computer language may take some time to master, but provide a
very flexible and extensible problem solving environment.

The forthcoming sections outline the usage of C++ in numerical contexts
and in Diffpack in particular. The material is meant as a gentle introduction
to C++ programming and forms a basis for further reading of the book. How-
ever, we emphasize that the exposition is brief and by no means a substitute
for a comprehensive textbook on C++, e.g. [10,112,136].

1.6.1 Motivation for the Object Concept

Example: Computations with Dense Matrices. Suppose we want to compute
a matrix-matrix or matrix-vector product. In the mathematical language we
would express this as: Given M ∈ IRp,q and B ∈ IRq,r, compute C = MB,
C ∈ IRp,r. Similarly, the matrix-vector product is defined as: Given x ∈ IRq

and M ∈ IRp,q , compute y = Mx, y ∈ IRp.
Let us express these computations in Fortran 77 (a C code will be quite

similar, at least conceptually). The relevant data structures are

integer p, q, r

double precision M(p,q), B(q,r), C(p,r)

double precision y(p), x(q)

72 1. Getting Started

Given these data items, we may simply call a function prodm for the matrix-
matrix product and another function prodv for the matrix-vector product:

call prodm (M, p, q, B, q, r, C)

call prodv (M, p, q, x, y)

This approach seems simple and straightforward, and Fortran 77 is often re-
garded as a convenient language for numerical computations involving arrays.
However, the Fortran 77 expressions for the products involve details about
the array sizes that are not explicitly needed in the mathematical formula-
tions C = MB and y = Mx. This observation is in contrast to the basic
strength of mathematics, namely the ability to define abstractions and hide
details. A more natural program syntax would be to declare the arrays and
then write the product computations using the arrays by themselves. We will
now indicate how we can achieve this goal in C++ through user-defined data
types. This means that we will create a new data type in C++, here called
MatDense, that is suitable for representation of the mathematical quantity
matrix.

User-Defined Data Types. Related to the example given above, what are the
software requirements for the representation of a dense matrix? Clearly, one
must be able to declare a MatDense of a particular size, reflecting the numbers
of rows and columns. Then one must be able to assign numbers to the matrix
entries. Furthermore, the matrix-matrix and matrix-vector products must be
implemented. Here is an example of the desired (and realizable) syntax:

// given integers p, q, j, k, r

MatDense M(p,q); // declare a p times q matrix

M(j,k) = 3.54; // assign a number to entry (j,k)

MatDense B(q,r), C(p,r);

Vector x(q), y(p); // vectors of length q and p

C=M*B; // matrix-matrix product

y=M*x; // matrix-vector product

Programmers of numerical methods will certainly agree that the example
above demonstrates the desired syntax of a matrix type in an application
code. We will now sketch how this syntax can be realized in terms of a new
user-defined data type MatDense. This realization must be performed in a
programming language. Using C++, user-defined data types like MatDense are
implemented in terms of a class. Declaring a variable of class type MatDense,
creates a matrix object that we can use for computations. Below we list a
possible definition of the C++ class MatDense.

class MatDense

{

1.6. About Programming with Objects 73

private:

double** A; // pointer to the matrix data

int m,n; // A is an m times n matrix

public:

// --- mathematical interface ---

MatDense (int p, int q); // create pxq matrix

double& operator () (int i, int j); // M(i,j)=4; s=M(k,l);

void operator = (MatDense& B); // M = B;

void prod (MatDense& B, MatDense& result); // M.prod(B,C); (C=M*B)

void prod (Vector& x, Vector& result); // M.prod(y,z); (z=M*y)

MatDense operator * (MatDense& B); // C = M*B;

Vector operator * (Vector& y); // z = M*y;

};

In this example, the type Vector refers to another class representing simple
vectors in IRn.

A class consists of data and functions operating on the data, which in either
case are commonly referred to as class members in the C++ terminology.
The data associated with a matrix typically consist of the entries and the
size (the number of rows and columns) of the matrix. In the present case, we
represent the matrix entries by a standard two-dimensional C/C++ array,
i.e., as a double pointer to a block of memory. The number of rows and
columns are naturally represented as integers using the built-in C/C++ type
int. In most cases, the internal data representation is of no interest to a user
of the matrix class. Hence, there are parts of a class that are private, meaning
that these parts are invisible to the user. Other possibilities for representing
the matrix entries could include the use of a linked list. To maintain full
flexibility, it is therefore important that the user’s application program is
completely independent of the chosen storage scheme. We can obtain this by
letting the user access the matrix through a set of functions specified by the
programmer of the class. If the internal storage scheme is altered, only the
contents of these functions are modified accordingly — without any changes
to the argument sequences. That is, the syntax of any code that uses the
MatDense class will be unaltered if the internal C/C++ array is replaced by
a list structure. We shall later give examples on alternative internal storage
schemes in a matrix class.

Member Functions and Efficiency. In the class MatDense we have introduced
a subscripting operator for assigning and reading values of the matrix entries.
This function is actually a redefinition of the parenthesis operator in C/C++,

double& operator () (int i, int j);

thus providing the common Fortran syntax M(r,s) when accessing the entry
(r, s). The ampersand & denotes a reference to the matrix entry, which en-
ables the calling code to alter the contents of the entry. One might argue that

74 1. Getting Started

issuing a function call for each matrix look-up must be very inefficient. This
is definitely true. To circumvent such problems, C++ allows functions to be
inlined. That is, these functions are syntactically seen as ordinary functions,
but the compiler will copy the body of inlined functions into the code rather
than generating a function call. In this way, the subscripting operation is
as efficient as a direct index look-up in a C array. The inline function can
be equipped with a check on the array indices. Using the C/C++ prepro-
cessor, we can automatically include the check in non-optimized code and
completely remove it in optimized code. This use of inline functions enables
the programmer to achieve the efficiency of pure C, while still having full
control of the definition of the call syntax and the functionality of the index
operator. We shall explain these concepts in detail on pages 82–83.

The matrix-matrix product is carried out by a member function called
prod. The corresponding matrix-vector product function has also the name
prod. This convenient naming scheme is available since C++ can distinguish
the two prod functions due to different argument types. Fortran and C pro-
grammers are well aware of the problems of constructing names for a new
function. In C++ one can usually limit the fantasy to the most obvious
names, like print, scan, prod, initialize and so on, since the compiler will
automatically use the class name and the argument types as a part of the
name. Such function overloading reduces the number of function names em-
ployed by a package significantly, a feature that makes the software much
easier to use.

The desired syntax for a matrix-matrix product, C=M*B, can be achieved
by redefining the multiplication operator,

MatDense operator * (MatDense& B);

In this case, we get a matrix B, multiply it (from the right) with the matrix
in the current MatDense object, and then return the answer as a new matrix.
Similarly, one can redefine the addition operator to make it work for matrices,

MatDense operator + (MatDense& B);

Such constructs permit a compact and elegant syntax for compound expres-
sions, e.g. Q=M*B+P*R, where Q,M,B,P and R are matrices. Unfortunately, in
C++ such expressions can lead to loss of efficiency. This is what actually
happens: P is multiplied by R, the result is stored in a temporary matrix
TMP1. Then M is multiplied by B and the result is stored in a temporary ma-
trix TMP2. The TMP1 and TMP2 matrices are added and the result is stored
in a temporary variable TMP3, which is finally assigned to Q. The temporary
variables are created at run time, and the allocation of the associated data
structures (plain C/C++ arrays in the implementation above) can be time
consuming26. It should also be mentioned that the temporary objects allo-
cated by the compiler can be a waste of storage space, since the compiler is

26 We remark that many of the user-friendly interactive matrix computation sys-
tems, like Matlab, S-Plus, Maple, and Mathematica, frequently have similar ef-

1.6. About Programming with Objects 75

unaware of whether algorithmic data items, say Q, can be used to hold the
results of intermediate computations.

The prod function stores the result in a matrix C that the programmer
supplies, while the operator* function allocates a matrix and returns it. Dy-
namic allocation is very convenient, but the Diffpack developers feel that
full user control of matrix allocation is an important issue for efficient code.
The compound expression Q=M*B+P*R is most effectively evaluated by a special
function that implements the compound operator =*+*. This can be realized
by creating a member function in class MatDense:

void add (MatDense& M, MatDense& B, MatDense& P, MatDense& R);

which computes the desired expression. Although one now sacrifices the at-
tractive syntax Q=M*B+P*R, the add function has still lower complexity than
the Fortran 77 counterpart. Inside the add function, as in all member func-
tions, we have direct access to the underlying data structure and can utilize
special low-level tricks to help compilers optimize the code.

Extension to Sparse Matrices. Let us consider numerical computations with
sparse matrices (which is more relevant than dense matrices when solving
partial differential equations). In the implementation it is then important to
take advantage of the fact that only the nonzero entries of the sparse ma-
trix need to be stored and used for computations. For example, the product
Mx of a dense matrix M ∈ IRn,n and a vector x ∈ IRn requires in general
n2 multiplications and additions, while the work reduces to about 5n multi-
plications and additions when M stems from finite difference discretization
of a 2D Laplace equation −∇2u = f ; only about 5n entries in M are in
this case different from zero. We shall show that the Fortran 77 application
code for a sparse matrix-vector product grows in complexity, whereas the
C++ version does not. From a mathematical point of view, the expression
for the matrix-vector product is independent of whether the matrix is sparse
or dense. Therefore, the interface of a matrix should be the same regardless of
the storage format, but the internal data structure will be more complicated
for a sparse matrix and functions like prod and add must be tailored to the
internal storage structure for optimal efficiency.

To exemplify, a well-known storage scheme referred to as Compressed Row
Storage (see page 824 for an example) needs the following data structure,

class MatSparse

{

private:

double* A; // long vector with the nonzero matrix entries

int* irow; // indexing array

ficiency problems with compound expressions although it is seldom explicitly
documented.

76 1. Getting Started

int* jcol; // indexing array

int m, n; // A is (logically) m times n

int nnz; // number of nonzeroes

public:

// the same functions as in the example above

// plus functionality for initializing the data structures

};

For a user of the class, the public functions that can be called are the same.
Hence, an application code will not change when employing a sparse matrix
instead of a dense matrix. As soon as we have declared a matrix, and given the
information on whether it is dense or sparse, the storage details are inherent
parts of the matrix representation and the programmer does not need to be
concerned with this when using the matrix object.

Refining this approach, the dense and sparse matrix formats could be or-
ganized together with other matrix implementations in a class hierarchy. This
means that we introduce a common base class Matrix that defines a generic
interface to matrix operations. The base class does not contain any data; it
just tells what you can do with a matrix. Subclasses of Matrix implement
specific matrix formats, for example, class MatDense for dense matrices and
MatSparse for sparse matrices. In addition, we would equip the matrix hierar-
chy with classes for tridiagonal matrices, banded matrices, diagonal matrices,
and so on.

Among the operations on matrices that class Matrix defines, is the prod

function for the matrix-vector product. Every subclass of Matrix provides its
own implementation of the prod function. For example, class MatDense has
a straightforward matrix-vector product loop, whereas class MatSparse offers
a much more efficient prod function that utilizes the sparse structure of the
matrix. A key point is that prod is defined as a virtual function. This means
that we can program with matrices in terms of a pointer or reference to
Matrix, without knowing whether the matrix is dense or sparse. Say we have
the reference Matrix& M and perform the matrix-vector product y=M*x by the
call M.prod(x,y). Now, Matrix is no real matrix, and the reference M must
actually refer to some concrete subclass object, e.g. of type MatSparse. C++
will then know at run time that M actually refers to a MatSparse object, and
the M.prod(x,y) call is automatically invoked as a call to the tailored prod

function in MatSparse. In other words, the matrix-vector product can always
be written as M.prod(x,y) in C++, regardless of the type of matrix we work
with. This way of “hiding” special matrix formats behind a common matrix
interface (Matrix) simplifies the application code considerably and is a central
issue in object-oriented programming.

At this point, it is appropriate to discuss how the extension from dense
to sparse matrices affects the implementation in Fortran 77. We will then
have to explicitly transfer the sparse matrix storage structure to all functions

1.6. About Programming with Objects 77

operating on the matrices. Both the name and the arguments of the matrix-
vector product function reflect the matrix format. For example,

integer p, q, nnz

integer irow(p+1), jcol(nnz)

double precision M(nnz), x(q), y(p)

call prodvs (M, p, q, nnz, irow, jcol, x, y)

When writing numerical libraries, one often wants to provide generic solver
routines that can work for any matrix format. This is much more easily
accomplished in C++ than in Fortran.

There is some overhead in a virtual function call, so when the virtual
function has few arithmetic operations, the overhead can be noticeable. A
striking example is the indexing function operator(). If this is implemented
as a virtual function, indexing a matrix becomes very inefficient. Virtual func-
tions must therefore be used with care. One could be skeptical in general to
the overall efficiency of numerical codes based on C++ and object-oriented
programming techniques, because there are numerous features in C++ that
easily lead to slow code. The main rule proves to be that algorithms expected
to carry out heavy computations should be implemented as member functions
of the relevant classes using low-level C functionality. The sophisticated fea-
tures of C++ are then used at higher abstraction levels for organizing calls
to the low-level functions. Diffpack mainly works in this way. Experience has
shown that such careful use of C++ makes the computational efficiency close
to that of Fortran 77, see e.g. [5] for examples. There are also elements in
C++ that allow construction of numerical codes with efficiency superior to
that of Fortran 77 [144]. One can also combine Fortran and C++ by letting
the C++ member functions call Fortran 77 for performing the CPU-intensive
numerics.

1.6.2 Example: Implementation of a Vector Class in C++

The previous section motivated for the class concept and explained some of
the basic structure and usage of C++ classes. Now we shall look at the inner
details of a class. It would be natural to choose one of the matrix classes from
the previous section, but it appears to be somewhat easier to explain the de-
tails of a simple class for vectors instead. Our prototype vector class is called
MyVector. It turns out that the implementational details of class MyVector

cover large parts of the C++ language. The goal for the reader should not
be to understand C++ on the background of this example. The forthcoming
material is instead meant to outline important features in C++, demonstrate
how C++ objects behave, and indicate that C++ is a rich and complicated
language that takes time to master. The inner details of class MyVector might
be quite complicated for a novice C++ programmer, but the usage of the
class in numerical computations is very simple, a fact that we have tried

78 1. Getting Started

to demonstrate in Chapters 1.3 and 1.4. This observation should motivate
utilization of software libraries like Diffpack; C++ programming related to
application of ready-made classes can be straightforward, while implemen-
tation of the library classes can be quite tricky and requires extensive C++
knowledge and experience.

Specification of the Desired Functionality. Let us start with specifying the
desired syntax and usage of the new type MyVector. Some useful features are
listed next.

– Create vectors of arbitrary length n: MyVector v(n);

– Create a vector with zero length: MyVector v;

– Redimension a vector to length n: v.redim(n);

– Create a vector as a copy of another vector w: MyVector v(w);

– Set two vectors equal to each other: w = v;

– Take the inner product of two vectors: double a = w.inner(v);

or alternatively a = inner(w,v);

– Write a vector to the screen: v.print(std::cout);

– Extract an entry: double e = v(i);

– Assign a number to an entry: v(j) = e;

– Extract the length of the vector: int n = v.size();

Each statement in the proposed syntax will correspond to calls to member
functions in the MyVector class, thus giving us complete control of the behavior
of the vector.

Definition of the Vector Class. A C++ class must first be defined, which
means that we list the class name, the data members, and the member func-
tions. The appropriate syntax is given next, with comments indicating how
the public functions are used in application code.

class MyVector

{

private:

double* A; // vector entries (C-array)

int length;

void allocate (int n); // allocate memory, length=n

void deallocate(); // free memory

public:

MyVector (); // MyVector v;

MyVector (int n); // MyVector v(n);

MyVector (const MyVector& w); // MyVector v(w);

~MyVector (); // clean up dynamic memory

1.6. About Programming with Objects 79

bool redim (int n); // v.redim(m);

void operator= (const MyVector& w); // v = w;

double operator() (int i) const; // a = v(i);

double& operator() (int i); // v(i) = a;

void print (std::ostream& o) const; // v.print(std::cout);

double inner (const MyVector& w) const; // a = v.inner(w);

int size () const { return length; } // n = v.size();

};

Dissection of the Vector Class. A standard one-dimensional C/C++ array A

is used to store the vector entries. Or in other words, A points to a memory
segment where all vector entries are stored consecutively. The entries are re-
covered as A[0], A[1], . . . , A[length-1]. Notice that we also store the length
of the vector as part of the vector object. Since the way we store the vec-
tor information technically in the computer is of no interest for application
code programmers, the entries and the length are declared as private data
members. Additional private information covers functions for allocating and
deallocating dynamic memory, that is, the functionality that enables us to
create vectors of a length specified at run time. The contents, or the bodies, of
the allocate and deallocate functions show how we in C++ actually create
and destroy dynamic memory segments:

void MyVector::allocate (int n)

{

length = n;

A = new double[n]; // create n doubles in memory

}

void MyVector::deallocate () { delete [] A; }

The full name of a function in a class is prefixed by the class name, as in
MyVector::allocate. An important point at this stage is that member func-
tions in a class can access and modify the private and public data members of
the class as if they were global. In other words, allocate and deallocate have
direct access to A and length. We should remark that functions operating di-
rectly on dynamic memory often lead to subtle errors in C and C++. As a
Diffpack programmer, you will therefore never write code like the allocate

and deallocate functions above. Instead, you will access ready-made Diffpack
functions that perform dynamic memory operations in a safe (and thoroughly
debugged) way27.

27 The Diffpack counterpart to MyVector is class VecSimplest. Looking at its
allocate and deallocate functions, one will see that these are more compli-
cated than the ones outlined here in the text.

80 1. Getting Started

The functions in class MyVector that have the same name as the class
itself, are called constructors. These functions define the actions to be taken
when declaring an object of type MyVector. Writing just MyVector v; leads to
a call to the MyVector function without arguments. In this case it is natural
to perform no memory allocation and to initialize the pointer A to NULL (not
pointing to anything) and set length=0. The body of this constructor can
then take the following form:

MyVector::MyVector () // MyVector v;

{ A = NULL; length = 0; }

The next constructor, MyVector(int n), creates a vector of length n, with the
declaration syntax MyVector v(n);

MyVector::MyVector (int n) // MyVector v(n);

{ allocate(n); }

Space for the vector entries is now allocated, but the entries are not initialized!
Another constructor, MyVector(const MyVector& w), makes a copy of the

vector w. Such copying of objects appear frequently in C++ code and the
constructor is called a copy constructor. Inside this function we must dis-
tinguish between the supplied vector w and the vector in the class (i.e. v in
the declaration MyVector v(w)). The latter is often referred to as the “this”
object. A possible form of the copy constructor is

MyVector::MyVector (const MyVector& w) // MyVector v(w);

{

allocate (w.size()); // "this" object gets w’s length

*this = w; // call operator=

}

We first allocate memory for “this” vector, i.e. the A array in the class, based
on the size of w. Then we want to set all entries in the A array equal to
the entries in w. This is exactly what we perform in a statement like v =

w, which inside the copy constructor takes the form *this = w. There is a
hidden variable in every object, called this, which is a pointer to what we
have called the “this” object. To extract the object itself from a pointer to an
object, the pointer variable is prefixed by *, i.e., *this is the current (“this”)
object. Saying just A inside a class MyVector member function actually means
this->A, or equivalently, (*this).A. Notice that in C++, the arrow -> is used
to access a class member (data or function) from a pointer to an object, while
the dot . is used to access the member from an object.

The behavior of the assignment operator in expressions like *this = w or
v = w is defined by the operator= function28 class MyVector:

28 It is standard to let operator= return a reference to the assigned object such that
multiple assignments are possible. We have suppressed this feature in Diffpack
classes, and operator= therefore returns void.

1.6. About Programming with Objects 81

void MyVector::operator= (const MyVector& w) // v = w;

{

redim (w.size());

int i;

for (i = 0; i < length; i++) // C arrays start at 0: A[0],A[1],...

A[i] = w.A[i];

}

The argument to this function is declared as const MyVector&. The const

keyword means that w cannot be altered inside the function. If we try to
change the length or contents of w, when w is declared as a const MyVector

object, the compiler will issue an error message. The ampersand & signifies a
reference. This means that we only transfer the address of w to the operator=

function. We could equally well have used a constant pointer, const MyVector*

w. Pointers and references both represent addresses of objects, but they lead
to slightly different syntax; with a pointer we would need to write w->A[i],
whereas a reference requires w.A[i].

The alternative to using a reference (or pointer) as argument to operator=

would be to write just MyVector w. In C++ this implies that we take a copy
of the supplied w and use this copy inside the operator= function. That is,
w inside the function and the supplied w in the calling statement (v=w) are
two different objects. This allows us to change w inside the function, but the
changes will not be visible outside the function since we work on a copy. The
copy is taken by calling the copy constructor (which again calls operator=

such that we end up with an infinite loop in the present case). If the vector is
long, taking a copy might imply significant (and unnecessary) computational
overhead. It is therefore much more efficient to just pass the address in form
of a reference. Objects with possibly large data structures should always be
passed by reference.

Inside a member function, we can always access the private data members
of another object of the same type, here exemplified by w.A in operator=.
The loop applies basic C indexing of arrays, and it is important to notice
that C arrays start at 0. In application codes working with an object of type
MyVector, we do not allow programmers to write v.A[i], because A is declared
as private. Instead they should index the vector via the operator() function,
i.e. as v(i). With this latter syntax we can also decide that MyVector objects
are indexed from 1, that is, v(1) is the first entry (technically equivalent to
v.A[0]). The definition of the operator() function can be like this:

// inline functions:

inline double MyVector::operator() (int i) const // a = v(i);

{ return A[i-1]; }

inline double& MyVector::operator() (int i) // v(i) = a;

{ return A[i-1]; }

82 1. Getting Started

There are several details of this syntax that should be explained here. Calling
a function every time we want to access an entry in the vector implies a
significant overhead compared to the direct access w.A[i]. C++ therefore
offers functions to be inlined, which means that the compiler can copy the
body of the inline functions directly to the calling code. In other words, the
expression v(i) is converted by the compiler to w.A[i-1] and there is no
efficiency loss of indexing through the operator() function29.

As we see, there are two versions of the operator() function. The first
one returns a double and has a const keyword after the list of arguments,
indicating that the function does not alter the data members of the class
(otherwise the compiler issues an error message). We can only use such a
function for extracting a certain entry in the vector, like in the statement
double a = v(j). However, we would also need the syntax v(j)=a for poten-
tially changing a vector entry. The corresponding operator() function cannot
be const. Moreover, it must return access to the relevant entry in the vector,
that is, it must return the memory address of the entry, here represented as
a double reference: double&. The contents of the two functions are the same,
but the application areas differ.

One could ask the following question: Why not just provide one indexing
function

double& operator() (int i) { return A[i-1]; }

This function can be used for setting v(j)=a and a=v(j). However, if we want
to set a=v(j) and v is a const MyVector, the compiler will not allow us to
access v(j) because operator() is not a const function; only const member
functions can be called for const objects. That is, to allow full use of const,
both for documenting the code and increasing programming safety, we need
two versions of operator().

Checking the validity of array indices is central when debugging numerical
codes. We can easily build an index check into the operator() function. It
should be possible to turn off the check in optimized versions of the code and
only use the check during program development. We therefore put the check
inside preprocessor directives such that the preprocessor variable (or macro)
SAFETY CHECKS must be defined, usually as part of the compilation command,
for the index check to be active:

inline double& MyVector::operator() (int i)

{

#ifdef SAFETY_CHECKS

if (i < 1 || i > length)

29 This is not completely true; A[i-1] implies the overhead of a subtraction prior
to looking up the array entry. By a simple trick, namely setting A to A-1 in
allocate, A[i] will correspond directly to our definition of the entry v(i). This
trick is used in Diffpack arrays.

1.6. About Programming with Objects 83

std::cout << "MyVector::operator(), illegal index, i=" << i;

#endif

return A[i-1];

}

Diffpack makes heavy use of such tests, and SAFETY CHECKS is automatically
turned on when compiling Diffpack applications without optimization. The
reader should realize that with the class concept in C++ one has full control
of all aspects of the implementation and behavior of e.g. a vector class; the
functionality is exactly how the programmer has defined it to be.

The operator= function could have been implemented using operator()

indexing instead of the basic C/C++ indexing. The loop would then take
form

for (i=1; i<=length; i++) (*this)(i) = w(i);

Observe here that (*this)(i) calls the non-const this->operator() function,
while w(i) calls the const w.operator() function, because w is a const object
according to the declaration const MyVector& w, and the “this” object is non-
const when the function operator= is non-const. By inlining, the compiler
should translate (*this)(i) = w(i) into A[i-1] = w.A[i-1].

A function for redimensioning the vector can be almost trivially con-
structed by some logic and calls to allocate and deallocate:

bool MyVector::redim (int n)

{

if (length == n)

return false; // no need to allocate anything

else {

if (A != NULL) {

// "this" object has already allocated memory

deallocate();

}

allocate(n);

return true; // the length was changed

}

}

On the background of the preceding text, the print and inner functions
should be quite self-explanatory:

void MyVector::print (std::ostream& o) const // v.print(std::cout);

{

int i;

for (i = 1; i <= length; i++)

o << "(" << i << ")=" << (*this)(i) << ’\n’;

84 1. Getting Started

}

double MyVector::inner (const MyVector& w) const // a = v.inner(w);

{

int i; double sum = 0;

for (i = 0; i < length; i++) sum += A[i]*w.A[i];

// alternative: for (i=1; i<=length; i++) sum += (*this)(i)*w(i);

return sum;

}

Notice that both functions do not alter the “this” object, hence, they can be
declared as const. One should always try to declare functions and function
arguments as const if possible.

One might prefer the syntax a=inner(v,w) instead of a=v.inner(w). This
is trivially accomplished by a global inline function:

inline double inner (const MyVector& v, const MyVector& w)

{ return v.inner(w); }

We saw that when an object of type MyVector is declared, one of the construc-
tors are called. When the object is to be destroyed, C++ calls its destructor.
The name of the destructor is the class name preceded by a tilde. The purpose
of the function is to clean up dynamic memory:

MyVector::~MyVector () { deallocate(); }

Finally, we mention that the implementation of class MyVector does not make
use of any Diffpack functionality; what we have seen is pure C++.

Splitting the Class Definition and Implementation. A simple demonstration
program like the one in Chapter 1.3.3 fits easily into one single file. However,
as a program grows in size, it should be partitioned into logical file compo-
nents. Moreover, when programming in C++ it is usual to collect functions
and data in classes. The program code of a class is usually broken up into
a header file, with extension .h, and a source-code file, with extension .cpp.
Normally, every class X is defined in a file called X.h, whereas all its member-
function bodies are placed in a file X.cpp. All inline functions must be writ-
ten out in the X.h file. The file X.cpp must include X.h in order to access the
definition of class X.

The class definition in any header file X.h must be enclosed in a pair of
#ifndef and #endif preprocessor directives to avoid multiple inclusions. As
an example, consider MyVector.h:

#ifndef MyVector_IS_DEFINED

#define MyVector_IS_DEFINED

1.6. About Programming with Objects 85

class MyVector

{

...

};

#endif

The first time the compiler sees this file, the preprocessor variable (or macro)
MyVector IS DEFINED is not defined, making the first #ifndef test true. The
variable is thereafter defined. If the compiler hits an inclusion of the header
file MyVector.h again (in the same compilation), MyVector IS DEFINED is de-
fined and the text between #ifndef and #endif is skipped. Sometimes one
encounters compiler error messages complaining about multiple definitions
of something. The source of such errors is usually that the header file is not
surrounded by proper #ifndef and #endif directives.

Exercise 1.11. .
Type in the code of class MyVector in the files MyVector.h and MyVector.cpp.

Recall that the bodies of inline functions must be placed in the header file
MyVector.h. Make a main.cpp file with a simple demo program. �
Exercise 1.12. .

Extend class MyVector with a function for computing the Euclidean norm
of the vector. �
Exercise 1.13. .

Extend class MyVector with a scan(istream& i) function that reads a vec-
tor on the form n v 1 v 2 v 3 ... v n, where n is the total number of entries
and v 1, v 2, v 3 and so on are the entries in the vector. Reading an entry
v(j) from an istream object i is accomplished by the statement i>>v(j). �

Having seen some of the inner details of a vector class, we can turn to a
simpler topic, namely the application of ready-made array classes in Diffpack.

1.6.3 Arrays in Diffpack

Arrays constitute a fundamental data structure in numerical applications.
However, arrays are nothing else than sequences of memory locations used in
a program to represent different mathematical quantities like vectors, matri-
ces, sets, grids, and fields. In Chapter 1.6.2 we encapsulated a plain C/C++
array in a class for vectors, whereas we in Chapter 1.6.1 outlined the encap-
sulation of a C/C++ array in terms of a class for matrices. In Diffpack we
emphasize programming with abstractions like vectors, matrices, grids, and
fields as an alternative to just manipulating plain arrays, because such ab-
stractions make the numerical code closer to the mathematical formulation
of the problem and hide many disturbing book-keeping details. Especially in
large numerical applications, a close relation between problem formulation
and code is an important ingredient for increasing the human efficiency of
software development and maintenance.

86 1. Getting Started

Basic Vector and Matrix Types. Diffpack programmers replace the typical
Fortran 77 or C/C++ array of real-valued entries by the following objects:

– Vec(real): vector vi, i = 1, . . . , n, of real numbers.

– Mat(real): matrix Mi,j , i = 1, . . . ,m, j = 1, . . . , n, of real numbers.

– ArrayGen(real): a more general multi-index vector ui1···id
of real numbers,

with general base indices b1, . . . , bd, ij = bj , . . . , nj , j = 1, . . . , d.

– Ptv(real): spatial point xi, i = 1, . . . , d (more efficient than Vec when
d ≤ 3).

These Diffpack types have been parameterized30 such that Vec(Complex) is
the corresponding vector with complex entries. However, Vec(int) does not
make sense for reasons that we will explain later. In the following discussions
we drop the parameterization and write only Vec, Mat, and so on. Notice that
the base index of Diffpack arrays is fixed to unity in Vec and Mat and not
zero, which is standard in C and C++. Unlike the C and C++ arrays, Diff-
pack arrays enable subscript checking. This is of course a very useful feature
when debugging programs, and it can be turned off by simply compiling the
application in optimized mode (MODE=opt).

From a mathematical viewpoint, the array classes Vec, Ptv, and ArrayGen

are vectors, where the latter allows multiple indexing and an arbitrary base for
each index. This increased generality has of course an efficiency penalty, and
that is why Diffpack supports the simpler vector types Vec and Ptv in addition
to ArrayGen. Choosing d = 2 in an ArrayGen vector gives a storage structure
that seemingly coincides with Mat. However, Diffpack programmers should
from the initial stage pay attention to the underlying mathematical quantity
when they make a choice between ArrayGen with d = 2 and Mat. Consider, for
example, a finite difference scheme that involves a discrete function wi,j over
a two-dimensional uniform grid. In Fortran 77 or C, w would be represented
by a two-dimensional array, but in Diffpack we have the choice of ArrayGen

(with d = 2) or Mat. Since wi,j is actually a vector from a mathematical point
of view, ArrayGen is the correct type. This becomes obvious if we consider
the same mathematical problem in one or three space dimensions. We can
then always use ArrayGen to store the grid point values and only change d
according to the number of physical dimensions. Turning to another example,
finite element methods usually work with discrete values in terms of a vector
indexed from unity to the number of nodes, regardless of the number of
space dimensions or the underlying grid. In this case, Vec is the most suitable

30 Those familiar with C++ and the use of templates may find the indicated syn-
tax strange. For reasons of portability across Unix platforms, Diffpack does not
yet use true C++ templates. Instead, a set of preprocessor macros is used to
mimic the behavior of templates, see [71]. The source code can automatically be
converted to a form using true templates. If your Diffpack version applies true
templates, simply look at (say) Ptv(real) as a notation for the source code type
Ptv<real>.

1.6. About Programming with Objects 87

representation of the vector of grid point values, since it is more efficient than
ArrayGen.

Integer arrays in Diffpack have the names VecSimple(int), MatSimple(int),
ArrayGenSimple(int), and Ptv(int). The word “Simple” is inserted because
integer arrays cannot perform all the numerical computations that real and
complex arrays can. The functionality of VecSimple is therefore a subset of
the functionality of Vec, realized by inheritance in C++ [10, Ch. 9–11,13] and
explained on page 90.

Syntax of Vectors and Matrices. In the following program we demonstrate
the syntax of the Vec, Mat, ArrayGen, and Ptv types in Diffpack.

#include <ArrayGenSimple_int.h> // some integer arrays in Diffpack

#include <Arrays_real.h> // all real arrays in Diffpack

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

int i,j,k,n,m,p; real r;

n = m = 4; p = 3;

Vec(real) w(n); // declare vector of length n

w.redim (m); // change length to m (no effect if n=m)

i = w.size(); // read length of w vector

w.fill (-3.14); // set all entries of w equal to -3.14

w = -3.14; // alternative syntax to fill

Vec(real) z; // declare an empty vector (length 0)

z.redim(w.size());

z = w; // redim z and init z by w

z(n-1) = w(1) - 4.3; // this is how we index Vec objects

z.print (s_o, "z"); // write z to standard output with a heading

z.printAscii(s_o,"z");// same output, for ascii format only

z.print (s_o); // more compact output

Vec(real) q(z); // make a vector identical to z

w.add(z,3.5,q); // w = z + 3.5*q

w.print ("FILE=w.dat1", "w"); // print to file w.dat1

w.print (Os("w.dat2",NEWFILE),"w"); // alternative syntax

s_o << "\nRead a vector of length " << w.size() << ": ";

w.scan (s_i); // read from cin (w must have correct length)

s_o->setRealFormat ("%6.2f"); // change output format

w.print (s_o, "w read from standard input");

w.scan ("FILE=w.dat1"); // read w from the file "w.dat1"

w.scan (Is("w.dat1",INFILE)); // read w from the file "w.dat1"

w.save("w.m","w"); // save w in Matlab format on file "w.m"

w.load("w.m","w"); // load w in Matlab format from file "w.m"

r = w.inner (z); // compute r as the inner product of w and z

88 1. Getting Started

r = w.norm(); // compute r as the Eucledian norm of w

r = w.norm(Linf); // L-infinity norm of w (=max(abs(w_i)))

r = w.norm(l2); // discrete l2-norm (Eucledian norm)

r = w.norm(L2); // continuous L2-norm (=l2-norm/sqrt(n))

r = w.norm(l1); // discrete l1-norm

r = w.norm(L1); // continuous L1-norm

Mat(real) B; // declare an empty matrix (no data)

B.redim (n,m); // redimension B to an n times m matrix

B = 1.0; // set all entries to 1.0

B.fill (1.0); // alternative syntax

B.prod (w, z); // compute z=B*w

z.print (s_o, "z=B*w");

B.prod (w, z, TRANSPOSED); // compute z=(B-transposed)*w

z.print (s_o, "z=B^t*w");

Mat(real) C(n,n);

B.redim (n,n); B = 0; for (i = 1; i <= n; i++) B(i,i) = i;

B.factLU (); // overwrite B with its LU factorization

B.inverse (C); // compute C as the inverse matrix of B

C.print (s_o, "C"); // print and scan work as for a Vec object

B.size (j,k); // read dimensions j and k of B

i = B.rows(); // read the number of rows in B

j = B.columns(); // read the number of columns in B

ArrayGen(real) a; // declare an empty vector (length=0)

a.redim (m); // change length to m

a.redim (m,n,p); // three-dimensional array

a.redim (m,n); // a gets two indices: (1:m) and (1:n)

a.setBase(0,-1); // a’s indices become: (0:m-1) and (-1:n-2)

int i1, in, j1, jn; // loop limits

a.getBase (i1, j1); // get base indices

a.getMaxI (in, jn); // get largest index in each array dimension

// typical loop:

for (i = i1; i <= in; i++)

for (j = j1; j <= jn; j++)

a(i,j) = i - 2*j;

// all Vec functionality is also available to ArrayGen, e.g.,

a.print(s_o,"a"); a=-3.15; r=a.norm();

// B.prod(...) can also take ArrayGen arguments instead of Vec

// integer array: VecSimple(int), ArrayGenSimple(int):

VecSimple(int) c;

c.redim(11); c.fill(2); c.print(s_o,"v");

// syntax is equal to Vec, but numerical computations

// (inner, norm etc) are not allowed

1.6. About Programming with Objects 89

ArrayGenSimple(int) e(2,4); e.setBase(0,0); // array e(0:1,0:3)

e.fill(-1); e(0,1) = 10; e.print(s_o, "e");

// effective class Ptv for an index or a point:

Ptv(int) ind; // empty object (length 0)

ind.redim (3); // ind is to be used as index in 3D

ind(1)=2; ind(2)=m; ind(3)=n;

a.redim (ind); // redim to a 3-dim array of length 2*m*n

ind(1)=1; ind(2)=1; ind(3)=2; // index

a(ind) = 7.9; // assignment

ind.redim (4); // makes it possible to work with 4-dim array

// syntax is the same as that of Vec:

ind.fill (3); ind(2) = 5;

// slightly different print functions:

s_o << "\nind="; ind.print(s_o); s_o << " or "

<< ind.printAsIndex() << "\n";

Ptv(real) x(3); // 3D point

Ptv(real) y(3); x = 0.0; y = 2.0;

s_o << "||x-y||=" << x.distance(y) << "\n\n";

return 0;

}

You can find the program above in src/start/arraysyntax/main.cpp. If you
compile and run it (see Appendix B.2.1), you will observe that the header text
in the matrix and vector output contains some special characters. The pur-
pose of these is to indicate the array size and thereby help the scan functions
reading the arrays back in memory again.

Sending Diffpack Arrays to C and Fortran Routines. Many programmers
of numerical applications will need to access well-tested C or Fortran 77
software from their new C++ programs. The Diffpack vector types are easily
sent to C or Fortran routines by calling the member function getPtr0, which
returns a pointer to the underlying C array. This pointer points at the memory
location containing the first entry in the array. Multi-dimensional ArrayGen-
type objects employ the same storage structure as Fortran (i.e. the first index
has the fastest variation). Sending, e.g., a two-dimensional ArrayGen object
to a C function expecting a double** pointer causes problems, because the
ArrayGen provides a single pointer only. Extra code must then be written
for generating the double pointer. Another problem arises when Diffpack
matrices (Mat) are to be communicated to Fortran, because the underlying C
matrix (double pointer) employs the C convention for storing matrices: the
first index has the slowest variation, i.e., the entries are stored row by row
instead of column by column as in Fortran. Extra code for transposing arrays
is needed in such cases. The matrix data to be sent to the Fortran function

90 1. Getting Started

consists of a single pointer to the first entry, obtained by the member function
getData in the matrix class.

The complete functionality of the Diffpack array classes is documented in
the man pages (see Appendix B.4.1 for how to access Diffpack’s man pages).

Organization of Vector and Matrix Types in Diffpack. We will now explain the
class design of the array types in Diffpack. Preferably, the reader should be
familiar with concepts such as inheritance and virtual functions. The material
on the design of array objects in Diffpack is not required for continuing with
this text. Hence, you can safely move on to Chapter 1.6.4, which is another
optional section on object-orientation and C++.

The design of the array class hierarchies may seem complicated at first
sight, but the reason for the design is flexibility, generality, and reliability. The
vector hierarchy has a base class VecSimplest(Type) that is as simple as an
array class can be; it is nothing but a plain C/C++ array of Type entries with
a class interface. There are no requirements posed on the class type of the
array entries (Type), besides that class Type must have a constructor without
arguments. Class VecSimplest is similar to class MyVector in Chapter 1.6.2,
except that the array entry is parameterized in terms of a class Type, and
operator= and output functionality is removed to avoid the requirement that
class Type has operator=, operator<<, and a copy constructor. Furthermore,
the inner product function in MyVector has no meaning for a general entry
type (class Type may fail to provide an operator* function).

A slightly more advanced class, VecSimple, is derived from VecSimplest,
inheriting all the data and functions in VecSimplest. Class VecSimple can
print and read vector entries and set two vectors equal to each other. If you
use class VecSimple to create arrays, where each entry is an object of a class
(Type in our parameterization), that class must implement a copy constructor,
operator=, operator<<, and operator>>.

Class VecSort is a subclass of VecSimple and adds functionality for sorting
vector entries. The sorting procedures require that the entry class (Type)
has defined the operators <, >, <= and >=. If class Type also supports the
operators +, -, *, and /, we can perform numerical computations with the
entries. A class with many built-in numerical computations (like the norm,
the inner product, etc.) is Vec. The split of the vector concept into the different
layers VecSimplest, VecSimple, VecSort, and Vec is motivated by the diverse
requirements of the functionality of class Type. We use inheritance for sharing
code, such that procedures for indexing, allocation, and deallocation are only
programmed and tested once.

The layered design of vector classes in Diffpack has the advantage that if
you do not need sophisticated array functionality, you can use a very simple
class, like VecSimplest. It guarantees optimal efficiency and has a code that is
easy to understand. If the array entries are complicated objects, like full PDE
simulators, you must use such a simple class, because it does not make sense
to read, print, sort, or perform arithmetic operations on PDE simulators.

1.6. About Programming with Objects 91

The VecSimplest, VecSimple, and Vec classes implement vectors with unit
index base, contrary to the C/C++ convention where array indexing starts
at zero. It is convenient to have an arbitrary base and to allow multiple
indexing (one, two- and three-dimensional arrays). Such functionality could
be incorporated into class VecSimplest. However, we think it is important
that the simplest class is just a plain C/C++ array without additional data
structures. The added functionality offering multiple indices and arbitrary
base values is located in class ArrayGenSimplest. To increase the reliability, it
can utilize the already developed vector data structure and indexing, enabled
by deriving the class from VecSimplest. The idea that increased functional-
ity should take place in subclasses is also realized for the ArrayGen classes:
ArrayGenSimple can print its contents and set arrays equal to each other,
while ArrayGen can perform all the numerics that Vec offers. This is simply
achieved by deriving ArrayGen from Vec31. This design is easily accomplished
by combining existing classes using multiple inheritance in C++. Notice that
the numerical functionality of class Vec(Type) does not make sense when Type

is int, which means that there are no Vec(int) or ArrayGen(int).
A similar design is used for matrices as well. The most primitive dense

matrix class is called MatSimplest, class MatSimple is an extension of function-
ality, while Mat is aimed at numerical computations. There are no MatSort or
ArrayGenSort classes, but ArrayGen inherits sort functionality through its base
class Vec (which has VecSort as base).

We have already pointed out that there is a clear difference between vec-
tors and matrices from a mathematical point of view and that this difference
is mirrored in all parts of the Diffpack software. Matrix classes for numerical
computations can be accessed through a common interface specified by the
base class Matrix. Various subclasses realize tridiagonal matrices (MatTri),
banded matrices (MatBand), structured sparse matrices (MatStructSparse),
arbitrary sparse matrices (MatSparse), diagonal matrices (MatDiag), etc. A
similar generic interface for vectors is provided by class Vector. Its subclasses
represent ordinary vectors with a single subscript (Vec), vectors that allow
multiple indices (ArrayGen), and vectors with multiple indices and “ghost”
(inactive) entries (ArrayGenSel). We refer to Appendix D.1 for more informa-
tion about the design of vector, matrix, and linear system classes in Diffpack.
Figure 1.11 shows the vector and matrix class hierarchies. A technical justi-
fication of the design is provided by the references [20,22].

We remark that there are two possible alternatives to array classes, namely
sets and lists. These are well suited if the user does not know the length of
the array in advance. After having used a set or a list to create a series of

31 The observant reader will now claim that class ArrayGen gets one VecSimplest

part from Vec and another VecSimplest part from ArrayGenSimplest. Thus a
class ArrayGen object has two vectors! This could be true, but the effect is incon-
venient and avoided by declaring VecSimplest to be a virtual base class when
deriving VecSimple and ArrayGenSimplest. Consult a C++ textbook [10,136]
for more information on virtual base classes.

92 1. Getting Started

objects, it can be converted to an ordinary array (usually VecSimple). There
are two set classes in Diffpack: SetSimplest(Type), which can make sets of
almost any type of objects, and SetOfNo(Type), which is aimed at set of num-
bers (Type must be int or real). For lists, there is a class DpList(Type,Item),
where Type can be a user defined class, and Item reflects the type of each list
item: an instance, a pointer, or a handle (handles are smart Diffpack pointers
that can perform reference counting and some kind of garbage collection, see
page 105). There is also a list of lists class: DpLists(Type,Item).

The most common use of the set classes is when a series of numbers or
strings are to be read from input and the number of items is unknown. The
scan function reads a set of numbers terminated by a semicolon, for example,

SetOfNo(int) nodes; String s="1 8 2 16 23;"; nodes.scan(s);

It is then easy to load the set into a vector:

VecSimple(int) v; nodes.convert2vector(v);

The scan function in SetOfNo objects can also read a string on the form
[0:10,2], which means all numbers from 0 to 10 in a step of 2, that is,
{0, 2, 4, 6, 8, 10}.

The set and list classes in Diffpack are quite primitive and mostly suited
for building up data structures of unknown sizes prior to converting them to
Diffpack arrays. In the case where you need to do advanced programming with
sets or lists, we highly recommend to use the classes in the Standard Template
Library (STL) [136] that ought to be a part of your C++ implementation.

Diffpack is centered around computation on arrays32 rather than on sets
or lists because of efficiency reasons. Algorithms for numerical solution of
PDEs can usually be expressed as manipulation of (very) large arrays, and
the natural “Fortran-like” loops over array indices are easily recognized by
optimization modules in compilers. In other words, intensive numerical calcu-
lations should have a C++ implementation whose syntax triggers compilers
to take advantage of the experience from four decades of optimizing Fortran
codes. However, if we are not concerned about efficiency, implementations of
many numerical methods, especially the finite element method, can be made
very simple and elegant in terms of sets and lists.

1.6.4 Example: Design of an ODE Solver Environment

In this section we exemplify how advanced C++ features, such as inheritance
and virtual functions, can be conveniently used in numerical contexts. Novice

32 STL also contains vector classes and even an array type, valarray, aimed at
numerical computations. The reason why Diffpack applies its own special array
classes is mainly the need for high flexibility and efficiency at the same time. This
has forced us into a collection of array classes with different properties.

1.6. About Programming with Objects 93

VecSimplest

VecSimple

VecSort

ArrayGenSel

ArrayGen

Vec

Vector

ArrayGenSimplest

ArrayGenSimple

(a)

MatSimplest

MatSimple

Mat

MatBand MatStructSparse

MatTri MatDiag MatSparse

Matrix

(b)

Fig. 1.11. Class hierarchy for (a) vectors and (b) matrices.

94 1. Getting Started

C++ programmers may find this section complicated; after all, we solve a
simple mathematical problem using a fairly complicated C++ code. However,
the basic principles demonstrated here extend to advanced and large numer-
ical codes. The Diffpack libraries are founded on similar design principles, so
to take real advantage of the Diffpack system, the contents of this section
should be understood. You can probably jump to the next chapters and be
successfully playing around with Diffpack without reading the forthcoming
sections, but as soon as you feel your understanding of C++ and Diffpack
is too shallow to make satisfactory progress, it is a good point to study the
current section and the rest of Chapter 1 in detail.

To focus on programming concepts, we shall work with numerical solution
of ordinary differential equations (ODEs), because this keeps the mathematics
simple. The ODE system is written as

dyi

dt
= fi(y1, . . . , yn, t), yi(0) = y0

i , i = 1, . . . , n . (1.74)

We assume that the reader is familiar with such problems and the common
numerical methods for solving them, e.g., the forward Euler scheme and the
fourth-order Runge-Kutta algorithm.

The most straightforward way to solve (1.74) is to hardcode the fi func-
tions and the numerical algorithm. Using the forward Euler or fourth-order
Runge-Kutta method, this requires about an hour of work, including source
code writing and testing. Why then spend time on advanced programming
concepts? Although a simple algorithm is very easy to hardcode for a given
problem, every new problem requires approximately the same lines of code.
In such situations we should, as a fundamental principle, divide the code into
general and problem-specific parts. The general parts can be collected in a
numerical library and reused in other contexts, thus saving some coding and
debugging when new applications are addressed. A quite practical reason for
building libraries of ODE solvers is that many ODE systems require quite
sophisticated solvers. Occasionally, the user must experiment with several
solvers to determine an appropriate choice for the problem at hand. This
means that our particular equation, i.e. the fi functions, must be combined
with several possibly complicated solution algorithms. Only the fi functions
should then be implemented by the user, and the numerics of ODE solvers
should be offered by a general library. The current section outlines some basic
ideas for designing and implementing such libraries.

General libraries for ODE solvers have been available in the scientific
computing community for several decades. Fortran 77 libraries implement
the algorithms in terms of subroutines. For example,

SUBROUTINE RK4(Y,T,F,WORK1,N,TSTEP,TOL1,TOL2,...)

is a typical interface. The Y variable is an array of the current y variable, T
is the value of t, F is an external function defining fi, WORK1 is a work array

1.6. About Programming with Objects 95

(recall that Fortran 77 cannot allocate work arrays at run time), TSTEP is
the time step, TOL1, TOL2 and so on are various parameters for controlling
the behavior of the algorithm. This is an obvious design and quite easy to
use. However, we shall point out a couple of principal difficulties that we can
handle more elegantly using object-oriented programming.

Let us be specific and treat a particular ODE:

ÿ + c1(ẏ + c2ẏ|ẏ|) + c3(y + c4y
3) = sinωt. (1.75)

To obtain a set of first order equations, which is assumed in both the mathe-
matical and implementational framework, we rewrite the second-order equa-
tion as a system of two first-order equations, ẏ1 = y2, ẏ2 = ÿ, leading to

f1 = y2, (1.76)

f2 = −c1(y2 + c2y2|y2|)− c3(y1 + c4y
3
1) + sinωt . (1.77)

It would have been convenient to let the user-defined function have yi, ci and
ω as arguments. That is, the Fortran function F looks like this

SUBROUTINE F(YDOT,Y,T,C1,C2,C3,C4,OMEGA)

However, the call to F will then be problem dependent. Subroutines like RK4

force the F function to be the same in all problems:

SUBROUTINE F(YDOT,Y,T)

The parameters ci and ω needed in the F function must be transferred by
COMMON blocks, i.e., as global variables, frequently leading to side effects and
bugs that are hard to find.

In C++ we can improve the design by letting the user program with a
generic solver of unknown type (i.e. there is no need to hardcode calls to
a specific routine like RK4), and the particular type of solver can be chosen
at run time. Class hierarchies and virtual functions are important tools in
this respect. Furthermore, the code for the fi functions should have a generic
signature, such that it can be called from any solver, without requiring that
the problem-dependent parameters c1, . . . , c4, ω are global variables. This is
enabled by letting the fi functions be implemented in terms of a class instead
of a function.

Basic Principles of the Software Design. A C++ tool for solving ODE sys-
tems may consist of two class hierarchies, one for the solution algorithms
and one for the problem-dependent information (fi). (We remark that the
concepts outlined in this paragraph probably become clearer when we later
discuss the corresponding source code in detail.) The solution algorithm hier-
archy has a base class ODESolver that defines a virtual function advance, which
advances the solution one time step. Specific algorithms are implemented in

96 1. Getting Started

subclasses derived from class ODESolver. As examples, we will demonstrate
the implementation of the advance function for the explicit Forward Euler
integration method in a class ForwardEuler. The fourth-order Runge-Kutta
scheme is realized as a class RungeKutta4. Although we only demonstrate
the details of trivial solution methods, the reader should understand that it
is in principle straightforward to equip our library with more sophisticated
algorithms.

Using an ODESolver pointer or reference you can call the virtual advance
function and the program will at run time figure out which particular algo-
rithm (e.g. Forward Euler or fourth-order Runge-Kutta) that is to be used.
This is an important feature made possible by object-oriented programming:
In an application code we can work with an abstract solver ODESolver and
ask it to solve our system without any knowledge of what type of algorithms
that will be used or the implementational details of that algorithm. This con-
cept is also very advantageous in more complicated settings, for instance, in
numerical linear algebra and finite element methods.

The ODE solver needs access to the user’s problem (fi) through some gen-
eral interface, such that the source code of the solution algorithm becomes
independent of the particular problem being solved. To this end, we define a
base class ODEProblem for the user’s problem, with a virtual function equation

that defines the fi functions. Subclasses of ODESolver implement specific fi

functions. For example, we shall here make a subclass Oscillator that im-
plements the virtual equation function corresponding to (1.75), or more pre-
cisely, (1.76)–(1.77). The ODEProblem class also contains a driver function,
timeLoop, for calling the solver’s advance function for t = ∆t, 2∆t, . . . to some
final time T . Since all problem classes involve common data, such as ∆t, T ,
the name of the ODE solver, etc., we can collect these data and functions
reading the data from standard input in the base class ODEProblem. Every
subclass automatically inherits access to the data and functions in the base
class. In fact, the total functionality of the subclass consists of the features
in the base class code plus the extra functionality declared in the subclass.

From the outline of the design it is clear that ODESolver must be able to
access a general ODEProblem object and vice versa, that is, we need a two-way
pointer between the base classes.

Implementation in C++. We are now in a position to specify how the various
classes should look like in C++ code. The complete code is found in the
directory src/start/ode. We have made some use of Diffpack, mostly the
vector type Vec(real) and the general output or file class Os. A suitable
definition of class ODESolver is listed next.

class ODESolver

{

protected: // members only visible in subclasses

ODEProblem* eqdef; // definition of the ODE in user’s class

1.6. About Programming with Objects 97

public: // members visible also outside the class

ODESolver (ODEProblem* eqdef_)

{ eqdef = eqdef_; }

virtual ~ODESolver () {} // always needed, does nothing here...

virtual void init(); // initialize solver data structures

virtual void advance (Vec(real)& y, real& t, real& dt);

};

Notice that we have here used the keyword protected and not private. The
former makes the members invisible for a user, but visible for the subclasses.
The advance function has no meaning in class ODESolver, since this class does
not represent any real ODE solver; it only defines a common interface to all
ODE solvers.

The ODEProblem class can look like this:

class ODEProblem

{

protected:

ODESolver* solver; // some ODE solver

Vec(real) y, y0; // solution (y) and initial condition (y0)

real t, dt, T; // time loop parameters

public:

ODEProblem () {}

virtual ~ODEProblem ();

virtual void timeLoop ();

virtual void equation (Vec(real)& f, const Vec(real)& y, real t);

virtual int size (); // no of equations in the ODE system

virtual void scan ();

virtual void print (Os os);

};

The functions equation and size depend on the particular ODE problem
being solved so the contents of these functions have meaning in a subclass
and not here. The scan and print functions perform general read and write
operations on the data in the class. These operations will be extended in
subclasses, which will be evident later.

We can now demonstrate how the timeLoop function can be written in a
general fashion:

void ODEProblem:: timeLoop ()

{

Os outfile (aform("%s.y",casename.c_str()), NEWFILE);

t = 0; y = y0;

outfile << t << " "; y.print(outfile); outfile << ’\n’;

while (t <= T) {

solver->advance (y, t, dt); // update y, t, and dt

98 1. Getting Started

outfile << t << " "; y.print(outfile); outfile << ’\n’;

}

}

Let us now turn to class Oscillator, a subclass of ODEProblem that implements
the specific system of ODEs (1.76)–(1.77):

class Oscillator : public ODEProblem

{

protected:

real c1,c2,c3,c4,omega; // problem dependent parameters

public:

Oscillator () {}

virtual void equation (Vec(real)& f, const Vec(real)& y, real t);

virtual int size () { return 2; } // 2x2 system of ODEs

virtual void scan ();

virtual void print (Os os);

};

The first line tells that the class is derived from ODEProblem, which means that
we inherit y, y0, t, dt, and T, as well as the various functions in ODEProblem.
The timeLoop function from ODEProblem is general and can be reused as it
is in class Oscillator. Therefore, it does not explicitly appear in the class
definition. The functions equation and size must be defined in Oscillator,
whereas we need more functionality in scan and print than what ODEProblem

provides so these must also be defined by class Oscillator. The contents
of scan will be presented later. The most important function is probably
equation, because it defines the problem to be solved:

void Oscillator::equation (Vec(real)& f, const Vec(real)& y_, real t_)

{

f(1) = y_(2);

f(2) = -c1*(y_(2)+c2*y_(2)*abs(y_(2))) - c3*(y_(1)+c4*pow3(y_(1)))

+ sin(omega*t_);

}

The underscore used in the names y and t may deserve a comment. Class
Oscillator inherits two variables, y and t, from its base class ODEProblem. To
distinguish the arguments in the equation function from the data members y

and t, we add an underscore to logical variable names.
Let us also show the code of a concrete ODE solver, e.g., the very simplest

possible scheme, the forward Euler scheme

y`+1
i = y`

i +∆tf(y`
1, . . . , y

`, n, tm) . (1.78)

Here, y`
i = yi(t`) and t` = `∆t, where we for simplicity assume a constant

step size ∆t. The implementation takes place in a subclass of ODESolver:

1.6. About Programming with Objects 99

class ForwardEuler : public ODESolver

{

Vec(real) scratch1; // needed in the algorithm

public:

ForwardEuler (ODEProblem* eqdef_);

virtual void init (); // for allocating scratch1

virtual void advance (Vec(real)& y, real& t, real& dt);

};

The advance function33 takes the following form:

void ForwardEuler:: advance (Vec(real)& y, real& t, real& dt)

{

eqdef->equation (scratch1, y, t); // evaluate scratch1 (as f)

const int n = y.size();

for (int i = 1; i <= n; i++)

y(i) += dt * scratch1(i);

t += dt;

}

A similar class, RungeKutta4 for the standard fourth-order Runge-Kutta method
[113, Ch. 16.1], looks almost identically, except that it needs additional scratch
vectors and has a more complicated advance function34.

At this point, we should draw a diagram of the involved classes and their
relations, see Figure 1.12. The figure caption refers to the useful “is a” and
“has a” relationships between classes. Since a subclass inherits everything
in the base class, i.e., the base class is a subset of the subclass, we can say
that, e.g., RungeKutta4 is an ODESolver. The converse is not true, because
RungeKutta4 contains more than the ODESolver data and functions. It thus
makes sense that a base class pointer ODESolver* can point to any subclass
object, since any subclass is an ODESolver. If a class ODESolver has a pointer to
another class ODEProblem, we say that ODESolver has an ODEProblem. The “is
a” and “has a” relationships are used throughout the book in class diagrams.

We can now explain how the timeLoop function really works. At each time
level, when we issue the call solver->advance, we actually call the advance

function in some unknown subclass of ODESolver, where the desired solution
scheme is implemented. The solver pointer points to this subclass, but inside
the ODEProblem code we cannot see which subclass it points to; C++ keeps
track of such information at run time. Writing general code and letting au-
tomatically generated code fill in problem-dependent details at run time is
some of the “magic” that has made object-oriented programming so popular.

33 The observant reader will notice that dt is declared as a reference and can be al-
tered by advance. This gives the possibility to incorporate adaptive time stepping
in the solver.

34 We refer to the RungeKutta4.h and RungeKutta4.cpp files for details.

100 1. Getting Started

ODEProblem ODESolver

RungeKutta4A

RungeKutta4

RungeKutta2

ForwardEuler

Oscillator

........

Fig. 1.12. A class hierarchy for ODE solvers and user problems. The solid line
indicates class inheritance (“is a” relationship), while the dotted line indicates
a pointer to the class being pointed at by the arrow (“has a” relationship).

The advance function, e.g. ForwardEuler::advance, needs access to the
fi functions and obtains this access through an ODEProblem* pointer eqdef

and the call eqdef->equation. The solver does not know which subclass of
ODEProblem that eqdef actually points to, but again C++ handles this infor-
mation when it is needed. In this way, the solver and the problem class are
independent; all solvers can be combined with all problems and vice versa. Of
course, in some problems certain solvers might be inappropriate for the prob-
lem at hand, so the user of such a flexible library must know the numerical
limits of the software flexibility.

Having seen how the suggested class design solves the ODE problem, it
remains to see how the ODESolver* and ODEProblem* pointers are initialized.
At some place in the code we must say that the solver pointer should point
to, e.g., a ForwardEuler solver, and at some place we must say that eqdef

should point to an object of, e.g., class Oscillator. The Diffpack libraries
collect related numerical methods in a class hierarchy, exactly as we have
outlined for the ODE solvers here. To create a particular subclass object in
such a hierarchy, we employ the following convention. Say the name of the
base class is X. All the parameters that are needed for initializing objects
in any subclass of X are collected in a parameter object of class X prm. In
addition, this class must contain the name of the subclass of X to be created.
A function X prm::create creates the actual subclass object. In the present
example, we need the ODEProblem* pointer as input when initializing subclass
objects of ODESolver. Class ODESolver prm becomes quite simple:

class ODESolver_prm

{

1.6. About Programming with Objects 101

public:

String method; // name of subclass in ODESolver hierarchy

ODEProblem* problem; // pointer to user’s problem class

ODESolver* create (); // create correct subclass of ODESolver

};

The create function must check the method string and allocate the proper
subclass object in the ODESolver hierarchy:

ODESolver* ODESolver_prm:: create ()

{

ODESolver* ptr = NULL;

if (method == "ForwardEuler")

ptr = new ForwardEuler (problem);

else if (method == "RungeKutta4")

ptr = new RungeKutta4 (problem);

...

else

errorFP("ODESolver_prm::create",

"Method \"%s\" is not available",method.c_str());

return ptr;

}

This is the only place in the code where we deal with specific subclass names
of ODE solvers; in the rest of the code we only see ODE solvers as ODESolver*
pointers. The specification of the particular problem subclass of ODEProblem

to be used appears in the main function shown later.
In the ODEProblem::scan function we perform the necessary initialization

of data structures (memory allocation), read input from the terminal screen,
and allocate the proper solver object:

void ODEProblem:: scan ()

{

const int n = size(); // call size in actual subclass

y.redim(n); y0.redim(n);

s_o << "Give " << n << " initial conditions: ";

y0.scan(s_i);

s_o << "Give time step: "; s_i >> dt;

s_o << "Give final time T: "; s_i >> T;

ODESolver_prm solver_prm;

s_o << "Give name of ODE solver: ";

s_i >> solver_prm.method;

solver_prm.problem = this;

solver = solver_prm.create();

solver->init();

102 1. Getting Started

// more reading in user’s subclass

}

A particular problem class will usually need additional reading functionality,
for example,

void Oscillator:: scan ()

{

// first we need to do everything that ODEProblem::scan does:

ODEProblem::scan();

// additional reading here:

s_o << "Give c1, c2, c3, c4, and omega: ";

s_i >> c1 >> c2 >> c3 >> c4 >> omega;

print(s_o); // convenient check for the user

}

The print function can typically print the equation on the screen, together
with other parameters of interest.

The library classes and our problem-dependent class Oscillator are now
ready for application:

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

Oscillator problem;

problem.scan(); // read input data and initialize

problem.timeLoop(); // solve problem

}

What Has Been Gained? The class hierarchies and all the virtual functions
may be a disturbance to the basic numerics of the problem. However, our
purpose here was to indicate how to implement a flexible library, and the basic
ideas of the suggested code design carry over to numerous other numerical
contexts. Also notice that although we can hardcode a solution algorithm for
the problem (1.76)–(1.77) pretty quickly, it is even faster to just implement
f1 and f2 and then call up a ready-made library for performing the numerics.

Diffpack is essentially a collection of libraries based on design principles
similar to those used for the present ODE solver library. We emphasize that
this ODE solver library is just a toy code and not a part of the Diffpack
libraries.

Exercise 1.14. .
Modify class ODEProblem such that it stores all the t and y1(t) values

in arrays of type Vec(real). Also improve the input in the scan functions by
using the initFromCommandLineArg described on page 109 (these modifications
prepare for the class in the next example). �

1.6. About Programming with Objects 103

Example 1.2. The modified ODEProblem class from Exercise 1.14 can be ex-
tended with functionality for interactive plotting in Matlab, such that we
can observe the evolution of y1(t) during the computations. This is enabled
by the MatlabEngine class in Diffpack [93]. Its usage is quite simple and briefly
demonstrated on page 431, but now it should be sufficient to take a look at
the source code of class ODEProblem in src/start/ode/matlab-movie. To com-
pile the application, copy the complete ode directory to your local directory
tree, go to the matlab-movie subdirectory and issue the Unix command Make

MODE=opt CXXUF=-DMATLAB. This requires the availability of the Matlab library
libmat.a on your computer system, see [93] for details. Run the code (./app)
with the command-line options -c1 20 -c2 0.5 -c3 1 -c4 0.6 -omega 1.1. �

Exercise 1.15. .
Add a new solver to the ODESolver hierarchy, where you implement an

adaptive Runge-Kutta method. See for example [113, Ch. 16.2] for a suit-
able adaptive algorithm. The whole adaptive step should appear within the
advance function, that is, advance must administer a trial step, examination
of the error, adjustment of ∆t (dt) and so on. Additional data needed in an
adaptive method (error tolerances, scaling of yi, etc.) can be stored in the
solver class and set by command-line arguments (cf. Exercise 1.14). �

Extensions. A real ODE solver library would contain sophisticated time step-
ping and error control. This will require many additional parameters. To ac-
complish such an extension, it would be wise to define a class ODESolver prm

that contains dt, tolerances, names of error control methods and so on. Class
ODESolver should have an instance of this parameter class and it should be
an argument to the constructor. Equipping class ODESolver prm with a user-
friendly interface (for example in terms of Diffpack’s menu system), makes
it easy for the user to set various algorithmic parameters at run time. Since
the ODESolver prm object is stored in the base class ODESolver, all the specific
algorithms get access to all the common algorithmic parameters. GODESS
[107] is an example on a professional object-oriented library for solution of
ODEs, containing numerous advanced methods.

1.6.5 Abstractions for Grids and Fields

A nontrivial PDE simulator often counts more than 50,000 lines of code.
In such software regimes a clear design closely related to the mathemati-
cal formulation is necessary to understand, extend, and maintain the source
code. The key to obtaining an implementation that is close to the mathemat-
ical language, is to work with software abstractions, represented in terms of
classes, that mirror the entities and concepts of mathematics.

In the mathematical formulation of a discrete method for PDEs we con-
sider the unknown u as a scalar or vector field, defined over a grid. Many
methods, like finite differences or finite elements, compute u only at the grid

104 1. Getting Started

points, while the discrete mathematical field abstraction may imply some
interpolation scheme for evaluating u at an arbitrary point in the domain.
To reflect the mathematical quantities, we should develop our programs us-
ing grid and field objects. When programming simple 1D finite difference
examples, it is not obvious that such abstractions represent an important
improvement of the code. However, when working with more complicated
problems, especially when using the finite element method, the field and grid
abstractions really pay off in the sense that the user will soon realize that the
code is more modular, reliable, and straightforward to extend.

As mentioned, the discrete counterpart of the primary unknown u of a
PDE is viewed as a field in Diffpack. The finite difference field is a particular
type of field which consists of a grid and an associated set of point values.
The field class is called FieldLattice, and its grid is an object of the type
GridLattice. The associated point values are represented by an object of the
type ArrayGenSel(real). We have already met class ArrayGen in Chapters 1.3
and 1.4. ArrayGenSel is a subclass (extension) of ArrayGen with useful addi-
tional functionality for ghost boundaries and inactive entries.

Simple Grids for Finite Difference Methods. The GridLattice class offers a
lattice grid with uniform partition in d space dimensions. The constructor
requires the number of space dimensions, while the grid must be initialized
by the member functions. The easiest way to initialize the GridLattice ob-
ject is to use its scan function, which builds the internal data structure on
basis of an input string that compactly describes the domain’s geometry and
partitioning. The string

d=1 domain: [0,1], index [1:20]

initializes the 1D grid on the unit interval with 20 equally spaced grid points,
using an index running from 1 to 20. To indicate the flexibility of class
GridLattice, we outline the corresponding initialization string for a 3D grid35:

d=3 [0,1]x[-2,2]x[0,10] indices [1:20]x[-20:20]x[0:40]

Notice that the indices can start and stop at any integer value, but the
shape of the domain must be a box36. Here is a fragment of the GridLattice

definition.

class GridLattice

{

protected:

// data that hold grid spacing, size of domain etc

35 Only the first = sign, the characters [] , : and the numbers are significant in
the interpretation of the initialization string.

36 When a GridLattice object is combined with a FieldLattice object, cells can
be deactivated to approximate more complicated geometries.

1.6. About Programming with Objects 105

public:

GridLattice (int nsd); // give no of space dimensions

int getBase (int dir); // base index for loops in dir direction

int getMaxI (int dir); // max index for loops in dir direction

real Delta (int dir); // grid spacing in dir direction (constant)

void scan (Is is); // read init. string and initialize

real getPt (int dir, int i); // coord. of point i in dir direction

};

We refer to the man page (see Appendix B.4.1) for the class for complete
definition and explanation of all the member functions.

Fields over Lattice Grids. Typical scalar fields arising in finite difference
methods can be viewed as a GridLattice object with an associated array
containing the field values at the grid points. Such field abstractions are
available as class FieldLattice in Diffpack. Two convenient functions are
grid and values, which allow you to access the grid and to retrieve and store
values associated with a given grid-point index. The Handle(X) construction
used in the FieldLattice class can be read as X* and is explained below.

class FieldLattice

{

private:

Handle(GridLattice) grid; // pointer to a grid

Handle(ArrayGenSel(real)) vec; // pointer to vector of point values

public:

FieldLattice (GridLattice& grid, const char* fieldname);

GridLattice& grid (); // return access to grid

ArrayGenSel(real)& values (); // return access to point values

};

// given some 1D FieldLattice f

int i0 = f.grid().getBase(1); // start index

int in = f.grid().getMaxI(1); // stop index

for (int i = i0; i <= in; i++) // take the sine of the field:

f.values()(i) = sin (f.values()(i));

The user should observe that we can easily create objects for higher-level
abstractions by simply putting together more primitive objects. This principle
demonstrates the strength of programming with objects – they let you build
with walls and bricks rather than matches and glue.

Handles (Smart Pointers). The constructor of FieldLattice requires a grid
object. This is natural since the grid is a substantial part of the field abstrac-
tion. In our example problem (1.48)–(1.52), we need three fields on the same
grid: up1, u, and um1. It would be a waste of memory to let all these fields

106 1. Getting Started

have a local copy of the grid object. Instead we create one grid and let each
of the fields point to the grid object. However, there is a serious problem with
this approach. When FieldLattice depends on an external grid object, errors
leading to unpredictable program behavior may occur if the grid object is
deleted prematurely. Therefore, one should keep track of all the users of an
object, through counting the number of pointers or references to the object.
The object can only be deallocated when there are no other pointers or ref-
erences to the object. This functionality is referred to as reference counting.
In Diffpack, reference counting is offered by a type of smart pointer called
handle.

A handle is basically a standard C/C++ pointer, but it can also keep
track of other pointers to the object. Let X be the name of a class. The
corresponding handle class then has the name Handle(X). The interface to a
handle is much like the interface to an ordinary pointer, for example, one can
use the operator -> in the same way. It is possible to declare an empty handle
(implied by the constructor without arguments) that later can be initialized
by calling the member function rebind as in the following examples.

Handle(X) x; // create an empty handle (NULL pointer)

// later:

x.rebind (new X()); // x points to a new object

someFunc (x()); // send an x object (not the handle!)

someFunc (*x); // alternative syntax

someFunc (x.getRef()); // yet another syntax for sending the object

// given Handle(X) y:

x.rebind (y()); // x points to y’s object

x.rebind (*y); // alternative syntax

*x = *y; // copy y’s object into x’s object

x() = y(); // alternative syntax

x = y; // x points to y, same as x.rebind(y)

myFunc (x.getPtr()); // send X* pointer to myFunc(X*)

x.detach(); // x points to NULL and memory can be freed

It is a common error to write x=y when we actually want copy the contents of
the object handled by x into the object handled by y, but x=y means copying
of handles (pointers). The syntax x=y therefore leads to a warning message
from Diffpack when running a program compiled without optimization. If one
really means x=y, and not *x = *y, we recommend the programmer to write
x.rebind(y).

Memory is freed when a handle goes out of scope and there are no other
handles pointing to the object. In this way, handles offer a kind of garbage
collection. With the use of x.detach(), which is identical to x.rebind(NULL),
one can force the same actions as when the handle goes out of scope.

1.7. Coding the PDE Simulator as a Class 107

To access an object of class X by a handle, class X must be derived from
class HandleId. The HandleId base class contains the necessary data structures
for reference counting and for the correct dynamic allocation and deallocation
of X objects administered by handles. If the application is compiled without
optimization, class HandleId also contains various debug information.

Visualization of Fields. Visualization of field objects frequently requires that
the field values and the grid are written to file in a format specific to the
visualization program. A series of classes, having names starting with SimRes2,
offer (static) functions for transforming Diffpack field objects to various file
formats. As an example, we have the class SimRes2mtv for filtering Diffpack
data to Plotmtv format. Just include SimRes2mtv.h and perform the call

SimRes2mtv::plotScalar (f, "myfield.res", ASCII, "%contstyle=3");

for dumping the field object f to the file myfield.res in ASCII Plotmtv for-
mat. The fourth argument specifies plotting program options that can be
placed in the data file. Class SimRes2vtk has a similar function for dump-
ing fields to file in Vtk format. Other supported formats include Matlab
(SimRes2matlab), AVS (SimRes2ucd), IRIS Explorer (SimRes2explorer), and
Gnuplot (SimRes2gnuplot). These classes work with both finite difference and
finite element scalar and vector fields. There are numerous other useful func-
tions in these classes for visualization of fields. We refer to the man pages
for the classes and to Appendix B.5.2 for further information. Having the
files with field data available in a particular format, Chapters 3.3 and 3.12
explain how to invoke the various visualization programs and produce plots
for stationary and time-dependent problems.

1.7 Coding the PDE Simulator as a Class

In the next two sections we shall reimplement the user codes from Chap-
ters 1.3 and 1.4 in a more advanced, flexible, and modular way. All routines
that contribute to the solution of the discrete problem are collected in a class.
Moreover, instead of working with plain array structures, we shall make use of
high-level abstractions like grids and fields. The functionality of the new pro-
grams is exactly the same as in the original codes, but the program structure
follows a Diffpack standard for PDE simulators. Consequently, the resulting
software can easily be integrated with other parts of Diffpack. Of greater im-
portance, however, is the fact that the more advanced implementation makes
it easier to extend the code to problems in two and three dimensions or to
other PDEs. The programming standard to be shown makes implementations
of simple and complicated problems look quite similar. This also helps to ease
the understanding of Diffpack simulators created by other programmers.

We remark that our implementations of finite difference simulators in the
present chapter insert the mathematical expressions for the finite difference

108 1. Getting Started

scheme directly into the matrix and right-hand side of linear systems. A
more high-level approach, similar to what we use for finite element simulators
in the forthcoming chapters, is described in a finite difference context in
Appendix D.8. This approach demands the programmer to define the scheme
in terms of finite difference stencils (a stencil is illustrated in Figure 1.9 on
page 59). Diffpack tools can then assemble the stencils into a linear system
and provide easy access to linear solvers.

We also remark that the examples dealing with implicit finite difference
schemes in the present chapter involve only one space dimension such that
Gaussian elimination for tridiagonal matrices is an appropriate solver. For
implicit schemes in 2D and 3D problems one needs to apply iterative methods.
Examples on finite difference simulators using iterative methods in 2D and
3D problems are given in Appendix D.

1.7.1 Steady 1D Heat Conduction Revisited

Let us reconsider the implementation of the numerical method (1.10)–(1.12)
for the problem (1.7)–(1.9) that was covered in Chapter 1.3.3. We will develop
a class, with name HeatSteady1D, which basically contains code pieces from
the main.cpp file in src/fdm/intro/HeatSteady1D/dense37 , but now split into
several functions. The reader should be familiar with Chapter 1.6.5 as we
program with the grid, field, and handle objects in the code that follows.

The Header File. Let us first take a look at the definition of class HeatSteady1D
in the header file HeatSteady1D.h38 :

#ifndef HeatSteady1D_h_IS_INCLUDED

#define HeatSteady1D_h_IS_INCLUDED

#include <Arrays_real.h> // MatTri, ArrayGen and other arrays

#include <FieldLattice.h> // includes GridLattice.h as well

class HeatSteady1D

{

protected: // data items visible in subclasses

MatTri(real) A; // the coefficient matrix

ArrayGen(real) b; // the right-hand side

Handle(GridLattice) grid; // 1D grid

Handle(FieldLattice) u; // the discrete solution

real beta; // parameter in the test problem

real gamma; // parameter in the test problem

37 We apply a tridiagonal matrix (MatTri) for efficiency. Therefore, class
HeatSteady1D is actually a restructuring of the code found in the file main.cpp

in src/fdm/intro/HeatSteady1D/tridiagonal.
38 The complete source code is found in src/fdm/HeatSteady1D.

1.7. Coding the PDE Simulator as a Class 109

public:

HeatSteady1D() {}

~HeatSteady1D() {}

void scan (); // read input, set size of A, b and u

void solveProblem (); // compute A, b; solve Au=b

void resultReport (); // write and plot results

};

#endif

Class HeatSteady1D is in fact a general outline of a Diffpack class for solving
a differential equation. Data structures needed in the solution process are de-
clared as protected variables, i.e., the data items are not accessible for users of
the class, but visible in subclasses. The public interface should always consist
of scan, solveProblem, and resultReport. We shall stick to these names since
that will make it easy to couple the simulator to a menu system, parameter
analysis, graphics, automatic report generation, and other powerful Diffpack
features, as described in Chapter 3.

Elements of the Diffpack Programming Standard. Computer programs are
much easier to understand and use if they are consistently written according
to a programming standard. It is therefore appropriate to mention a few nam-
ing conventions from the Diffpack programming standard. Local variables in
functions and classes have lower-case letters in their names, and words are
separated by underscores, e.g., local counter. Function names start with a
lower-case letter, and words are separated by capitals, e.g., someFunc. Class
(and enum) names start with a capital, and words are separated by capi-
tals, e.g., FieldLattice. Macros (preprocessor variables) and enum values are
written with upper-case letters, and words are separated by underscores, e.g.,
SAFETY CHECKS. Additional information about Diffpack’s programming stan-
dard is provided in the FAQ [71].

Reading Data into a Program. The example programs presented so far have
read data from standard input (s i). Much more user-friendly interfaces to
simulation programs are available by use of the menu system as explained
in Chapter 3.2.2. Nevertheless, here we cover a method that is simpler than
using the menu system, but more flexible than asking questions in the ter-
minal window. The method is particularly convenient if you build a tailored
graphical user interface for the simulator.

Suppose we have two variables beta and n that we want to read from the
command line. That is, we want to execute the program like this

./app -beta 0.1 -n 100

assigning 0.1 to beta and 100 to n. This is achieved by the following state-
ments:

110 1. Getting Started

initFromCommandLineArg ("-beta", beta, 0.0);

initFromCommandLineArg ("-n", n, 10);

The initFromCommandLineArg function can work with real, int, bool, and
String variables. The first argument declares the option syntax on the com-
mand line (we could use, e.g., -alpha instead of -a), the second argument is
the variable to be initialized, and the third argument reflects a default value
that is used for the initialization if there are no tracks of the particular option
on the command line39.

The initFromCommandLineArg function has two optional arguments: a de-
scription string and a string specified valid answers. For example,

initFromCommandLineArg ("-beta", beta, 0.0,

"rhs: gamma*exp(-beta*x)", "R1[0:8]");

The first optional argument provides a description of what the -beta option
is used for. The second optional argument indicates that the answer consists
of one real number (R1) in the interval [0, 8]. These optional parameters are
useful for automatic generation of graphical user interfaces or LATEX2ε man-
uals listing all the input data to the simulator. In case a string is initialized
by the command-line option, the valid answer is one the form S (an arbi-
trary string) or S/choice1/choice2/choice3 (a string among the three listed
choices). Integers are specified by the syntax I1[1:3] for an integer in the
interval [1, 3]. If the interval of reals or integers is unknown, just R1 or I1 are
suitable strings.

The Bodies of the Member Functions. Below we list the bodies of the member
functions as they appear in the file HeatSteady1D.cpp.

#include <HeatSteady1D.h>

#include <CurvePlot.h>

void HeatSteady1D:: scan ()

{

int n; // no of grid points in the domain (0,1)

// read n from the command line, a la app -n 10

initFromCommandLineArg ("-n", n, 5, "no of grid points");

grid.rebind (new GridLattice(1));

// GridLattice is initialized by a string

// "d=1 domain=[0,1] index=[1:20]" :

grid->scan (aform("d=1 domain=[0,1] index=[1:%d]",n));

39 The command-line arguments to a C++ (or C) program are automatically trans-
ferred to the main function, and in Diffpack we process and store these arguments
in the initialization function initDiffpack. Thereafter, the command-line argu-
ments are available through the global variables (cl argc and cl argv) anywhere
in a program.

1.7. Coding the PDE Simulator as a Class 111

u.rebind (new FieldLattice (*grid, "u"));

A.redim(n); // set size (n rows) of tridiagonal matrix A

b.redim(n); // set size of vector b

initFromCommandLineArg ("-beta", beta, 0.0,

"rhs: gamma*exp(-beta*x)");

initFromCommandLineArg ("-gamma", gamma, 1.0,

"rhs: gamma*exp(-beta*x)");

}

void HeatSteady1D:: solveProblem ()

{

// --- Set up matrix A and vector b ---

A.fill(0.0); // set all entries in A equal to 0.0

b.fill(0.0); // set all entries in b equal to 0.0

const int n = b.size(); // alternative: grid->getMaxI(1)

const real h = grid->Delta(1);

real x; int i;

i = 1;

A(i,0) = 1;

b(i) = 0;

// inner grid points:

for (i = 2; i <= n-1; i++)

{

x = grid->getPt(1,i);

A(i,-1) = 1; A(i,0) = -2; A(i,1) = 1;

b(i) = - h*h*gamma*exp(-beta*x);

}

i = n; x = (i-1)*h;

A(i,-1) = 2; A(i,0) = -2;

b(i) = - 2*h - h*h*gamma*exp(-beta*x);

// Gaussian elimination; fill solution directly in u

A.factLU(); A.forwBack(b, u->values());

}

void HeatSteady1D:: resultReport ()

{

// print numerical solution and compute the error:

real x, uval, u_exact; int i;

s_o << "\n \n x numerical error:\n";

const int n = grid->getMaxI(1);

for (i = 1; i <= n; i++) { // \n is newline

x = grid->getPt(1,i);

uval = u->values()(i);

112 1. Getting Started

if (beta < 1.0E-09) { // is beta zero?

u_exact = x*(1 + gamma*(1 - 0.5*x));

} else {

u_exact = gamma/(beta*beta)*(1 - exp(-beta*x)) +

(1 - gamma/beta*exp(-beta))*x;

}

s_o << oform("%4.3f %8.5f %12.5e\n",

x,uval,u_exact-uval);

}

// write results to the file "SIMULATION.res"

Os file ("SIMULATION.res", NEWFILE); // open file

for (i = 1; i <= n; i++)

file << grid->getPt(1,i) << " " << u->values()(i) << "\n";

file->close();

}

The reader should notice that grid and u are handles, i.e., they have the
nature of pointers and not objects. One must therefore access the member
functions with the arrow operator -> instead of the dot operator (.). (This
does not apply to u.rebind, because rebind is a member function of class
Handle(FieldLattice), not of FieldLattice.)

The main program looks like this:

#include <HeatSteady1D.h>

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

HeatSteady1D simulator;

simulator.scan ();

simulator.solveProblem ();

simulator.resultReport ();

}

Some readers may find the step from the program in Chapter 1.3.3 to the
class HeatSteady1D listed above too big. An intermediate implementation,
which introduces the simulator as a class, but avoids working with fields and
grids, is provided in the subdirectory simpler of src/fdm/HeatSteady1D.

Exercise 1.16. .
The error in the numerical solution is written out at each grid point in

class HeatSteady1D. To make the error information more compact we can
introduce a kind of average error and report this number. A standard choice
of such an error measure is

E =

(∫ 1

0

(u− û)2dx
)1/2

, (1.79)

1.7. Coding the PDE Simulator as a Class 113

where û denotes the numerical solution and u is the exact solution. The
quantity E is referred to as the L2 norm of the error and often written as
E = ||u− û||L2 . Since û is only defined at the grid points, we need formulas
that sum up the discrete values in some fashion. A widely used error measure
in programs is (1.23) on page 23 (called the discrete L2 norm). Another error
measure could be to compute the Eucledian distance between the exact solu-
tion vector (u(x1), . . . , u(xn)) and the numerical solution vector (u1, . . . , un),
i.e.,

ẽ =

(
n∑

i=1

(u(xi)− ui)
2

) 1
2

. (1.80)

If you implement (1.23) and (1.80) in a copy of class HeatSteady1D, you will
observe that (1.80) does not indicate convergence of the method as the grid is
refined. Why? (Hint: Explain the difference between (1.23) and (1.80), espe-
cially in relation to (1.79). A common error among numerical programmers
is to use (1.80) when testing for convergence.)

You should look up the man page of class Vec to see how Diffpack distin-
guishes between the norms (1.23) and (1.80) in Vec::norm. �
Exercise 1.17. .

Consider the problem

−u′′(x) = f(x), u(0) = 0, u′(1) = 1,

where we choose f(x) = −(α+ 1)xα. The corresponding exact solution is

u(x) =
1

α+ 2
xα+2, α 6= −1,−2 .

Take a copy of src/fdm/HeatSteady1D and modify the HeatSteady1D class so
that it solves the problem with f(x) as the specified power function. In C
and C++, xα is evaluated by calling the pow function: pow(x,alpha).

Suppose we want to investigate the numerical error as a function of α and
n in the simulator. This can be accomplished by introducing an error field
FieldLattice e in the class, where the nodal values ei equal the difference
between the numerical and exact u values. The formula in (1.79) is a suitable
error measure, which can be approximately computed from the nodal values
of e by the call e.values().norm(L2). Let us denote this error measure by ε.
The main function can then be extended with a loop over n and α, where
the α values are given as input and n = 2k · 10, k = 1, 2, 3, 4, 5. We can view
the (n, α) pairs as points in a 2D lattice grid (GridLattice). The associated
field e can be visualized to illustrate how the error depends on n and α. We
suggest to visualize ε/h2 (ε/h2 should be independent of h and n since we
expect the error to behave as h2). Relevant visualization statements appear
on page 107.

Carry out the necessary modifications and run the experiment. You can
optionally use the expression for the truncation error from Example A.16 on
page 693 to explain the features in the plot. �

114 1. Getting Started

1.7.2 Nonlinear 1D Heat Conduction Revisited

The solver from Chapter 1.3.7 can also benefit from a restructuring in terms of
classes and application of grid and field abstractions. In parallel, it is desirable
to enable visualization of the intermediate uk fields during the nonlinear
iterations and allow for different choices of λ(u) functions. Visualization of
uk is easily accomplished by dumping the fields to a CurvePlotFile manager
as we did in the vibrating string example in Chapter 1.4.

When it comes to different choices of the λ(u) function, the most obvious
implementation consists of a series of C++ functions taking u and perhaps
other parameters as arguments. At run time we read the user’s choice and
apply an indicator in the solver to call the right λ function. For some of these
functions we can also provide an exact solution, thus enabling calculation
of the discretization error. This may give rise to a considerable collection
of functions and, in general, many if-tests throughout the code. If an addi-
tional λ function is added, updates at scattered locations in the code are
needed. Using classes, we can devise a more elegant implementation, which
is explained next.

Suppose we create a base class which serves as interface to all information
regarding a λ(u) function, including evaluating λ, reading λ-specific param-
eters from the input, evaluating the corresponding analytical solution if it is
available, and writing the formula for the λ function in various output from
the solver:

class LambdaFunc : public HandleId

{

public:

virtual real lambda (real u);

virtual real exactSolution (real x);

virtual void scan () {} // read parameters in lambda func.

virtual String formula (); // LaTeX syntax for lambda func.

};

Specific λ functions are then realized as subclasses of LambdaFunc, for example,

class Lambda1 : public LambdaFunc

{

real m;

public:

Lambda1() {}

virtual real lambda (real u) { return pow(u,m); }

virtual real exactSolution (real x) { return pow(x,1/(m+1)); }

virtual void scan ()

{ initFromCommandLineArg("-m",m,0.0,"exponent m","R1[0:10]"); }

virtual String formula () { return aform("u^%g",m); }

};

1.7. Coding the PDE Simulator as a Class 115

Notice that we include the parameter m as a member of the class. In this
way, the lambda function always takes one argument (u) and all other data
are local in the class and are initialized in the scan function. All calls to the λ
function have the same argument list, here just the u variable. In fact, none
of the λ function-specific parameters are visible in the simulator class.

In the solver class, here named NlHeatSteady1D, we include a handle to
the base class LambdaFunc. The magic of object-oriented programming allows
us to evaluate the λ function and the analytical solution everywhere in the
program without knowing exactly which choice of λ that was given by the
user at run time. A function represented in terms of a class is often referred
to as a functor and is widely used in Diffpack.

The definition of class NlHeatSteady1D can look like this:

class NlHeatSteady1D

{

protected: // data items visible in subclasses

MatTri(real) A; // the coefficient matrix

ArrayGen(real) b; // the right-hand side

Handle(GridLattice) grid; // 1D grid

Handle(FieldLattice) uk; // the discrete solution u^k

Handle(FieldLattice) ukm; // the discrete solution u^{k-1}

real epsilon; // tolerance in nonlinear iteration

Handle(LambdaFunc) lambda; // specific lambda function

CurvePlotFile plotfile; // for plotting results

public:

NlHeatSteady1D() {}

~NlHeatSteady1D() {}

void scan (); // read input, set size of A, b, and u

void makeAndSolveLinearSystem(); // compute A, b; solve Au^k=b

void solveProblem (); // nonlinear iteration loop

void resultReport (); // write numerical error (if possible)

};

The scan function is similar to the scan function in the HeatSteady1D class.
Therefore, we only show how to initialize the handle to the LambdaFunc hier-
archy of objects, based on the user’s input on the command line:

String lambda_tp;

initFromCommandLineArg

("-N", lambda_tp, "u^m", "lambda function", "S/u^m/(1+u)^m");

// allow for numbers 1 and 2 as answers in addition to text:

if (lambda_tp == "u^m" || lambda_tp == "1")

lambda.rebind (new Lambda1());

else if (lambda_tp == "(1+u)^m" || lambda_tp == "2")

lambda.rebind (new Lambda2());

else

116 1. Getting Started

errorFP("HeatSteady1Dn::scan","wrong -N %s option.",

lambda_tp.c_str());

lambda->scan(); // initialize function-specific parameters

In the rest of the solver code, we evaluate λ(u) by a unified syntax. For
example, λ(uk

i−1) is translated into

lambda->lambda(ukm->values()(i-1));

while the exact solution can be evaluated by

lambda->exactSolution(grid->getPt(1,i));

The exact solution is of course not available for all choices λ(u). Subclasses
of LambdaFunc can then just inherit the default exactSolution function in
LambdaFunc, which returns a dummy argument. Look at the resultReport

function in class NlHeatSteady1D to see how we test on this dummy argument
to determine if an exact solution is provided or not.

The lambda->formula() call is useful in output statements from the solver
such that we can recognize which λ function that was used in the computa-
tions.

The splitting of the original code in src/fdm/intro/HeatSteady1D/nonlinear

into four different functions in a class should be a straightforward task after
having seen the principle for the HeatSteady1D solver. The complete source
code of the nonlinear 1D heat equation solver is available in the directory

src/fdm/NlHeatSteady1D

Here we shall use this code to perform numerical experiments with the pur-
pose of learning more about numerical solution of differential equations.

1.7.3 Empirical Investigation of a Numerical Method

In this section we shall use computer simulations to investigate approximation
and convergence properties of the numerical method for solving the nonlinear
heat equation from Chapters 1.3.7 and 1.7.2:

d

dx

(
λ(u)

du

dx

)
= 0, 0 < x < 1,

now with boundary conditions u(0) = 0 and u(1) = 1. We shall pay attention
to two choices of λ(u), for which we can find an exact solution u(x) to the
problem:

λ(u) = um, solution: u(x) = x1/(m+1), (1.81)

λ(u) = (1 + u)m, solution: u(x) = ((2m+1 − 1)x+ 1)1/(m+1) − 1(1.82)

1.7. Coding the PDE Simulator as a Class 117

Running Numerical Experiments. To run the nonlinear heat equation solver
NlHeatSteady1D with, for example, m = 4 on a grid with 100 cells, you can
type this command

./app --casename n100m4N1 -n 100 -m 4 -N 1 -e 1.0e-5

or you can use the graphical interface script gui.py (type ./gui.py or python

gui.py). The -n option assigns the number of grid cells, -m is used for m,
-N signifies the choice of lambda function, where 1 means λ(u) = um and 2

implies λ(u) = (1 + u)m. The option -e is used to set the tolerance in the
termination criterion. The solver dumps the uk curves to file for k = 1, 2, . . .
until convergence (see Chapter 1.4.4). Animation of the iteration process is
enabled by the Visualize button in the GUI, or with full control through a
command of the form

curveplot gnuplot -f n100m4N1.map -r ’.’ ’u’ ’.’ -animate

-fps 1 -o ’set yrange [0:1.2];’

Just substitute -animate by -psanimate to make a movie40, either by ps2mpeg

or by display (see Chapter 1.4.4). If you prefer the animation facilities in
Matlab instead, substitute gnuplot by matlab.

Watching the movie of the iteration process, we observe that the first
iterations exhibit a significant qualitative change in the solution from one
iteration to the next, but the process converges. The error is about 0.008 in
this particular run with n = 100 and m = 4. Repeating the experiment with
n = 200 reduces the error to about 0.005. This is less than what we would
expect, because the difference approximations involved in the scheme are all
of second order in h. The arithmetic averages used to compute λi+ 1

2
also have

error terms proportional to h2. We therefore expect the discretization error
to behave as h2, that is, doubling the number of grid points should reduce
the error by 75%. Let us look closer into this problem from an experimental
point of view.

Estimating the Convergence Rate from Numerical Experiments. A common
model for the discretization error is e(h) = Chr, where e is the error and
C and r are constants that can be estimated either from theoretical con-
siderations (see Appendix A.4 and in particular A.4.9) or from numerical
experiments. The latter approach is simple and widely applicable and will be
addressed in the following.

Given a sequence of grid spacings h1, h2, h3, . . . and corresponding error
measures e1, e2, e3, . . ., we have for two experiments s and s+1 that es = Chr

s

and es+1 = Chr
s+1. Dividing these expressions eliminates C, and by solving

40 Displaying the movie is most conveniently performed by manually marching
through the frames.

118 1. Getting Started

with respect to r we get the estimate of the convergence rate

r =
ln(es/es+1)

ln(hs/hs+1)
. (1.83)

This is a cheap alternative to the more general approach, which consists in
estimating C and r from a least-squares fit to the complete collection of data
points (h1, e1), (h2, e2), . . . However, if more than one discretization parame-
ter appears in the problem, e.g., a spatial (h) and a temporal (∆t) parameter,
a common model for the error reads e(h,∆t) = C1h

r +C2∆t
s, where C1, C2,

r, and s can be determined by a nonlinear least-squares procedure.
When running the experiments, we must ensure that the ε tolerance in the

termination criterion for the nonlinear iterations on page 30 is significantly
less than the computed error e, otherwise we pollute the discretization error
with errors from the nonlinear iteration method. A value of 10−8 might be
suitable for our convergence studies. We remark that in practical engineering
computations one should choose ε less, but not much less, than the typical
level of discretization accuracy; a very low ε value will not contribute to more
accurate results if the discretization error dominates anyway.

We can now run a series of grid sizes, e.g., hq = 0.2 ·2−q for q = 1, 2, . . . , 8
and calculate r values from two successive experiments. Doing this by hand is
a tedious job. It is typically work for the computer and conveniently done in
a script that runs the program a specified number of times with appropriate
input and calculates the corresponding r values. The name of the current
script is rate.py, and you can run it like this:

./rate.py 0.1 7

or

python rate.py 0.1 7

The arguments 0.1 and 7 imply that m is 0.1 and that 7 experiments are to
be executed (hq = 0.2 · 2−q for q = 1, . . . , 7).

For m = 1 the error is very small; the solution seems to be exact at
the nodes regardless of the number of nodes. When m ≤ 1 the convergence
rates r stabilizes quickly around unity, while the expected r value was 2.
Increasing m leads to stabilization of r at lower values, e.g., m = 3 typically
gives e ∼ h3/4.

From a plot of the solution, we recognize that the slope of u close to
x = 0 is very steep; the value of u′(0) is in fact infinite according to the exact
solution! We therefore need a small cell size h to capture the steep slope close
to x = 0. Actually, the small cells are only needed in the vicinity of x = 0.
The optimal grid should therefore employ a spatially varying cell size that
adapts to the solution. Such adaptive grids are particularly attractive in the
finite element method, and the topic is covered in Chapters 2.10 and 3.7.

1.7. Coding the PDE Simulator as a Class 119

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4

no
 o

f
ite

ra
tio

ns

m

number of iterations

n=100

(a)

-35

-30

-25

-20

-15

-10

-5

0

0 0.5 1 1.5 2 2.5 3 3.5 4

lo
g(

er
ro

r)

m

numerical error

n=100

(b)

-10

-9

-8

-7

-6

-5

-4

-3

-2

-8 -7 -6 -5 -4 -3 -2 -1

lo
g(

er
ro

r)

log(h)

numerical error

m=0.2
m=1.2
m=3.2

(c)

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-8 -7 -6 -5 -4 -3 -2 -1

lo
g(

er
ro

r)

log(h)

numerical error

m=0.2
m=1.2
m=3.2

(d)

Fig. 1.13. The figures summarizes the numerical errors and the number of
nonlinear iterations for a series of experiments (carried out by the rate.py

and error.py scripts). (a) The number of iterations as function of m; (b) the
numerical error as function of m; (c) numerical errors as functions of lnh for
various m values; (d) as (c), but with λ(u) = (1 +u)m. (100 grid points were
used to produce (a) and (b), while λ(u) = um was used in (a), (b), and (c).)

120 1. Getting Started

Another Choice of λ(u). Let us try the other λ function, λ(u) = (1 + u)m,
which avoids the infinite derivative of the solution at x = 0. The analytical
solution is given in (1.82). This λ is implemented in terms of a class Lambda2

and referred to as the second choice of λ functions. The rate.py script takes
an optional third argument reflecting the type of λ function to be used (this
argument is 1 by default). Try

./rate.py 1.5 10 2

and observe that the rates quickly stabilize around the expected value 2.
With m = 1.5 the nonlinear iteration loop needs about 14 iterations to

meet the termination criterion with ε = 10−9 (the ε value is automatically set
by the rate.py script). Increasing m to 4 increases the number of nonlinear
iterations; now we typically need 25-30.

It could be of interest to see how m affects the error and the number
of iterations. The script error.py runs a series of experiments with m =
0, 0.05, 0.10, . . . , 4 and writes out the error and the number of iterations.
Running error.py 50 2 (50 grid points and λ = (1 + u)m) reveals that the
number of iterations is steadily increasing with m, while the numerical error
shows drops significantly in the vicinity of m = 1. Figure 1.13d summarizes
a series of experiments with this nonlinear model.

The user is encouraged to experiment with the rate.py and error.py

scripts and investigate the impact of m and the choice of λ on the discretiza-
tion accuracy and the number of nonlinear iterations.

Analysis of the Scheme. Standard truncation error analysis of an equation
(λ(x)u′(x))′ = 0 show that the type of scheme we use in the present sec-
tion is of second order in h (Exercise A.16 on page 695 addresses this is-
sue). Since we know the exact solution in the present case, we can insert
λ(x) = um = xm/(m+1) and u(x) = xm in the leading error terms in the trun-
cation error expressions. These terms behave as x−3h2, showing that the co-
efficient x−3 will dominate in the vicinity of x = 0. Hence, it is not surprising
that we experience a decreased overall convergence rate for λ = um. Note that
the low value of r is not a feature related to the nonlinear nature of the current
problem, as the feature also arises in the corresponding variable-coefficient
linear problem (λ as prescribed function of x: λ(x) = um = xm/(m+1)). Fur-
thermore, Exercise 1.18 examines a linear problem −u′′ = f where u′(0)→∞
and the convergence is reduced in that problem as well.

The special feature of the nonlinear problem is that the numerical scheme
seemingly gives an exact solution when m = 1. We can show that this is
indeed true. The discrete problem in the case λ(u) = um reads

1

2h2
(ui + ui+1)(ui+1 − ui)−

1

2h2
(ui−1 + ui)(ui − ui−1) = 0 .

The expressions can easily be expanded and recollected as

u2
i−1 − 2u2

i + u2
i+1 = 0

1.7. Coding the PDE Simulator as a Class 121

or using the compact notation explained in Appendix A.3,

[δxδxu
2]i = 0 .

It is easy to show that u =
√
x fulfills this equation. Therefore, the numerical

solution of this nonlinear problem coincides with the exact solution at the
nodes, regardless of the number of grid cells.

The choice λ(u) = (1 + u)m with m = 1 results in a difference equation
that can be written as

[δxδxu(u+ 2)]i = 0 .

Inserting u(x) in u(u+2) shows that this latter expression is a linear function
of x, and the difference approximation to the second-order derivative is again
zero. That is, the numerical solution is exact at the nodes.

Exercise 1.18. .
The solver for −u′′ = f from Exercise 1.18 has solutions on the form

u ∼ xα+2. Use the program developed in that exercise to investigate the
convergence rates in that problem when −2 < α < −1, i.e., the solution u
behaves as in our nonlinear problem: u ∼ x1/(1+m), m > 0. �

1.7.4 Simulation of 1D Waves Revisited

Algorithm 1.1 for the mathematical problem (1.48)–(1.52) can also be im-
plemented using a simulator class, like HeatSteady1D, with grid and field ab-
stractions. In addition, we need a library utility that holds the temporal grid.

Temporal Grid. The central parameters for time discretization are the time
step size and the start and stop values of the time interval. These parame-
ters are collected in a class TimePrm, which is useful in simulators for time-
dependent problems. The initialization of a TimePrm object is performed by
feeding a string, with the following syntax, to the TimePrm::scan function:

dt=0.05, t in [0,10]

In this example, the time interval is [0, 10] and the constant time-step length
is 0.05. We refer to the scan and timeLoop functions in the simulator below
for examples on using the TimePrm class, as well as to the man page for that
class.

The Wave Simulator Source Code. A class version of the simulator for waves
on a string appears in class Wave1D. The corresponding source code files are
collected in the directory src/fdm/Wave1D/string. Here is the class definition,
taken from Wave1D.h:

122 1. Getting Started

class Wave1D

{

Handle(GridLattice) grid; // lattice grid here 1D grid

Handle(FieldLattice) up; // solution u at time level l+1

Handle(FieldLattice) u; // solution u at time level l

Handle(FieldLattice) um; // solution u at time level l-1

Handle(TimePrm) tip; // time discretization parameters

CurvePlotFile plotfile;// for plotting results

real C; // the Courant number

void setIC (); // set initial conditions

void timeLoop (); // perform time stepping

void dumpSolution (); // make a curve plot of u

public:

Wave1D() {}

~Wave1D() {}

void scan (); // read input parameters and initialize

void solveProblem (); // solve the problem

void resultReport () {} // just dummy here

};

The associated source code is found in a file Wave1D.cpp.

#include <Wave1D.h>

#include <SimRes2gnuplot.h> // defines makeCurvePlot

void Wave1D:: scan ()

{

initFromCommandLineArg ("-C", C, 1.0, "Courant number", "R1[0:1]");

String grid_str;

initFromCommandLineArg ("-g", grid_str, "d=1 [0,1] [0:20]",

"FieldFD grid", "S");

grid.rebind(new GridLattice(1)); grid->scan (grid_str);

tip.rebind (new TimePrm());

real tstop;

initFromCommandLineArg ("-t", tstop, 1.0, "tstop", "R1[0:10]");

// construct the proper init. string, let C govern the time step:

tip->scan (aform("dt=%g t in [0,%g]", C*grid->Delta(1), tstop));

// (we assume unit wave velocity in the expression for the time step)

up.rebind (new FieldLattice (*grid, "up"));

u. rebind (new FieldLattice (*grid, "u"));

um.rebind (new FieldLattice (*grid, "um"));

plotfile.open (casename);

1.7. Coding the PDE Simulator as a Class 123

// write out input data for a check:

u->grid().print(s_o); tip->print(s_o);

}

void Wave1D:: solveProblem () { timeLoop(); }

void Wave1D:: setIC ()

{

// set initial conditions on u and um

const int i0 = u->grid().getBase(1); // start point index

const int n = u->grid().getMaxI(1); // end point index

const real umax = 0.05; // max amplitude

// initialization of up

up->fill(0.0);

// initialization of u (the initial displacement of the string)

u->fill(0.0);

int i; real x;

for (i = i0; i <= n; i++) {

x = grid->getPt(1,i); // get x coord of grid point no i

if (x < 0.7) u->values()(i) = (umax/0.7) * x;

else u->values()(i) = (umax/0.3) * (1 - x);

}

// initialization of um (the special formula)

um->fill(0.0);

for (i = i0+1; i <= n-1; i++) // set the help variable um:

um->values()(i) = u->values()(i) + 0.5*sqr(C) *

(u->values()(i+1) - 2*u->values()(i) + u->values()(i-1));

}

void Wave1D:: timeLoop ()

{

tip->initTimeLoop();

setIC();

const int i0 = u->grid().getBase(1); // start index in x-direction

const int n = u->grid().getMaxI(1); // end index in x-direction

int i;

dumpSolution (); // dump initial condition

// useful abbreviations (also for efficiency):

const ArrayGen(real)& U = u ->values();

const ArrayGen(real)& Um = um->values();

ArrayGen(real)& Up = up->values();

124 1. Getting Started

while (!tip->finished()) {

tip->increaseTime();

for (i = i0+1; i <= n-1; i++)

Up(i) = 2*U(i) - Um(i) + sqr(C) * (U(i+1) - 2*U(i) + U(i-1));

Up(i0) = 0; Up(n) = 0; // insert boundary values

*um = *u; *u = *up; // update for next step

// alternative syntax: um() = u(); u() = up();

dumpSolution ();

}

}

void Wave1D:: dumpSolution ()

{

// automatic dump of a curve plot of a 1D field:

SimRes2gnuplot::makeCurvePlot

(*u, // field to be plotted (1D)

plotfile, // curve plot manager

"displacement", // plot title

oform("u(x,%.4f)",tip->time()), // name of function

oform("C=%g, h=%g, t=%g", // comment

C,u->grid().Delta(1),tip->time()));

}

Here is an example on execution the program:

./app -g ’d=1 [0,1] index: [0:100]’ -t 10 -C 0.85

The quotes are important to ensure that the initialization command to the -g

option is treated as a single compound string. The results of the simulation
can be visualized as explained in Chapter 1.4.4.

Since we work with u, up1, and um1 as handles (i.e. pointers) to fields,
we need to be careful about a few points. When we wish to pass a field u
as an argument to functions, we must write *u, u() or u.getRef() (all these
expressions are equivalent). We must also be careful with the statement um1=u;
this must read *um1=*u (or um1()=u()) and not um1=u when u and um1 are
handles41.

Exercise 1.19. .
The waves on a piano string can be modeled by the wave equation (1.48)

and no displacements at the ends (u(0, t) = u(1, t) = 0), but the initial

41 The um1=u assignment for handles means only that um1 points to the same data
as u. In other words, *um1 and *u contain identical values and the original field
values at the previous time level are lost (and deleted!) in the program.

1.7. Coding the PDE Simulator as a Class 125

condition should now model the impact of the hammer on the string. This
can be accomplished by letting the string be at rest initially, u(x, 0) = 0, with
a prescribed velocity ∂u/∂t = v, v < 0, at a small portion [0.1, 0.2] of the
string (the part of the string hit by the hammer). Modify Algorithm 1.1 such
that it handles the new initial condition. Make a corresponding simulator and
visualize waves on a piano string. �

Exercise 1.20. .
From experience we know that the string motion eventually dies out, but

this is not reflected in our governing PDE (1.48) because we neglected air
resistance in the derivation of the mathematical model. Including a damping
force proportional to the velocity of the string, which constitutes a reasonable
model, results in the scaled PDE

∂2u

∂t2
+ β

∂u

∂t
= γ2 ∂

2u

∂x2
,

where β is a dimensionless positive number and γ is a dimensionless constant
(equal to unity) as before. Go through the derivation of the wave equation in
Chapter 1.4.1 and show how a force proportional to the string velocity and
directed against the displacement gives rise to the term β∂u/∂t. This damp-
ing term can be approximated by a difference (u`+1

i − u`−1
i)/(2∆t). Modify

Algorithm 1.1 to take damping into account. Implement the modified algo-
rithm in a copy of the Wave1D simulator. Make animations that demonstrate
wave motion with damping. �

Generation of Graphical User Interfaces. In Chapter 1.4.5 we advocated the
use of command-line based scripting interfaces to simulation and visualiza-
tion. Programmers in Unix environments normally find the command-line
interface efficient and convenient, but a generation of computer users expect
a program to have a graphical user interface (GUI). If you have a command-
line driven simulation program, you can easily add a GUI using Diffpack’s
CloGUI.py (Command-line option GUI) tool.

Writing just CloGUI.py gives a short description of how you specify input
parameters in the GUI. You can use sliders, entry fields, and option (pull-
down) menus. Take the Wave1D simulator as an example. The simulator has
three input parameters: the Courant number, the grid string, and the stop
time tstop. Suitable input to CloGUI.py is then

CloGUI.py -slider ’Courant number’ 1 ’0:1’ -C \

-slider tstop 2.0 ’0:3’ -tstop \

-entry grid ’d=1 [0,1] [1:21]’ -g > wave.py

What the details of this command mean should be evident when you run

python wave.py

126 1. Getting Started

and observe that the generated GUI has

– a slider Courant number, going from 0 to 1 (0:1) with 1 as default value
and -C as the simulators’s command-line option,

– a slider tstop, going from 0 to 3 (0:3), with 2.0 as default value and
-tstop as the simulator’s command-line option, and

– a text entry field grid for specifying the grid (with a default string) and
-g as the simulator’s command-line option.

The GUI is shown in Figure 1.14 (the default layout may change in future
versions of CloGUI.py). Clicking on Simulate runs the simulator. The output

Fig. 1.14. Examples on an automatically generated graphical user interface
to a command-line driven Diffpack simulator (Wave1D).

from the simulator is written to standard output in the window where you
launched the GUI. The next step is to click on the Visualize button for showing
a movie of the simulation results. However, CloGUI.py is not intelligent enough
to guess what your preferred visualization actions are. Therefore, you need
to explicitly edit the code and insert the right visualization statements. To
this end, invoke in the present example the wave.py file, find the visualize

function and fill in the correct command in the cmd string. In the present
example we set

cmd = "curveplot gnuplot -f SIMULATION.map -r ’.’ ’.’ ’.’ "\

"-animate -o ’set yrange [-0.1:0.1];’"

Leave the editor and run wave.py again. This time you should see a Gnuplot
movie when clicking on Visualize.

Chapter 3.13.6 explains how you can construct such GUIs yourself without
using CloGUI.py. We also refer to the text in the CloGUI.py-generated scripts
for more documentation of how the scripts can be adapted to special needs.

1.7. Coding the PDE Simulator as a Class 127

The Wave1D class in src/fdm/Wave1D/string is a toy program and not
very exciting to play with. Closely related simulators, found in subdirec-
tories of src/fdm/Wave1D, are made for illustration of important numerical
artifacts. Graphical user interfaces for these simulators are useful, especially
in teaching situations. You can take a look at the examples Wave1D/steep1

and Wave1D/steep2 in Appendix A.4.8 as well as the demos Wave1D/ill-posed

and Wave1D/bc used in Appendix A.5.

1.7.5 Simulation of 2D Waves Revisited

It is natural to implement the algorithm for the 2D wave equation from
Chapter 1.4.7 using fields and grid objects similar to what we did in the Wave1D
simulator. To choose among different depth functions H(x, y) (or H(x, y, t)
for modeling slide-generated waves) and initial elevations I(x, y), we apply
the same design as we explained for the λ(u) coefficient in Chapter 1.7.2. That
is, we represent functions in terms of classes, termed functors. A suggested
base class for such functors is

class WaveFunc : public HandleId

{

public:

virtual real valuePt (real x, real y, real t = DUMMY);

virtual void scan () {} // read parameters in depth func.

virtual String formula (); // function label

};

In the wave simulator we include two Handle(WaveFunc) objects for evaluat-
ing the initial surface displacement and the depth, respectively. Evaluation
of these functions at a point is performed by calling the virtual valuePt func-
tion, without knowing exactly which initial condition or depth function that
the user has chosen on the input. Since there is some overhead associated
with virtual function calls, we store the depth values at the grid points using
a Handle(FieldLattice) object lambda and use lambda instead of the functor
in the CPU-intensive statements of the numerical scheme. A typical code seg-
ment for the initialization of the λ values on the basis of a Handle(WaveFunc)

object H might take this form:

int i, j; real x, y;

const int nx = grid->getMaxI(1);

const int ny = grid->getMaxI(2);

ArrayGen(real)& lambda_v = lambda->values();

for (j = 1; j <= ny; j++) {

for (i = 1; i <= nx; i++) {

x = grid->getPt(1,i); y = grid->getPt(2,j);

lambda_v(i,j) = 1.0 - H->valuePt(x,y);

}

}

128 1. Getting Started

Considering the Gaussian bell functions (1.67) and (1.68), we can implement
both types in the same subclass GaussianBell of WaveFunc if we parameterize
the name of the function in the command-line arguments to avoid ambiguous
commands. The idea and its associated string manipulations are documented
in the source code in src/fdm/Wave2D/Wave2D.cpp.

The rest of the simulator code should be straightforward to understand
provided that you have understood the underlying algorithm and its imple-
mentation in the more primitive version found in src/fdm/intro/Wave2D, and
that you are familiar with the present section and the Wave1D solver. The
usage of the Wave2D class was explained when performing the numerical ex-
periments with 2D water waves in Chapter 1.4.7.

Exercise 1.21. .
Destructive surface waves can be generated from underwater slides. Math-

ematically, we can model an underwater slide as a movement of the bottom.
Incorporation of a time-dependent (scaled) depth H(x, y, t) in the governing
wave equation leads to an extra source term:

∂2u

∂t2
= ∇ · [H(x, y, t)∇u]− ∂2H

∂t2
. (1.84)

In the finite difference scheme, we assume that H is available as an explicit
function, and the second-order derivative can be approximated directly by

[
∂2H

∂t2

]`

i,j

≈ 1

∆t2
(H(xi, yj , t`+1)− 2H(xi, yj , t`) +H(xi, yj , t`−1)) .

Implement a simulation program for the equation (1.84) restricted to one
space dimension. Dump curve plots of u(x, t) and H(x, t) at each time level
such that we can make movies of the time-varying surface elevation and the
bottom. (A suitable set of regular expressions for animations via curveplot is
-r ’.’ ’H’ ’.’ -r ’. ’u’ ’.’ provided the curve names of H and u contain
H and u, respectively.)

A specific function H(x, y, t), modeling underwater slides in a fjord, may
have the shape

H(x, t) = ∆− β(x+ ε)(x + ε− L)

− K 1√
2πγ

exp

(
− 1

γ

[
x− (L+ ε+ 2)

5
+ ceαt

]2)
,

where ∆, ε, L, K, γ, and α are constants that can be tuned to produce a
particular slide. The function H is interpreted as the sum of a parabola and
a bell-shaped curve, the latter moving with a velocity αc exp (αt). Choosing
α < 0 gives a retarding slide. A suitable choice of values are ∆ = 0.2, β =
0.04, ε = 0.5, L = 11, K = 0.7, γ = 0.7, c = 1.2, and α = −0.3. �

1.7. Coding the PDE Simulator as a Class 129

1.7.6 Transient Heat Conduction

When deriving the 1D heat conduction equation −(λ(x)u′(x))′ = f(x) in
Chapter 1.3.1, we assumed stationary conditions. If the temperature u changes
with time, transient effects must be included in the governing equation. We
shall now look at a transient heat conduction model in 1D and present dif-
ferent types of finite difference schemes. We also discuss implementational
aspects and encourage the reader to experiment with the solver to learn
more about transient heat conduction, or diffusion processes, in general.

The Physical and Mathematical Model. The basis for the the governing PDE
for transient heat conduction equation is still the first law of thermodynamics,
but the net outflow of heat in a small volume must be balanced by generated
heat and an increase in the internal energy. Since the derivation, in the tran-
sient case, makes use of some relations from thermodynamics, we omit the
details here. The result is the transient (or time-dependent) one-dimensional
heat conduction equation

%C
∂u

∂t
=

∂

∂x

(
λ(x)

∂u

∂x

)
+ f(x) . (1.85)

Here, % is the density of the medium in which the heat conduction takes place,
C is a heat capacity of the medium, λ is the medium’s heat conduction
coefficient, and f denotes heat sources. Equation (1.85) must be equipped
with boundary conditions at the end points of the x interval in which the
equation is to be solved. Moreover, we need an initial value of u, i.e. u(x, 0).
(Because (1.85) has a first-order time derivative, we need one initial condition.
The wave equation, having a second-order derivative in time, needs two initial
conditions.)

Diffusion Processes. We make a remark regarding another physical interpre-
tation of (1.85). This equation also arises in diffusion processes. One example
is transport of a substance in a fluid due to molecular diffusion; putting some
ink in water at rest starts a diffusion process, where the initially localized ink
spreads to all parts of the fluid over time. The unknown u is the concentra-
tion of molecules of the specie. The foundation of (1.85) is a mass balance
equation

∂u

∂t
+∇ · q = 0,

where q is the flux of molecules. Experience shows that the flux q is directed
from regions with high concentration to regions with low concentration, i.e.,
q = −k∇u, k being the coefficient of self-diffusion42. Inserting q = −k∇u in
the mass balance equation yields

∂u

∂t
= k∇2c,

42 Note the analogy with Fourier’s similar law relating heat flux to temperature.

130 1. Getting Started

which reduces to the form (1.85) (with slightly different coefficients) if the dif-
fusion transport is one dimensional, i.e., c = c(x, t). Normally, k is a constant
in diffusion processes.

Model Problem. We shall present numerical discretization techniques and a
computer implementation for solving (1.85) when λ, %, and C are constant,
and f(x) = 0. The extension to variable coefficients is left as an exercise. We
choose simple boundary conditions: u = constant at the ends x = 0, L of the
domain. Scaling the simplified form of (1.85) with L as spatial scale, the u
value at x = u, L as u scale, and %CL2/λ as time scale, see Appendix A.1,
leads to the following model problem for the transient heat equation:

∂u

∂t
=
∂2u

∂x2
, x ∈ (0, 1), t > 0, (1.86)

u(0, t) = 0, t > 0, (1.87)

u(1, t) = 0, t > 0, (1.88)

u(x, 0) = I(x), x ∈ (0, 1) . (1.89)

Finite Difference Methods. We introduce a uniform grid in x and t directions,
exactly as we did for the one-dimensional wave equation in Chapter 1.4.2.
The grid points are then 0 = x1 < x2 < · · · < xn = 1 in space and 0 = t0 <
t1 < t2 < · · · in time. Our goal is to compute u(x, t) at the grid points, and
the numerical approximation to u(xi, t`) is written as u`

i . The basic ideas of
a finite difference method are (i) sampling the partial differential equation at
a point (xi, t`) in the grid,

∂

∂t
u(xi, t`) =

∂2

∂x2
u(xi, t`), (1.90)

and (ii) approximating the derivatives at that point by finite differences. It
is natural to employ our earlier approximation of the second-order derivative
in x,

∂2

∂x2
u(xi, t`) ≈

u`
i−1 − 2u`

i + u`
i+1

h2
.

For the time derivative we have different choices. One possibility is to apply
a one-sided difference, a so-called forward difference,

∂

∂t
u(xi, t`) ≈

u`+1
i − u`

i

∆t
. (1.91)

Inserting these approximations in (1.90) gives an equation, which we can
solve with respect to u`+1

i , just as in the case with the wave equation in
Chapter 1.4.2:

u`+1
i = u`

i +
∆t

h2
(u`

i−1 − 2u`
i + u`

i+1) . (1.92)

1.7. Coding the PDE Simulator as a Class 131

This approach yields an explicit updating formula for the new values u`
i ,

provided that we have already computed values at time level `. Hence, we
can easily program this updating formula in a code of the type used for the
wave equation program. When we run the code, we will experience that the
method (1.92) is stable only when the time step ∆t is small. More precisely,
in Appendix A.4 we show mathematically that the scheme (1.92) is stable
when ∆t ≤ h2/2. For small h, this gives a much less favorable time step than
we had for the wave equation (where ∆t ≤ h for stability).

Improved stability can be obtained by using other differences in time. For
example, a backward difference could be used:

∂

∂t
u(xi, t`) ≈

u`
i − u`−1

i

∆t
. (1.93)

Inserting the approximations in (1.90) gives

u`
i − u`−1

i

∆t
=
u`

i−1 − 2u`
i + u`

i+1

h2
.

This equation cannot be solved with respect to u`
i (yielding an explicit formula

for u`
i) because other unknown values, u`

i−1 and u`
i+1, also appear in the

equation. We see that three neighboring unknown values u`
i−1, u

`
i−1, and

u`
i−1 are coupled at time level `:

u`
i −

∆t

h2

(
u`

i−1 − 2u`
i + u`

i+1

)
= u`−1

i .

We can write this equation as

− ∆t

h2
u`

i−1 +

(
1 +

2∆t

h2

)
u`

i −
∆t

h2
u`

i+1 = u`−1
i , (1.94)

which demonstrates that this is a system of linear equations of the same type
as we encountered in Chapter 1.3.2. Finite difference schemes requiring so-
lution of a linear system of equations at each time level are referred to as
implicit schemes. The counterpart, explicit schemes, refers to methods where
new values of the unknown can be computed from an explicit updating for-
mula like (1.92) (i.e., the linear system of equations has a diagonal coefficient
matrix and can be solved by hand).

We can write the system implied by (1.94) in matrix form:

Au` = b(u`−1) .

Such a system must be solved at each time level. The coefficient matrix A

is seen to be tridiagonal, so we typically insert the entries in a tridiagonal
matrix object MatTri(real). The entries in b are inserted in a vector of type
ArrayGen(real). Thereafter we can call a Gaussian elimination procedure.

132 1. Getting Started

The Diffpack technicalities are explained in Chapter 1.3.3. A detailed algo-
rithm for the current time-dependent application, with the method (1.94) as
a special case, is presented later.

The scheme (1.94) is more difficult to implement than the explicit coun-
terpart (1.92). The benefit of (1.94) is that the computations are numerically
stable for any choice of ∆t. However, as ∆t increases, the accuracy decreases.
It turns out from the analysis in Appendix A.4 that the formal accuracy of
the methods (1.92) and (1.94) are the same; the numerical error is of order
∆t in time and h2 in space.

To obtain a scheme with higher accuracy in time, we can use a centered
difference for ∂u/∂t instead of the one-sided forward or backward differences
in (1.91) and (1.93). A centered difference appears naturally if we approxi-
mate the partial differential equation at the space-time point (xi, t`− 1

2
):

∂

∂t
u(xi, t`− 1

2
) =

∂2

∂x2
u(xi, t`− 1

2
) . (1.95)

Now, a centered difference around time level `− 1
2 reads

∂

∂t
u(xi, t`− 1

2
) ≈ u`

i − u`−1
i

∆t
. (1.96)

The accuracy of such centered differences is of order ∆t2. The spatial deriva-
tive is approximated by the standard difference for second-order derivatives:

∂2

∂x2
u(xi, t`− 1

2
) ≈ u

`− 1
2

i−1 − 2u
`− 1

2
i + u

`− 1
2

i+1

h2
. (1.97)

A problem is that u values at half integer time levels are not primary discrete
unknowns in the scheme; we find and store new values at integer time levels.

This means that we need to express a quantity like u
`− 1

2

i by u values at integer
time levels, e.g.,

u
`− 1

2
i =

1

2
(u`−1

i + u`
i) .

This is an arithmetic average, and the technique is similar to the one used
for half integer spatial indices (typically λi+ 1

2
) in Chapter 1.3.6.

We can now summarize the scheme based on centered differences as fol-
lows:

u`
i − u`−1

i

∆t
=

1

2

(
u`

i−1 − 2u`
i + u`

i+1

h2
+
u`−1

i−1 − 2u`−1
i + u`−1

i+1

h2

)
. (1.98)

This is also an implicit system, a fact that becomes evident when we collect
all the new values at time level ` on the left-hand side:

− ∆t

2h2
u`

i−1 +

(
1 +

∆t

h2

)
u`

i −
∆t

2h2
u`

i+1 = u`−1
i +

∆t

2h2

(
u`−1

i−1 − 2u`−1
i + u`−1

i+1

)
.

(1.99)

1.7. Coding the PDE Simulator as a Class 133

It is common to refer to (1.92) as a forward Euler scheme, (1.94) as a backward
Euler scheme, and (1.99) as a Crank-Nicolson scheme. These three methods
can be combined in a unified scheme, the so-called θ-rule. The idea is to
sample the partial differential equation at the spatial point xi (as before)
and the temporal point t`−1+θ, where θ is a parameter in [0, 1]. We employ

∂

∂t
u(xi, t`−1+θ) ≈

u`
i − u`−1

i

∆t
. (1.100)

The time difference on the right-hand side has already been used as approx-
imations to ∂u/∂t at the end points t` and t`−1 of the interval [t`−1, t`] and
at the center point t`− 1

2
. Now we apply this difference for an arbitrary point

t`−1+θ in the interval.
The spatial derivative ∂2u/∂x2 is approximated by a centered difference.

Quantities at time level t`−1+θ are approximated by a weighted average of
the same quantities at levels ` and `− 1,

u`−1+θ
i = θu`

i + (1− θ)u`−1
i ,

implying

∂2

∂x2
u(xi, t`−1+θ) = θ

∂2

∂x2
u(xi, t`) + (1− θ) ∂

2

∂x2
u(xi, t`−1) .

The resulting scheme can be written

u`
i − u`−1

i

∆t
= θ

u`
i−1 − 2u`

i + u`
i+1

h2
+ (1− θ)u

`−1
i−1 − 2u`−1

i + u`−1
i+1

h2
. (1.101)

Collecting the unknown new values at time level ` on the left-hand side and
the previously computed values on the right-hand side, demonstrates that we
deal with a linear tridiagonal system:

− θ∆t
h2
u`

i−1 +

(
1 + 2θ

∆t

h2

)
u`

i − θ
∆t

h2
u`

i+1 = u`−1
i +

(1− θ)∆t
h2

(
u`−1

i−1 − 2u`−1
i + u`−1

i+1

)
. (1.102)

This grouping of the terms in the scheme also explicitly lists the entries in
the coefficient matrix and the right-hand side.

The reader should observe that (1.102) reduces to (1.99) for θ = 1/2, to
(1.94) when θ = 1, and to (1.92) when θ = 0. The scheme (1.102) is stable
for all ∆t when θ ≥ 1/2. The accuracy is of order h2 and ∆t2 for θ = 1/2,
but the order in time is reduced to ∆t for θ 6= 1/2.

From an implementational point of view, it is easier to just implement
the generalized scheme (1.102) than to separately implement the standard
methods (1.92), (1.94), and (1.99).

134 1. Getting Started

Besides the scheme itself, we need to have full control of the initial condi-
tion and the boundary conditions in a computational algorithm. The initial
condition is easier handled in the present problem than in the wave equation
application, because there is only one initial condition: u(x, 0) = I(x). We
then set u0

i = I(xi), and (1.102) can be used for all time levels ` > 0. The
boundary values are implemented as in the 1D wave equation example, i.e.,
we use the scheme (1.102) at inner grid points only, and the boundary condi-
tions u`

1 = 0 and u`
n = 0 at the end points. The complete numerical method

is summarized in Algorithm 1.5.
We can write (1.102) in matrix form

Au` = Bu`−1, (1.103)

with matrix entries

Ai,i−1 = −θ∆t
h2
, Ai,i = 1 + 2θ

∆t

h2
, Ai,i+1 = Ai,i−1,

and

Bi,i−1 = (1− θ)∆t
h2
, Bi,i = 1− 2(1− θ)∆t

h2
, Bi,i+1 = Bi,i−1 .

The entries in the first and last row of A and B are modified because of the
boundary conditions. The u` vector is simply (u`

1, . . . , u
`
n)T , with a similar

definition of u`−1.

Exercise 1.22. .
Reformulate Algorithm 1.5 such that (1.103) is the fundamental equation.

That is, compute A and B initially and find a new solution vector by per-
forming the matrix-vector product b = Bu`−1 and then solving the system
Au` = b. Count the number of arithmetic operations during N time steps for
both algorithms and determine the computationally most efficient approach.
�

1.7. Coding the PDE Simulator as a Class 135

Algorithm 1.5.

θ-rule scheme for the 1D heat equation.

define ui and u−i as u`
i and u`−1

i , respectively
set the initial conditions:

ui = I(xi), for i = 1, . . . , n
t = 0
while time t ≤ tstop

t← t+∆t
define tridiagonal system:

Au = b, where
u = (u1, . . . , un)T ,
Ai,i−1 = −θ∆t

h2 , Ai,i = 1 + 2θ∆t
h2 , Ai,i+1 = −θ∆t

h2

bi = u`−1
i + (1− θ)∆t

h2

(
u`−1

i−1 − 2u`−1
i + u`−1

i+1

)

for i = 2, . . . , n− 1 and
A1,1 = 1, An,n = 1, b1 = 0, bn = 0
(all other Aij values are zero)
solve the system Au = b

initialize for next step:

u−i = ui, for i = 1, . . . , n
dump the solution (ui, i = 1, . . . , n) to file

Implementation. Algorithm 1.5 is straightforwardly implemented in a Diff-
pack program. We have realized the simulator as a class Heat1D found in the
directory src/fdm/Heat1D.

class Heat1D

{

protected:

Handle(GridLattice) grid; // square finite difference grid

Handle(FieldLattice) u; // primary unknown, current time level

Handle(FieldLattice) u_prev; // primary unknown, previous time level

Handle(TimePrm) tip; // time interval, time step etc

real theta; // time discretization parameter

// linear solver structures:

MatTri(real) A; // coefficient matrix

ArrayGen(real) b; // solution vector, rhs

int n; // grid has n points

real h; // cell size: h=1/(n-1)

int bc_tp; // boundary condition at x=1

int ic_tp; // initial condition

136 1. Getting Started

int problem_tp; // 1: test problem with anal.sol.

CurvePlotFile cplotfile; // dump curves for visualization

virtual void timeLoop ();

virtual void solveAtThisTimeStep ();

virtual void setIC ();

virtual real error (real t);

real testproblem (real x, real t)

{ return (1-exp(-sqr(M_PI)*t))*sin(M_PI*x); }

public:

Heat1D () {}

virtual ~Heat1D () {}

virtual void scan ();

virtual void solveProblem ();

virtual void resultReport ();

};

In the implementation of the Heat1D solver we allow for different types of
boundary conditions and initial conditions. We also allow for a source term
f(x) in the equation:

∂u

∂t
=
∂2u

∂x2
+ f(x) .

Some available choices of f , boundary and initial conditions are

– f : f(x) = 0, f(x) = 2, f(x) = π2 sinπx

– Boundary condition at x = 0: u(0, t) = 0

– Boundary condition at x = 1: u(1, t) = 0 or ∂
∂xu(1, t) = 0

– Initial condition: u(x, 0) = 0, u(x, 0) = 1, u(x, 0) as random numbers in
the interval (0, 0.1), or

u(x, 0) =

{
1, x < 1/2
0, x > 1/2

(1.104)

The particular choice of f(x) = π2 sinπx, u(1, t) = 0, and u(x, 0) = 0 corre-
sponds to the analytical solution

u(x, t) =
(
1− e−π2t

)
sinπx, (1.105)

which is convenient for verifying the implementation.
The details of the implementation appear in the file

src/fdm/Heat1D/Heat1D.cpp

There are no new constructions; Heat1D.cpp is just a combination of elements
from HeatSteady1D.cpp and Wave1D.cpp. You should therefore be familiar with
these two latter files before reading Heat1D.cpp.

1.7. Coding the PDE Simulator as a Class 137

Numerical Experimentation. We can start with running a problem where the
analytical solution is known such that we can monitor the error:

./app -t ’dt=0.01 [0,2]’ \

-bc ’u(1,t)=0’ -f ’sine f(x)’ -ic ’u=0’ \

-n 160 -theta 0.50

The reader is encouraged to look at Heat1D::scan in the file Heat1D.cpp to see
the available command-line options and the corresponding possible values. We
use 160 grid points (-n), ∆t = 0.01 (-t), and θ = 1/2 (-theta). Furthermore,
we specify u(x, 0) = 0 (-ic), f(x) = π2 sinπx (-f), and u(1, t) = 0 (-bc),
which are required to set up the test problem with analytical solution. The
program will in this case detect that we run the test problem and write a
measure of the error in the solution at each time level. The error is now about
2 · 10−4 when t is around 0.1. Halving h and ∆t should reduce the error by
a factor of 4 since the scheme for θ = 0.5 is of order h2 and ∆t2. Running -t

’dt=0.005 [0,2]’ -n 320 shows that this is true; the error is about 5 · 10−5

when t is around 0.1.
The solution u(x, t) can be animated with the following command:

curveplot gnuplot -f SIMULATION.map -r ’.’ ’u’ ’.’ -animate \

-o ’set yrange [-0.05:1.1];’

It might be of interest to compare the accuracy of a Crank-Nicolson and a
backward Euler scheme, i.e., -theta 0.5 versus -theta 1.0. We run two cases,
setting --casename and --casedir (see page 43) to CN for Crank-Nicolson and
BE for backward Euler. The difference between the methods can then be
illustrated by plotting u at two time points t = 0.1 and t = 0.4:

curveplot gnuplot -f BE/BE.map -f CN/CN.map \

-r ’.’ ’u\(x,0\.1\)’ ’.’ \

-r ’.’ ’u\(x,0\.4\)’ ’.’

The result appears in Figure 1.15. We see that there is some discrepancy
between the two methods, but the discrepancy decreases with time.

A test problem with more exciting solutions can be created by introducing
discontinuities in the initial and boundary conditions. Let us choose the step
function (1.104) as initial condition. This has a discontinuity at x = 1/2, but
since u(0, 0) = 1 and the boundary condition reads u(0, t) = 0 for t > 0,
there will be a discontinuity at x = 0 as well. How do the numerical methods
handle such discontinuities? Numerical experiments can provide some insight
to this question. We choose the initial condition u step, f(x) as f(x)=0, 160
grid points, and ∆t = 0.01:

./app -t ’dt=0.01 [0,3]’ -n 160 -theta 0.50 \

-bc ’u(1,t)=0’ -f ’f(x)=0’ -ic ’u step’

138 1. Getting Started

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

u

BE_u(x,0.1)
CN_u(x,0.1)
BE_u(x,0.4)
CN_u(x,0.4)

Fig. 1.15. Plot of u(x, t) computed with θ = 1 (BE) and θ = 1/2 (CN) at
t = 0.1 (lower curves) and t = 0.4 (upper curves). The results were computed
in the test case with analytical solution (1.105), ∆t = 0.01, and 160 grid
points. The solution starts as u = 0 and approaches u = sinπx as t→∞.

curveplot gnuplot -f SIMULATION.map -r ’.’ ’u’ ’.’ \

-animate -o ’set yrange [-0.05:0.15];’ -fps 0

The reader is strongly encouraged to execute these two commands before
continuing reading.

A strange phenomenon arises in this example: The solution oscillates heav-
ily around the point x = 0.5. The amplitude of the oscillations decreases with
time, but very slowly. With 1000 points the oscillations are even more pro-
nounced and hardly damped as time increases. The oscillations disappear
quickly when we have only 21 points. We can study what happens close to
t = 0 in more detail by choosing a time step ∆t = 0.0001 and simulate for
t ∈ [0, 0.01]. Only small oscillations during the very first time steps are now
visible. Increasing ∆t also increases the oscillations around x = 0.5.

Switching to the backward Euler scheme (θ = 1) gives a solution without
any oscillations, regardless of the values of ∆t and h. The central question
is then: Are the observed oscillations physically relevant? The answer is no.
Appendix A.4.11 provides a detailed analysis of the damping properties of the
backward Euler scheme and the Crank-Nicolson scheme applied to the heat
equation. It turns out that short frequency noise is very quickly damped in
the heat equation. The backward scheme reproduces this qualitative behavior,
whereas Crank-Nicolson has a much weaker damping unless ∆t is very small.

1.8. Projects 139

Figure 1.16 compares the two schemes after the second time step, with a
quite large ∆t. The backward Euler scheme is qualitatively correct, whereas
the Crank-Nicolson scheme is not. The reader should notice that commonly
used (rough) accuracy estimates, like the truncation error, indicates that the
latter scheme is more accurate than the former. More investigations of this
numerical experiment appears in Appendix A.5.3. Project 1.8.1 introduces
more accurate backward schemes for the heat equation, using three time
levels instead of two.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1

solution at the 2nd time step

u(x,0.02)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.2 0.4 0.6 0.8 1

solution at the 2nd time step

u(x,0.02)

Fig. 1.16. Plot of u(x, t) at the 2nd time step. The initial condition is a step
function, resulting in discontinuities at x = 0 and x = 0.5. 160 grid points
and ∆t = 0.1. To the left: Crank-Nicolson scheme. To the right: backward
Euler scheme.

1.8 Projects

1.8.1 Transient Flow Between Moving Plates

Mathematical Problem. The model to be studied in the present project reads

∂u

∂t
=
∂2u

∂x2
, x ∈ (0, 1), t > 0, (1.106)

u(0, t) = 0, t > 0, (1.107)

u(1, t) = 1, t > 0, (1.108)

u(x, 0) = 0, x ∈ [0, 1] . (1.109)

Physical Model. The initial-boundary value problem (1.106)–(1.109) models
channel flow between two flat (infinite) plates x = 0 and x = 1, where the fluid
is initially at rest, and the plate x = 1 is given a sudden initial movement. The
function u(x, t) reflects the fluid velocity in direction parallel to the plates
(normal to the x axis). For small t, only the part of the fluid close to the

140 1. Getting Started

moving plate is set in significant motion, resulting in a thin boundary layer
at x = 1. As time increases, the velocity approaches a linear variation with
x (known as the stationary Couette flow profile). Equations (1.106)–(1.109)
constitute a model for studying friction between moving surfaces separated
by a thin fluid film.

Derive the model (1.106)–(1.109) from the incompressible Navier-Stokes
equations and a suitable scaling. In addition, give the details of an alternative
physical interpretation, where u(x, t) is the temperature in a rod.

Numerical Method. Solve the problem (1.106)–(1.109) by using the θ-rule
and centered spatial differences, as explained in Chapter 1.7.6.

Analysis. Find the truncation error of the numerical scheme and determine if
the scheme is consistent. Investigate the stability properties. (Appendix A.4
covers truncation errors, consistency, and stability.) Find the analytical so-
lution to the continuous problem. (Hint: introduce v(x, t) = u(x, t) − x and
expand v(x, t) in a Fourier sine series v =

∑
k ak(t) sinπkx; details are found

in [149, Ch. 3-5.2].)

Implementation. Implement the numerical method by modifying the Heat1D

solver from Chapter 1.7.6. Dump the solution and the error at three time
points, tI < tII < tIII , where u(·, tI) exhibits a thin boundary layer close to
x = 1, u(·, tII) is smoother, but still significantly curved, whereas u(·, tIII) is
almost linear, i.e., close to the stationary state.

Computer Experiments. For each of the cases h = 1/10 and h = 1/100, run
the scheme with θ = 0, 0.5, 1, and ∆t corresponding to the stability limit
dictated by the explicit scheme. Compare these solutions with the analytical
solution of the continuous problem at t = tI , tII , tIII with respect to the
error measure e explained in Project 1.5.2. Which of the choices of θ will you
classify as “best”?

The initial discontinuity at the boundary leads to rapid changes for small
t, whereas the solution changes more slowly as t increases. This calls for
adaptive time stepping, i.e., a varying ∆t. Class TimePrm has some simple
features for assigning different values of ∆t in different time intervals, see
the man page of the class or Chapter 3.11.2 for the syntax of the input
string. Introduce some time intervals and experiment with small ∆t in the
first intervals, and larger ∆t as the solution approaches a stationary profile.

For a given grid size, the work per time level is fixed, so the number of
time steps reflects the total computational work. Use the analytical solution
to measure the error at times tI , tII , and tIII . Determine from experiments
how much you can reduce the total computational cost by varying ∆t (i.e.,
compare simulations with constant and varying ∆t that lead to the approxi-
mately same accuracy at times tI , tII , and tIII).

1.8. Projects 141

Extension: Higher-Order Forward and Backward Schemes. The forward and
backward Euler schemes for equation (1.106) typically lead to discretization
errors of order∆t. To obtain an error of order∆t2, but still enable an explicit
time marching, we can apply a three-point, one-sided difference approxima-
tion: [

∂u

∂t

]`

i

≈ au`+2
i + bu`+1

i + cu`
i , (1.110)

where a, b, and c are constants to be determined. Make Taylor-series expan-
sions of u`+2

i , u`+1
i , and u`

i around time level ` and insert these in (1.110).
Find equations for a, b, and c such that au`+2

i + bu`+1
i + cu`

i approximates a
first derivative. The leading term in the error should be of order ∆t2. Find
a corresponding difference formula for a backward scheme, that is, a three-
level, one-sided difference approximation to ∂u/∂t at time ` + 2, based on
the values u`+2

i , u`+1
i , and u`

i . Formulate three-level forward and backward
schemes for the problem (1.106)–(1.109). (At the first time level one can use
a Crank-Nicolson (θ = 0.5) scheme.)

Find the truncation error of the forward and backward three-level schemes.
Deduce the stability properties of the schemes.

Implement the three-level time schemes in the program. Run the problem
for ∆t = 2−k · 0.1, k = 1, 2, . . . , 15, and for each choice of ∆t, plot u(x, tI),
u(x, tII), and u(x, tIII) corresponding to the θ = 1/2 scheme, the higher-order
forward scheme, and the higher-order backward scheme. Use these plots to
assess the feasibility of the new schemes.

1.8.2 Transient Channel Flow

Mathematical Problem. This project is closely related to Project 1.8.1, but
considers a slightly different problem:

∂u

∂t
=
∂2u

∂x2
+ β(t), x ∈ (0, 1), t > 0, (1.111)

u(0, t) = 0, t > 0, (1.112)

u(1, t) = 0, t > 0, (1.113)

u(x, 0) = 0, x ∈ [0, 1] . (1.114)

Physical Model. The physical problem modeled by (1.111)–(1.114) concerns
flow in a straight channel with fixed walls, such that u(0, t) = u(1, t) = 0,
but with a time-dependent pressure gradient, giving rise to a time-varying
source term β(t) in the governing PDE. While the moving wall caused the
fluid flow in Project 1.8.1, the pressure gradient is now the driving force.
(Make a sketch of the problem and make sure you understand the physics.)

Derive the model (1.111)–(1.114) from the incompressible Navier-Stokes
equations. (You need to scale the simplified model to arrive at exactly (1.111)–
(1.114).)

142 1. Getting Started

Numerical Method. The θ-rule method from Chapter 1.7.6 is suggested for
discretizing (1.111)–(1.114) in time. The only new aspect here is the treat-
ment of the source term, which should be evaluated at time t`−1+θ, i.e., as

θβ(`∆t) + (1− θ)β((`− 1)∆t) .

Implementation. Implement the scheme in a copy of the Heat1D program from
Chapter 1.7.6. It is of interest to make animations of u and β simultaneously,
so one needs to dump curve plots of u and β as functions of x for each time
step. (Scale β by the maximum u value, maxt u(0.5, t), such that the u and
β curves have the same scales and hence fit nicely in the same plot.)

To verify the implementation, one can construct a simple solution u(x, t)
of a slightly different problem. For example, one can seek u of the form
f(t)+Cx2, where C is a constant. Inserting this u in the governing PDE leads
to an expression for f(t) in terms of β(t). Boundary and initial conditions
must be adjusted accordingly. With a constant β, the scheme should recover
the exact solution in the limit t→∞.

Computer Experiments. Produce a set of movies of u and β corresponding
to pulsating pressure gradients, like β(t) = C1 sin2n ωt and β(t) = C2 sinωt,
where you vary the parameters n > 0 and ω (C1 and C2 have fixed values).
Run the simulations until the velocity appears to be periodic in time.

Remark. The model (1.111)–(1.114) can easily be extended to flow in a
straight pipe with circular cross section by introducing a radial coordinate r

instead of x. This implies replacing ∂2u
∂x2 in (1.111) by 1

r
d
dr

(
r ∂u

∂r

)
and (1.112)

by ∂u
∂r = 0. The corresponding finite difference equations can utilize the ap-

proximations from Chapter 1.3.6, but the point r = 0 gives rise to difficul-
ties. An appropriate set of difference equations is in fact readily obtained by
applying a finite element method to the problem in radial coordinates, see
Project 2.6.3.

1.8.3 Coupled Heat and Fluid Flow

Mathematical Problem. This project concerns the coupling of two nonlinear
“heat equations”. The complete initial-boundary value problem is written as

∂u

∂t
= α

∂

∂x

(
m(T)

∣∣∣∣
∂u

∂x

∣∣∣∣
n−1

∂u

∂x

)
+ β(t), x ∈ (0, 1), t > 0, (1.115)

∂T

∂t
= γ

∂2T

∂x2
+m(T)

∣∣∣∣
∂u

∂x

∣∣∣∣
n+1

, x ∈ (0, 1), t > 0, (1.116)

u(0, t) = 0, t > 0, (1.117)

u(1, t) = 0, t > 0, (1.118)

u(x, 0) = 0, x ∈ [0, 1], (1.119)

1.8. Projects 143

T (0, t) = 0, t > 0, (1.120)

T (1, t) = 0, t > 0, (1.121)

T (x, 0) = 0, x ∈ [0, 1] . (1.122)

This is a coupled system of nonlinear PDEs. The parameters α, γ, n ∈ IR are
dimensionless numbers, while the function m(T) is in general nonlinear and
can be taken as exp (−τT), where τ is another dimensionless constant.

Physical Model. The apparent viscosity of highly viscous fluids, like metals
under extrusion or liquid plastics, often varies with the velocity gradient and
the temperature. Furthermore, the internal friction caused by viscosity may
generate significant heat, which in turn influences the viscosity. Chapter 7.2.1
derives a set of PDEs and corresponding boundary conditions for coupled heat
and fluid flow in straight pipes with arbitrary cross section. Simplifying the
equations in Chapter 7.2.1 to channel flow, and introducing a suitable scaling,
results in the system (1.115)–(1.122). The viscosity is reflected by the function
m(T)|∂u/∂x|n−1. The last term in (1.116) models the heat generation by
internal friction in the fluid. We notice that the coefficients in the PDE depend
on both u and T , making the two PDEs fully coupled.

Numerical Method. Construction of stable and robust methods for numerical
solution of the time-dependent nonlinear system of PDEs (1.115)–(1.116) is a
challenging task. Chapters 4.1 and 7.2 present quite comprehensive solution
methods for such problems, but in this project we shall formulate a special
time discretization that leaves us with two standard linear tridiagonal matrix
problems at each time level. We discretize both (1.115) and (1.116) by a back-
ward Euler scheme. However, in the evaluation of the nonlinear coefficients
we approximate u and T by values at the previous time level:

u` − u`−1

∆t
= α

∂

∂x

m(T `−1)

∣∣∣∣∣
∂u

∂x

`−1
∣∣∣∣∣

n−1
∂u`

∂x

+ β(t`), (1.123)

T ` − T `−1

∆t
= γ

∂2T `

∂x2
+m(T `−1)

∣∣∣∣
∂u`

∂x

∣∣∣∣
n+1

, (1.124)

for x ∈ (0, 1) and t > 0. Notice now that (1.123) is a linear equation in u`

and that (1.124) is linear in T ` if we have already solved (1.123) for u`. In
other words, the particular time discretization technique turns the original
coupled nonlinear system of PDEs into two linear PDEs that can be solved
in sequence at each time level. The penalty for this great simplification is
less stability and robustness of the simulations in comparison with the more
sophisticated techniques in Chapters 4.1 and 7.2.

Implementation. Extend the Heat1D program from Chapter 1.7.6 to allow
for two tridiagonal linear systems at each time level. To partially verify the

144 1. Getting Started

implementation, set m(T) = 1 and n = 1, let β be constant, and calculate
the analytical solution of the PDEs as t → ∞ (i.e. ∂u/∂t, ∂T/∂t → 0), and
check that the program reproduces this solution. Another stationary solution
can be obtained for m(T) = 1 and arbitrary n.

Computer Experiments. Dump curves of u, β, and T at each time level, but
scale the curves such that it makes sense to display the three graphs at once.
Work with β(t) = Aβ sinωt, choose “slow” oscillations (small ω, giving almost
quasi-static solutions, where the time derivative terms are small) and “fast”
oscillations (large ω, giving clearly visible dynamic effects such as different
phase of the unknowns). Start with n = 1 and τ = 0 (linear problem) and
gradually decrease n and increase τ . Be prepared for divergence or instability
because of this simple way of handling the nonlinearities. It is a challenge to
detect whether strange behavior of the program is due to an implementation
error or a problem with the numerical solution method. Chapter 7.2 treats
more advanced methods for the stationary 2D version of this problem, and
severe convergence problems might occur.

1.8.4 Difference Schemes for Transport Equations

Mathematical Problem. This project is an extension of Project 1.5.1 and
concerns numerical experimentation with different finite difference schemes
for the one-dimensional transport equation (1.69) and its nonlinear extension

∂u

∂t
+

∂

∂x
f(u) = 0, (1.125)

with u(x, 0) prescribed.

Physical Model. Equations of the form (1.125) are often referred to as hy-
perbolic conservation laws and appear frequently in gas dynamics and multi-
phase porous media flow. We shall consider three specific choices of f(u):

1. The linear form f(u) = γu reproduces Equation (1.69).

2. The choice f(u) = u2/2 leads to Burgers’ equation, which is a prototype
equation mirroring the nonlinear acceleration terms in fluid flow models.

3. The Buckley-Leverett equation, modeling 1D flow of oil and water in a
porous medium [62], corresponds to taking

f(u) =
u2

u2 + µ(1− u)2 ,

where µ is a constant reflecting the ratio of the viscosity of oil and water.
The unknown u(x, t) is the saturation of water (u ∈ [0, 1]).

1.8. Projects 145

Numerical Methods. There exists a large number of difference schemes for
hyperbolic equations like (1.125). Let u`

j be the numerical approximation to
the analytical solution u at grid point xj = (j − 1)h and time point `∆t.
The following list of schemes is taken from LeVeque [82,83], and the reader
is referred to that text for a comprehensive treatment of finite difference
methods for hyperbolic conservation laws.

Backward Euler scheme:

u`+1
j = u`

j −
∆t

2h

(
f(u`+1

j+1)− f(u`+1
j−1)

)
(1.126)

Explicit upwind scheme:

u`+1
j = u`

j −
∆t

h

(
f(u`

j)− f(u`
j−1)

)
, f ′(u) ≥ 0 (1.127)

Lax-Friedrichs scheme:

u`+1
j =

1

2

(
u`

j−1 + u`
j+1

)
− ∆t

2h

(
f(u`

j+1)− f(u`
j−1)

)
(1.128)

Leap-Frog scheme:

u`+1
j = u`−1

j − 2∆t

2h

(
f(u`

j+1)− f(u`
j−1)

)
(1.129)

Richtmyer’s two-step Lax-Wendroff method:

u
`+ 1

2

j+ 1
2

=
1

2

(
u`

j + u`
j+1

)
− ∆t

2h

(
f(u`

j+1)− f(u`
j)
)
, (1.130)

u`+1
j = u`

j −
∆t

h

(
f(u

`+ 1
2

j+ 1
2

)− f(u
`+ 1

2

j− 1
2

)
)

(1.131)

MacCormack’s method:

u∗j = u`
j −

∆t

h

(
f(u`

j+1)− f(u`
j)
)
, (1.132)

u`+1
j =

1

2

(
u`

j + u∗j
)
− ∆t

2h

(
f(u∗j)− f(u∗j−1)

)
, (1.133)

All methods, except the backward Euler scheme, are explicit. The stability
criterion for the explicit finite difference methods is that the Courant number,
given by C = max |f ′(u(x, t))|∆t/h, must fulfill C ≤ 1 (referred to as the CFL
condition).

146 1. Getting Started

Implementation. Implement the listed schemes and flux functions in the same
program such that the user can combine any of the schemes with any of the
flux functions at run time. As initial data we set u = 0 for x > 0 and u = 1
for x = 0. The grid covers x ∈ [0, 1]. (To start the Leap-Frog scheme, one
can use one of the other schemes.) The numerical solution must be plotted at
each time level. In the linear case f(u) = γu, one should also produce plots of
the simple exact solution. Use the linear case to partially verify the program.
To facilitate the implementation, one can, e.g., simplify the program from
Chapter 1.7.4.

Make a script that (i) reads the name of the scheme, the type of flux
function, the number of grid points, and value of the Courant number, (ii)
runs the simulator, (iii) animates the evolution of the numerical solution, and
(iv) produces a PostScript plot of the numerical solution when the front is
located in the middle of the domain. In the case f(u) = γu, the animation
and the plot should include the exact solution.

Analysis. We now consider the linear case f(u) = γu. Try to write as many
of the schemes as possible in the finite difference operator notation from Ap-
pendix A.3. Calculate the truncation error of each scheme. Also analyze a
selected set of schemes by finding and discussing numerical dispersion rela-
tions as explained in Appendices A.4.5–A.4.8 and try to use this analysis
to explain some of the visual numerical effects that can be observed when
playing with the computer code.

1.8.5 3D Sound Waves

Mathematical Problem. The project concerns simulation of 3D sound waves
in a box-shaped room. The air pressure perturbations p(x, y, z, t) fulfills the
3D wave equation

∂2p

∂t2
+ β

∂p

∂t
= c2

(
∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2

)
+ f(x, y, z, t), (1.134)

where c is the constant velocity of sound, and β ≥ 0 is a coefficient reflecting
damping of the waves. The function f denotes a sound source. The relevant
boundary condition is ∂p/∂n = 0. In addition, p and ∂p/∂t must be pre-
scribed at t = 0. Our domain of interest is a 3D box (0, X)× (0, Y)× (0, Z).

Physical Model. The governing PDE (1.134) can be derived from the general
equations for inviscid compressible fluid flow. One assumes small perturba-
tions in pressure, density, and velocity. The equations are then linearized,
by neglecting products of small perturbations. Eliminating the velocity and
the density yields a wave equation (1.134) for the pressure perturbation p.
On the boundaries, the normal velocity must vanish. One can show that this
implies zero normal derivative of p.

1.8. Projects 147

Method and Implementation. Solve the problem by extending the finite dif-
ference scheme for the 2D wave equation, in Chapters 1.4.7 and 1.7.5, to
the present 3D problem. Implement the resulting algorithm by modifying the
Wave2D solver. For test purposes, the new solver should offer a 2D version of
the present 3D application.

We suggest to dump the p field using the SaveSimRes utility only (i.e.,
remove the explicit SimRes2mtv::plotScalar calls). Also dump p along a line
through the box, using the SaveSimRes::lineCurve function (see the SaveSimRes
man page). Chapter 3.12 explains how to visualize the 3D scalar field with
various tools. Although Chapter 3.12 addresses finite element fields explicitly,
the same commands can be used for finite difference fields.

Simulations. As test problem, one can first consider f = 0 and an initial
condition that leads to a one-dimensional wave motion like we have simulated
with the Wave1D solver family (Chapters 1.4 and 1.7.4). For propagation in x
direction, setting c∆t/∆x = 1 (unit Courant number) should reproduce the
exact solution. Repeat this test for wave propagation in the y and z directions
as well.

As a more realistic 3D wave example, set p = 0 and ∂p/∂t = 0 initially
(t = 0), but let f be a localized sinusoidal sound emitting source at the origin.
For example, we can choose an oscillating Gaussian bell:

f(x, y, z, t) = A sinωt exp

(
−
(x
σ

)2

−
(y
σ

)2

−
(z
σ

)2
)
.

The parameter σ reflects the size of the source. Let σ be small compared to
the size of the domain, yet covering some grid points (say 5-10) for sufficient
resolution.

Perform simulations and make animations for two cases: (i) a cube with
X = Y = Z and (ii) a long box with X � Y = Z. Animations can be created
from the simres database (generated by SaveSimRes) exactly as explained in
Chapter 3.12.

Choosing, e.g., σ = Y/10 easily results in very large grids (typically 1
million grid points). It is therefore important to run 2D versions of this test
case until it is verified that the program works as intended. On large grids you
may benefit from the optimizations covered in Appendix B.7.4. This can save
a factor of about three in the present problem. Another effective optimization,
which you should carry out, is removal of the variable coefficient λ(x, y) in
the Wave2D code.

Chapter 2

Introduction to Finite Element

Discretization

The finite element method is a flexible numerical approach for solving partial
differential equations. One of the most attractive features of the method is
the straightforward handling of geometrically complicated domains. It is also
easy to construct higher-order approximations. The present chapter gives an
introduction to the basic ideas of finite elements and associated computa-
tional algorithms. No previous knowledge of the method is assumed.

First, we present the key ideas of a discretization framework called the
weighted residual method, where the finite element method arises as a special
case. Particular emphasis is put on the reasoning behind the derivation of
discrete equations and especially the handling of various boundary conditions.
Our formulation of the discretization procedure attempts to give the reader
the proper background for understanding how to operate the finite element
toolbox in Diffpack.

The finite element tools in Diffpack allow the user to concentrate on spec-
ifying the weighted residual statement (also referred to as the discrete weak
formulation) and the essential boundary conditions. Element-by-element as-
sembly, numerical integration over elements, etc. are automated procedures.
In the present chapter we will, however, explain all details of the finite ele-
ment algorithms in 1D examples and show how the algorithms are coded at
a fairly low level using only straightforward array manipulations. Thereby,
the reader should gain a thorough understanding of how the methods work
and hopefully realize how these algorithms can, at least in principle, easily be
extended to treat complicated multi-dimensional PDE problems. Advanced
generalized versions of the algorithms are available in Diffpack, and we focus
on their usage in later chapters.

After the algorithmic aspects of the finite element method are introduced,
we turn to variational forms and a more precise mathematical formulation
of continuous and discrete PDE problems. This framework allows derivation
of generic properties of the finite element method, such as existence and
uniqueness of the solution, stability estimates, best-approximation properties,
error estimates, and adaptive discretizations.

There are numerous textbooks on finite elements, emphasizing different
aspects of the method. Some texts are written in an engineering style with
special focus on structural analysis, where the method can be derived directly
from physical considerations. Other texts are written in an abstract math-

150 2. Introduction to Finite Element Discretization

ematical framework and emphasize the method as an optimal approach for
solving certain classes of PDEs. The treatment of the finite element method
in this book is mainly intuitive and informal with weight on generic algorith-
mic building blocks that apply to a wide range of PDEs. The emphasis on
detailed hand calculations of 1D problems is not only motivated on pedagog-
ical grounds – of even more importance is the need for hand calculations of
element matrices and vectors when debugging finite element codes.

As we will demonstrate in later chapters, the combination of the generic
discretization principles formulated in the present chapter and the Diffpack
software provides a flexible workplace for experimenting with finite element
methods in quite complicated scientific and engineering applications.

2.1 Weighted Residual Methods

2.1.1 Basic Principles

While the main idea of the finite difference method is to replace derivatives
in a partial differential equation by difference approximations, the main idea
of the finite element and related methods is to seek an approximation

û =

M∑

j=1

ujNj(x)

to the unknown function u(x). The sum in û involves prescribed functions
Nj(x) and unknown coefficients uj . The functions Nj are often referred to as
basis functions or trial functions. In the finite element community, the word
shape functions is frequently used. Throughout this book we will use the term
basis functions.

The ultimate aim is to construct a method for computing uj such that the
error u− û is minimized. For some special problems it is possible to minimize
a problem-dependent norm of the error, ||u− û||, without knowing the exact
solution u (see Theorems 2.13 and 2.14 in Chapter 2.10), but in general we
must rely on seemingly less attractive strategies. Although the true error u−û
is unknown, the error in the PDE, arising from inserting û instead of u, is
easy to measure and work with. Let L(u(x)) = 0, x ∈ Ω, denote the PDE,
where L is some differential operator. If we insert the approximation û in the
PDE, we generally have that L(û) 6= 0. The error in the equation, R = L(û),
is termed the residual. What we hope, is that a small residual implies a small
error u − û. For a typical stationary PDE, like the Poisson equation, we
shall actually in Chapter 2.10.7 derive a bound on the error in terms of the
residual. Similar results have been established for several prototype PDEs.

Let us now formulate some procedures for determining uj . The M equa-
tions we need to determine the M parameters u1, . . . , uM can be obtained by
forcing the residual

R(u1, . . . , uM ; x) = L(û)

2.1. Weighted Residual Methods 151

to be small in different senses. Notice that R varies in space so we need to
minimize some averages of R.

The Least-Squares Method. In this method we minimize the average square of
the residual

∫
Ω R

2dΩ with respect to u1, . . . , uM . This results in M algebraic
equations,

∂

∂ui

∫

Ω

R2dΩ =

∫

Ω

2R
∂R

∂ui
dΩ = 0, i = 1, . . . ,M . (2.1)

The Weighted Residual Method. The idea in this approach is to find u1, . . . , uM

such that the weighted mean of R overΩ vanishes for M linearly independent
weighting functions Wi:

∫

Ω

RWidΩ = 0, i = 1, . . . ,M . (2.2)

The least-squares method is hence a weighted residual method with weighting
functions Wi = 2∂R/∂ui. Choosing various weighting functions gives rise to
different methods that will be outlined in the following. The Wi functions are
also often referred to as test functions.

Remark. In the weighted residual formulation, the PDE is to be fulfilled in an
average sense:

∫
Ω
L(û)WidΩ = 0. This is often called a discrete weak formu-

lation, weighted residual formulation, or discrete variational formulation. One
can also derive a corresponding weak formulation of the continuous problem,
as will be explained in Chapter 2.10.1. The associated solution u is then a
weak solution of the problem. When the PDE L(u) = 0 is taken to hold in
a point-wise sense (i.e. at each point x ∈ Ω), we speak about the classical
solution u to the problem. We refer to [119, Ch. 8.2] for precise definitions
of classical, weak, and strong solutions to PDEs. In this text we will some-
times use the term weak formulation (or just weak form) when we actually
mean the discrete weak formulation. However, the precise meaning should be
evident from the context.

The Collocation Method. Let Wi = δ(x−x[i]), where δ(x−x[i]) is the Dirac
delta function that vanishes when x 6= x[i] and has the property

∫

Ω

f(x)δ(x− x[i])dΩ = f(x[i])

for an arbitrary function f . Application of these weighting functions results
in discrete equations of the form

R(u1, . . . , uM ; x[i]) = 0 or L(û(x[i])) = 0, i = 1, . . . ,M . (2.3)

152 2. Introduction to Finite Element Discretization

That is, the partial differential equation is required to be satisfied at M
collocation points x[i]. Equivalently, the residual is forced to vanish at M
distinct points. Observe that the collocation method is closely related to the
finite difference method. In fact, we can view the finite difference method
as a collocation method, where the derivatives at each collocation point are
replaced by finite difference approximations.

The Subdomain Collocation Method. By dividing Ω into M subdomains Ωi,
such that Ω = ∪M

i=1Ωi, one can introduce a weighting function defined by
Wi(x) = 1 if x ∈ Ωi and Wi = 0 otherwise. The discrete equations corre-
sponding to this subdomain collocation method read

∫

Ωi

L(û)dΩ = 0, i = 1, . . . ,M . (2.4)

2.1.2 Example: A 1D Poisson Equation

Let us apply the methods from the previous section to the specific problem
L(u) = u′′(x) + f(x), Ω = (0, 1), and u(0) = u(1) = 0. For the discretization
we set

u(x) ≈ û(x) =
M∑

j=1

ujNj(x)

into the differential equation and get

R = f(x) +

M∑

j=1

ujN
′′
j (x) .

Applying the least-squares method or the method of weighted residuals, yields
a linear system for u1, . . . , uM . Nothing in these methods so far deals with the
boundary conditions. It is therefore necessary to assure that û fulfills the pre-
scribed boundary values, e.g., by letting Nj(0) = Nj(1) = 0 for j = 1, . . . ,M .
A least-squares approach results in (2.1). We then need the derivative

∂R

∂ui
=

M∑

j=1

∂

∂ui
ujN

′′
j (x) = N ′′

i (x) .

The least-squares equations become

1∫

0

f(x) +

M∑

j=1

ujN
′′
j (x)

N ′′

i (x)dx = 0, i = 1, . . . ,M .

This is actually a linear system for u1, . . . , uM , a fact that is easier to realize
if we move the sum outside the integral sign and place the fN ′′

i term on the

2.1. Weighted Residual Methods 153

right-hand side:

−
M∑

j=1

1∫

0

N ′′
i (x)N ′′

j (x)dx

 uj =

1∫

0

f(x)N ′′
i (x)dx, i = 1, . . . ,M . (2.5)

In matrix form this linear system reads Au = b, with the matrix A having

entries Ai,j = −
∫ 1

0 N
′′
i N

′′
j dx and the vector b having entries bi =

∫ 1

0 fN
′′
i dx.

The method of weighted residuals leads to a similar linear system:

−
M∑

j=1

1∫

0

Wi(x)N
′′
j (x)dx

 uj =

1∫

0

f(x)Wi(x)dx, i = 1, . . . ,M . (2.6)

The most common choice of Wi in the method of weighted residuals is to
let Wi = Ni. This choice is referred to as Galerkin’s method. The weighted
residual method with Wi 6= Ni is also called a Petrov-Galerkin formulation.

The collocation method gives

−
M∑

j=1

N ′′
j (x[i])uj = f(x[i]), i = 1, . . . ,M . (2.7)

Equally spaced collocation points is a simple choice:

x[i] = (i− 1)/(M − 1), i = 1, . . . ,M .

The subdomain collocation method on equal-sized subdomains results in

−
M∑

j=1

i/M∫

(i−1)/M

N ′′
j (x)dx uj =

i/M∫

(i−1)/M

f(x)dx, i = 1, . . . ,M . (2.8)

Let us investigate some choices of the Ni(x) functions. Two possible fam-
ilies of functions fulfilling the requirement Ni(0) = Ni(1) = 0 are

Ni(x) = sin iπx, i = 1, . . . ,M, (2.9)

Ni(x) = xi(1− x), i = 1, . . . ,M . (2.10)

All the mentioned discretization approaches give rise to a linear system

M∑

j=1

Ai,juj = bi, i = 1, . . . ,M .

With Galerkin’s method and the choice Ni = sin iπx, Ai,j becomes diagonal
because

1∫

0

sin iπx sin jπx dx =

{
1
2 i = j
0, i 6= j

. (2.11)

154 2. Introduction to Finite Element Discretization

The diagonal coefficient matrix in the linear system enables a close-form
solution for ui:

ui =
2

π2i2

∫ 1

0

f(x) sin iπx dx. (2.12)

The reader should show that the same result arises from the least-squares
method as well.

Ill-Conditioning. Let us choose f(x) = −1, which leads to u(x) = x(x −
1)/2. We see that with Ni = xi(1 − x), û =

∑
j ujNj is now capable of

reproducing the exact solution. Is the method intelligent enough to always
compute u1 = −1/2 and ui = 0 for i > 1 in this case? The answer is yes; if
the expansion

∑
j ujNj contains the analytical solution, Galerkin’s method

will automatically extract that solution. One can exemplify this principle by
computing ui for, e.g. M = 8, using symbolic manipulation software like
Maple. However, if we implement the expressions in an ordinary computer
program with fixed-length floating point arithmetic, we can only expect ui ≈
0 for i > 1. Computations with finite arithmetic can be simulated in Maple,
and with 6 significant digits we get the following solutions:

M (u1, . . . , uM)

2 (-.50000, .00001)
4 (-.50001, .00039, -.00079, .00048)
6 (-.50072, .01296, -.07323, .17561, -.18727 , .073122)
8 (-.49977, -.00510, .01485, .11669, -.73884, 1.56298, -1.4438, .49399)

These results demonstrate a fundamental shortcoming of the method: It does
not converge – the error increases when we add more terms to the expan-
sion

∑
j ujNj . The reason is that the coefficient matrix in finite arithmetic

becomes ill-conditioned as M grows. The solution procedure then becomes
sensitive to round-off errors. The ill-conditioning stems from almost linear de-
pendence among the Ni = xi(1−x) functions when i is large, see Figure 2.1.
To cure the problem, one should choose basis functions that are as orthogonal
as possible. The basis functions Ni = sin iπx are exactly orthogonal and give
a stable approximate solution for any odd M :

û =

(M+1)/2∑

j=1

4

(2j − 1)3π3
sin [(2j − 1)πx] .

We need to let M → ∞ to reproduce the analytical solution. For practical
purposes only a few terms are needed to obtain an approximation whose error
is within machine precision.

Fourier Series. Let us briefly demonstrate that the least-squares method and
Galerkin’s method can be used to derive the well-known Fourier (sine) series.

2.1. Weighted Residual Methods 155

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

Fig. 2.1. Plot of the functions xi(1 − x) for i = 1, 2, . . . , 20. The height of
the graph is reduced with increasing i. For large i, we see that the graphs
are very close to each other, demonstrating almost linear dependence of the
functions.

We seek an approximate solution of the equation

u(x) = f(x), x ∈ [0, 1],

where u(x) is of the form û(x) =
∑

j ujNj(x). The method of weighted
residuals with Ni = Wi = sin iπx gives

M∑

j=1

1∫

0

sin iπx sin jπx dx

uj =

1∫

0

f(x) sin iπx dx, i = 1, . . . ,M . (2.13)

Due to the orthogonality of the sine functions, we can explicitly calculate
that

ui = 2

1∫

0

f(x) sin iπxdx, i = 1, . . . ,M, (2.14)

which is recognized as the coefficients in a truncated Fourier sine series with
M terms. Using the least-squares method, we see that ∂R/∂uj = Nj , such
that this method becomes identical to Galerkin’s method in the present prob-
lem. When M →∞, the expression for û recovers the standard Fourier sine
series of f(x) on [0, 1].

156 2. Introduction to Finite Element Discretization

Exercise 2.1. .
Choose N1 = 1, N2i = sin iπx, and N2i+1 = cos iπx, i = 1, . . . Show

that both the least-squares method and Galerkin’s method applied to the
equation u(x) = f(x) reproduce the standard sine-cosine Fourier series of
f(x) on [0, 1]. �

2.1.3 Treatment of Boundary Conditions

When u vanishes on the boundary ∂Ω of Ω, we can require Ni = 0 on ∂Ω
such that the approximate solution û fulfills the boundary conditions. In the
case where u = ψ̃(x) 6= 0 on ∂Ω, one can introduce a function ψ that equals
ψ̃ at ∂Ω and use the expansion

û(x) = ψ(x) +

M∑

j=1

ujNj(x) . (2.15)

With this approach we still demand Ni = 0 on ∂Ω. Note that ψ in (2.15) is
not determined uniquely; it can be replaced by another function that equals
the correct boundary value ψ̃ on ∂Ω.

As an example, consider a boundary-value problem on (0, 1) where the
unknown function u(x) has the boundary conditions u(0) = UL and u(1) =
UR. The ψ function must then fulfill these boundary conditions, but it can
be arbitrary in the interior of (0, 1). Some possible choices are, e.g.,

ψ(x) = xiUR + (1− x)jUL, i, j > 0 .

Boundary conditions involving derivatives can be conveniently treated
by integration by parts. The principle is most easily explained through an
example. Let us consider the boundary-value problem

−u′′(x) = f(x), 0 < x < 1, u(0) = 1, u′(1) = β .

We introduce an expansion u ≈ û = 1+
∑M

j=1 ujNj(x), with Nj(0) = 0, that
fulfills the condition û(0) = 1. Using weighting functions Wi = Ni in the
weighted residual method, leads to

−
M∑

j=1

1∫

0

NiN
′′
j dx

uj =

1∫

0

fNidx, i = 1, . . . ,M .

Integrating by parts on the left-hand side results in

M∑

j=1

1∫

0

N ′
iN

′
jdx

uj −Ni(1)û′(1) +Ni(0)û′(0) =

1∫

0

fNidx, i = 1, . . . ,M .

2.1. Weighted Residual Methods 157

Recall now that Ni(0) = 0. Moreover, it is natural to require that û′(1) = β
such that we end up with the linear system

M∑

j=1

1∫

0

N ′
iN

′
jdx

 uj =

1∫

0

fNidx+Ni(1)β, i = 1, . . . ,M . (2.16)

The integration by parts introduced a term in the weighted integral formu-
lation that could be conveniently used for inserting the boundary condition
u′(1) = β. We also recognize that the coefficient matrix has become sym-
metric. The most important achievement is, however, that derivatives of only
first order appear in the formulation. This allows simple piecewise polyno-
mials as basis functions, which is a fundamental choice of Ni in the finite
element method.

The ideas above carry over to multi-dimensional problems. Consider for
example

−∇ · [k(x)∇u(x)] = f(x), x ∈ Ω, (2.17)

−k(x)
∂u

∂n
= g(x), x ∈ ∂ΩN , (2.18)

u(x) = ψ(x), x ∈ ∂ΩE . (2.19)

Here, k, f , and g are prescribed functions and u is unknown. The bound-
ary ∂Ω of the domain Ω is partitioned into two non-overlapping parts,
∂ΩN , where a condition on the normal derivative applies, and ∂ΩE , where
a condition on the function itself applies. We can write ∂Ω = ∂ΩN ∪ ∂ΩE ,
∂ΩN ∩ ∂ΩE = ∅. This boundary-value problem appears in a wide range
of physical applications, including fluid flow, heat conduction, electromag-
netism, and elasticity. A porous media flow interpretation is briefly explained
on page 218.

To solve the boundary-value problem (2.17)–(2.19), we might use the ex-
pansion u ≈ û = ψ+

∑
j Njuj , the weighted integral method, and integration

by parts. Green’s lemma is an important tool to accomplish the latter step:

−
∫

Ω

∇ · [k∇u]WidΩ =

∫

Ω

k∇u · ∇WidΩ −
∫

∂Ω

Wik
∂u

∂n
dΓ .

(2.20)

The Ni functions must vanish on ∂ΩE to ensure that û = ψ is fulfilled here.
A weighted residual approach with Wi = Ni (Galerkin’s method) then leads
to the linear system

M∑

j=1

∫

Ω

k(x)∇Ni · ∇Nj dΩ

uj =

∫

Ω

f(x)NidΩ −
∫

∂ΩN

g(x)NidΓ

158 2. Introduction to Finite Element Discretization

−
∫

Ω

k(x)∇Ni · ∇ψ dΩ (2.21)

for i = 1, . . . ,M . Some readers will claim that this simple incorporation of
the flux condition −k∂u/∂n = g arose with a great amount of luck. It turns
out, however, that integration by parts usually results in boundary terms
that correspond to common physical flux-type conditions.

To devise a principally more general method for incorporating boundary
conditions, we can proceed as follows. Given a partial differential equation
likeL(u) = 0 in Ω and a boundary condition B(u) = 0 on ∂ΩN , where B
is some possible differential operator on the part ∂ΩN of the boundary, we
insert the approximate solution and demand

∫

Ω

L(û)WidΩ +

∫

∂ΩN

B(û)W idΓ = 0 .

Here we have introduced two sets of weighting functions, Wi and W i, i =
1, . . . ,M . As we shall see, Wi and W i are closely related. A requirement
is that Wi = 0 on the part ∂ΩE = ∂Ω\∂ΩN of the boundary where u is

prescribed. The expansion of u reads u ≈ û = ψ +
∑M

j=1 ujNj , with Ni = 0
on ∂ΩE .

Let us apply this general set-up to the problem (2.17)–(2.19). We demand
the total weighted residual to vanish for M linearly independent weighting
functions Wi and W i

−
∫

Ω

(∇ · [k∇û] + f)WidΩ −
∫

∂ΩN

(
k
∂û

∂n
+ g

)
W idΓ = 0, i = 1, . . . ,M .

(2.22)
Application of Green’s lemma (2.20) gives

∫

Ω

k∇û · ∇Wi dΩ−
∫

∂Ω

k
∂û

∂n
WidΓ −

∫

Ω

fWidΩ−
∫

∂ΩN

(
k
∂û

∂n
+ g

)
W idΓ = 0 .

(2.23)
Let us now choose Wi = Ni and W i = −Ni. The boundary terms involving
k∂û/∂n then cancel, and because Ni = 0 on ∂ΩE, we are left with equa-
tion (2.21). The present approach is advantageous when more complicated
derivative boundary conditions appear in the model.

The reader should notice the following striking fact: When g = 0 in (2.18)
there is no sign of the derivative boundary condition in the final weak for-
mulation (2.21)!

In general, we have seen that the weighted residual method with inte-
gration by parts admits a natural mechanism for incorporating derivative
boundary conditions involving −k∂u/∂n. This type of boundary condition is
therefore called a natural boundary condition for the operator ∇ · [k∇u]. We

2.1. Weighted Residual Methods 159

have implemented the other condition u = ψ by demanding the approximate
solution û to fulfill û = ψ at all points on the boundary. This condition is
therefore termed an essential boundary condition. More generally, if we have a
differential operator of order 2m, the boundary conditions that involve deriva-
tives of order less than m are essential boundary conditions, whereas those
of order greater than or equal to m constitute natural boundary conditions
[115, p. 217]. The essential conditions must be enforced on the approximate
solution û, and the natural conditions are typically incorporated in boundary
terms of the weighted residual statement.

Exercise 2.2. .
The boundary-value problem (2.17)–(2.19) arises in numerous physical

contexts. Go through a series of applications, mention the interpretation of
u, f , and k, and point out relevant types of boundary conditions. �

Example 2.1. We shall now try to derive an approximate solution of the prob-
lem (2.17)–(2.19) when Ω = (0, 1)× (0, 1), k(x) = 1, f = 2, u = 0 at ∂ΩE ,
and ∂ΩN = ∅. A product sin iπx sin jπy could be used as basis functions,

û =

nx∑

i=1

ny∑

j=1

ui,jNi,j , Ni,j = sin iπx sin jπy,

where (i, j) is now a double index. As weighting functions we can chooseNk,`.
For implementation in a computer program it may, however, be necessary to
transform the double indices to single indices prior to calling linear algebra
software to solve the algebraic equation system. Our general set-up of the
methods in this text also requires single-indexed basis functions and unknown
parameters. To switch to a single index, we can define

N(j−1)nx+i(x, y) = sin iπx sin jπy, i = 1, . . . , nx, j = 1, . . . , ny, M = nxny .

Nevertheless, for analytical calculations it is more convenient to work with
double indices. Galerkin’s method can then be formulated as

nx∑

k=1

ny∑

j=1

1∫

0

1∫

0

∇Nk,` · ∇Ni,j dxdy = 2

1∫

0

1∫

0

Nk,` dxdy,

for k, ` = 1, . . . , n. This is a linear system, which can be written as
∑

i

∑

j

Ai,j,k,`ui,j = bk,` .

Inserting the form of Ni,j and using the fact that (2.11) also holds for cosine
functions, gives

Ai,j,k,` =

1∫

0

1∫

0

(ikπ2 cos iπx sin jπy cos kπx sin `πy +

160 2. Introduction to Finite Element Discretization

j`π2 sin iπx cos jπy sin kπx cos `πy)dxdy

= ikπ2

1∫

0

cos iπx cos kπx dx

1∫

0

sin jπy sin `πy dy +

j`π2

1∫

0

sin iπx sin kπx dx

1∫

0

cos jπy cos `πy dy

= ikπ2 1

2
δik

1

2
δj` + j`π2 1

2
δik

1

2
δj`

= π2(ik + j`)
1

4
δikδj` .

The notation δik means the Kronecker delta, which equals unity when i = k
and zero otherwise. This result shows that Ai,j,k,` vanishes unless i = k and
` = j; that is, the coefficient matrix in the linear system is diagonal:

∑

i

∑

j

Ai,j,k,`ui,j = Ak,`,k,`uk,` = bk,`,

with Ak,`,k` = π2(k2 + `2)/4. The right-hand side becomes

bk,` =

1∫

0

1∫

0

2 sin kπx sin `πy dxdy =
8

k`π2

{
1, k and ` odd
0, otherwise

Switching from k and ` to i and j, the final results can be written as

û(x, y) =

(nx+1)/2∑

i=1

(ny+1)/2∑

j=1

αij sin [(2i− 1)πx] sin [(2j − 1)πy] ,

where
αij = 32

[
((2i− 1)2 + (2j − 1)2)(2i− 1)(2j − 1)π4

]−1
.

�

2.2 Time Dependent Problems

The weighted residual method and its variants (collocation, subdomain collo-
cation, least squares) are usually thought of as procedures for discretization
in space. Of course, these methods can be used in time as well, but it is more
common to solve time dependent partial differential equations by finite differ-
ence approximation of time derivative terms, combined with some weighted
residual method in space.

2.2. Time Dependent Problems 161

2.2.1 A Wave Equation

As an example, consider the following initial-boundary value problem involv-
ing the wave equation:

∂2u

∂t2
= ∇ · [c2∇u], x ∈ Ω, t > 0, (2.24)

u(x, 0) = f(x), x ∈ Ω, (2.25)

∂

∂t
u(x, 0) = 0, x ∈ Ω, (2.26)

∂u

∂n
= 0, x ∈ ∂Ω, t ≥ 0 . (2.27)

This model can describe, for instance, long ocean waves as explained in Chap-
ter 1.4.7.

We introduce a grid in time, with points t` = `∆t, ` = 0, 1, 2, A time-
discrete function u`(x) = u(x, t`), or more compactly written as u`, can then
be defined. We approximate the time derivative by a centered (second-order
accurate) finite difference formula:

∂2

∂t2
u(x, t`) ≈

u`−1 − 2u` + u`+1

∆t2
. (2.28)

This results in a problem for u`(x) that is discrete in time, but continuous
in space:

u`+1 = 2u` − u`−1 +∆t2∇ · [c2∇u`] . (2.29)

The initial condition ∂u/∂t = 0 can be approximated by a centered (second-
order accurate) finite difference to yield u1(x) = u−1(x). The fictitious quan-
tity u−1 is eliminated by using (2.29) for ` = 0. This yields a modification of
(2.29) for ` = 0, that is, a special formula for u1:

u1 = u0 +
1

2
∆t2∇ · [c2∇u0] . (2.30)

At time levels ` ≥ 2 one can of course apply (2.29) directly. We can alter-
natively adopt the strategy from Chapter 1.4.2, where we apply (2.29) as it
stands for ` ≥ 0, but with a special form of the artificial u−1, cf. (1.59),

u−1 = u0 +
1

2
∆t2∇ · [c2∇u0] .

This form is convenient from an implementational point view, as we can use
the same updating formula (2.29) for all time steps.

Exercise 2.3. .
Derive (2.30) by the following reasoning. First, express u1 as a three-term

Taylor series around t = 0. Then insert the initial ∂u/∂t value and replace
the second-order time derivative of u by c2∇2u (from the PDE). �

162 2. Introduction to Finite Element Discretization

The time discretization yields the following sequence of purely spatial
problems:

u0 = f(x), x ∈ Ω, (2.31)

u−1 = u0 +
1

2
∆t2∇ · [c2∇u0], x ∈ Ω, (2.32)

u`+1 = 2u` − u`−1 +∆t2∇ · [c2∇u`], x ∈ Ω, ` = 0, 1, 2, . . . , (2.33)

∂u`

∂n
= 0, x ∈ ∂Ω, ` = 0, 1, 2, . . . (2.34)

A suitable expansion for u`(x) can look like

u`(x) ≈ û` =

M∑

j=1

u`
jNj(x), ` = −1, 0, 1, 2, . . . , (2.35)

where u`
j are constants to be determined by the method. Applying Galerkin’s

method (Wi = Ni) to (2.31)–(2.33), and integrating second-order derivatives
by parts, one obtains a discrete problem in both space and time:

M∑

j=1

Mi,ju
0
j =

∫

Ω

f(x)NidΩ,

M∑

j=1

Mi,ju
−1
j =

∫

Ω

[
û0Ni −

1

2
(c∆t)2∇Ni · ∇û0

]
dΩ,

M∑

j=1

Mi,ju
`+1
j =

∫

Ω

[(
2û` − û`−1

)
Ni − (c∆t)2∇Ni · ∇û`

]
dΩ .

The matrix

Mi,j =

∫

Ω

NiNjdΩ (2.36)

is often called the mass matrix (the symbols M and Mi,j in this chapter
should not be confused!). Observe that in this method, the weighted residual
approach has been used for approximating the spatial parts of the initial
conditions (2.31)–(2.32) as well as the time-discrete equation (2.33).

The reader should notice that although we use the same time discretiza-
tion as in a standard explicit finite difference method for the wave equation
(cf. Chapters 1.4.2 and 1.4.7), Galerkin’s method leads to coupled systems of
algebraic equations. In this sense, the time discretization is implicit1. At each
time level we must solve a linear system with the mass matrix as coefficient
matrix. This is a serious disadvantage in 2D and 3D problems, because the
computational labor increases significantly in comparison with an explicit

1 See the footnote on page 33 for a remark on the terminology.

2.2. Time Dependent Problems 163

scheme. This could only be acceptable if there were a corresponding increase
in accuracy, which is not the case. However, in Chapters 2.4 and 2.7.3 we
show how finite element methods for the wave equation can be made as fast
as the standard explicit finite difference schemes.

Exercise 2.4. .
Restrict the initial-boundary value problem (2.24)–(2.27) to one space

dimension. Choose Ω = [0, 1], Ni = cos iπx, and deduce an explicit updating
formula for u`+1

i . This choice of Ni yields a spectral method for the wave
equation. Demonstrate how the formula for u`+1

j is simplified when the wave
velocity c is constant. �

2.2.2 A Heat Equation

The previous example demonstrated discretization of a PDE with a time
derivative of second order. Now we consider the heat (or diffusion) equation,
which has a first-order time derivative:

∂u

∂t
= ∇ · (λ∇u), x ∈ Ω, t > 0, (2.37)

u(x, 0) = f(x), x ∈ Ω, (2.38)

−λ∂u
∂n

= g(x, t), x ∈ ∂Ω, t > 0 . (2.39)

A widely used finite difference scheme for first-order equations is the so-called
θ-rule. It approximates an equation

∂u

∂t
= G

by
u` − u`−1

∆t
= θG` + (1− θ)G`−1, 0 ≤ θ ≤ 1 . (2.40)

For θ = 0 we get the forward Euler scheme, θ = 1 gives the backward Euler
scheme, and θ = 1/2 corresponds to the Crank-Nicolson scheme, also referred
to as the mid-point rule. The forward Euler scheme may be subject to severe
stability restrictions, cf. (A.41), but it can lead to explicit equations and
thereby avoid solution of large coupled systems of equations. The backward
Euler and Crank-Nicolson schemes are unconditionally stable. For θ 6= 1/2
the error in the time approximation is of order ∆t, while the choice θ = 1/2
gives one order higher accuracy. The θ-rule is motivated in more detail in
Chapter 1.7.6.

Applying the θ-rule to the heat equation results in the following sequence
of spatial problems:

u0 = f(x), x ∈ Ω, (2.41)

164 2. Introduction to Finite Element Discretization

u` − u`−1

∆t
= θ∇ · (λ∇u`) + (1− θ)∇ · (λ∇u`−1), x ∈ Ω, (2.42)

−λ∂u
`

∂n
= g(x, t`), x ∈ ∂Ω, (2.43)

for ` = 1, 2, . . . Discretizing these equations by the method of weighted resid-
uals, with Wi = Ni, gives

M∑

j=1

Mi,ju
0
j =

∫

Ω

f(x)NidΩ, (2.44)

M∑

j=1

(Mi,j +Ki,j)u
`
j =

∫

Ω

û`−1NidΩ − (1− θ)∆t
∫

Ω

λ∇Ni · ∇û`−1 dΩ −

θ∆t

∫

∂Ω

Nig(x, t`)dΓ − (1− θ)∆t
∫

∂Ω

Nig(x, t`−1)dΓ, (2.45)

for ` ≥ 1. We have, as in the preceding section, û` =
∑M

j=1 u
`
jNj(x). The

matrix Mi,j is the mass matrix (2.36), whereas

Ki,j = θ∆t

∫

Ω

λ∇Ni · ∇Nj dΩ . (2.46)

Equation (2.45) is valid for ` ≥ 1, but for ` = 1 the last boundary integrals
must involve ∂f/∂n or ∂u0/∂n rather than g(x, 0).

Exercise 2.5. .
Formulate a discrete version of the PDE

∂u

∂t
= ∇2u+ f(x, t)u,

using the θ-rule in time and a Galerkin method in space. �
Exercise 2.6. .

Consider the heat equation problem (2.37)–(2.39). Instead of first dis-
cretizing in time by a finite difference method, we first apply the weighted
residual method in space, with u approximated by

û(x, t) =

M∑

j=1

uj(t)Nj(x) .

Show that this approach yields a system of first-order ordinary differential
equations (ODEs):

M∑

j=1

Mi,juj(0) = bi, (2.47)

M∑

j=1

Mi,j u̇j(t) +
M∑

j=1

Ki,juj(t) = ci(t), (2.48)

2.3. Finite Elements in One Space Dimension 165

for suitable matrices Mi,j and Ki,j and vectors bi and ci. Some readers might
prefer to see (2.47)–(2.48) in vector notation:

Mu(0) = b, Mu̇(t) + Ku(t) = c(t) . (2.49)

Apply the θ-rule to this system and compare the resulting equations with
(2.44) and (2.45). Suggest some other schemes for (2.49) by consulting lit-
erature on numerical solution of ODEs, e.g. [113, Ch. 16.6-16.7] (we remark
that one usually needs to apply methods for stiff ODEs). �

Remark. Transforming the PDE, by finite element discretization in space, to a
system of ODEs as we demonstrate in Exercise 2.6, is a strategy advocated by
many leading experts2. Obviously, this strategy gives immediate access to the
many sophisticated time-discretization methods developed in the ODE world.
Gresho and Sani [48] explains how to take advantage of such methods when
solving PDEs. Fortunately, the difference between starting with discretization
in time or space soon becomes transparent after some experience with finite
elements and transient PDEs.

2.3 Finite Elements in One Space Dimension

When choosing specific functions Ni in a weighted residual method, we need
to have Ni = 0 at the part of the boundary where essential conditions are
prescribed. This can be a difficult task if the boundary does not have a
very simple shape. Furthermore, exact or approximate orthogonality of the
functions Ni is important for numerical stability when solving the linear
system arising from the discretization method. Both these facts complicate
the application of the weighted residual method in problems with nontrivial
geometry. Finite elements constitute a means for constructing Ni functions
that are “nearly orthogonal” and that are very flexible with respect to han-
dling essential boundary conditions, regardless of the geometric shape of the
domain.

2.3.1 Piecewise Polynomials

The finite element choice of Ni consists of three fundamental ideas:

1. divide the domain into non-overlapping elements,

2. let Ni be a simple polynomial over each element,

3. construct the globalNi as a piecewise polynomial that vanishes over most
of the elements, except for a local patch of elements.

2 See e.g. [48, p. 232] for a discussion.

166 2. Introduction to Finite Element Discretization

For example, in 1D we can sketch a possible choice of Ni as in Figure 2.2,
where Ni is linear over each element, but Ni 6= 0 only over a patch of two
elements. It is not required in general that Ni is a continuous piecewise poly-
nomial, but many physical applications involve second-order differential op-
erators, and we then need the integral of the square of the first derivative of
Ni in the weighted residual statement. To ensure a finite integral, it is natural
to let Ni be continuous3.

21 3 4 5 6 7
x

Fig. 2.2. Sketch of piecewise linear Ni functions in 1D for a few elements.
The numbers along the x axis refer to the nodes in the grid. The graphs thus
illustrate the basis functions N3(x), N4(x), N5(x), and N6(x).

Let us write down a more formal specification of the Ni functions in
Figure 2.2. Assume that Ω = [0, 1], and divide this domain into m non-
overlapping elements Ω1, . . . , Ωm. Throughout Ω there is a set of points x[i],
called nodes, i = 1, . . . , n. One possible choice of the nodes is to place them at
the boundary of each element, that is, Ωe = [x[e], x[e+1]], x[e] < x[e+1] (with
n = m+ 1 and i = 1, . . . ,m). This is what we have in Figure 2.2.

One of the strengths of the finite element method is the flexibility in
the choice of elements. In regions where the solution is rapidly varying, one
can have small elements. The smoother parts of the solution can have an
associated grid with larger elements and perhaps high polynomial degree of
Ni. This flexibility is particularly important in 2D and 3D.

3 Using the weighted residual method locally on each element and considering the
jumps of Ni between the elements allow discontinuous Ni functions also for PDEs
of second order.

2.3. Finite Elements in One Space Dimension 167

We want Ni to have two properties:

1. Ni is a polynomial over each element, uniquely determined by its values
at the nodes in the element.

2. Ni(x
[j]) = δij .

Here, δij is the Kronecker delta, which equals unity when i = j and vanishes
otherwise. Property 2 has the nice implication that

û(x[i]) =
∑

j

ujNj(x
[i]) =

∑

j

ujδij = ui,

or in other words, ui is the value of û at node no. i. This simple interpretation
of the coefficients ui is convenient in practical computations. The discrete un-
knowns in the finite element method are then values of the unknown function
at grid points, like in the finite difference method. When each basis function
is piecewise linear, the û(x) function will also be piecewise linear, as we illus-
trate here:

x

u

Let us look at the construction of N4(x) in Figure 2.2. We must haveN4 =
1 at node number 4 (x[4]), and at all other nodes N4 = 0. In addition, N4(x)
must be a polynomial over each element, uniquely determined by its nodal
values. Since there are two nodes per element, N4 restricted to an element
can fulfill two conditions and can therefore at most be a linear function. The
only piecewise linear function that equals unity at x = x[4] and zero at all
other nodes, is the N4(x) function depicted in Figure 2.2.

It is natural to construct higher-order polynomials for Ni. For example,
let each element have three nodes, two on the boundaries and one at the mid
point:

Ωe = [x[2(e−1)+1], x[2(e−1)+3]], x[2(e−1)+2] =
1

2

(
x[2(e−1)+1] + x[2(e−1)+3]

)
,

for e = 1, . . . ,m. Moreover, the number of nodes is now n = 2m+1. We must
of course demand x[i] < x[i+1], i = 1, . . . , n − 1, for the definition of Ωe to
make sense. With three nodes per element, Ni(x) can be uniquely determined
as a quadratic polynomial. We encourage the reader to make a sketch of a
domain consisting of three quadratic elements. Number the elements and the

168 2. Introduction to Finite Element Discretization

nodes from left to right and draw the piecewise quadratic functions N3(x)
and N4(x). When i corresponds to an internal node, Ni(x) 6= 0 only over the
element that contains this node. From the sketch the reader should realize
that there are basically two sets of Ni functions in this case: those that
correspond to internal nodes and those that correspond to the boundary
nodes (interfaces) of the elements.

One can easily extend the ideas above and construct piecewise cubic poly-
nomials, with four nodes per element. Alternatively, one can have only two
nodes (at the boundary of each element), and let Ni be a cubic polynomial
that is uniquely determined by values of Ni and dNi/dx at the two nodes.
This construction ensures continuity of the derivative of Ni and is advanta-
geous when solving fourth-order problems (e.g. bending of elastic beams).

One often refers to piecewise linear basis functions as linear elements. Sim-
ilarly, piecewise quadratic basis functions are frequently denoted as quadratic
elements.

2.3.2 Handling of Essential Boundary Conditions

Let us apply the piecewise linear basis functions to a simple 1D boundary-
value problem

− u′′(x) = f(x), 0 < x < 1, u(0) = uL, u(1) = uR . (2.50)

We divide the domain Ω = [0, 1] into m elements of equal length h, Ωe =
[(e − 1)h, eh], with h = 1/m, and e = 1, . . . ,m. The nodes are located at
x[i] = (i − 1)h, i = 1, . . . , n = m + 1. See Figure 2.2 for a sketch of the
situation.

Each Ni function is piecewise linear, and Ni(x
[j]) = δij . The latter prop-

erty makes it easy to fulfill essential boundary conditions; we can simply
choose

ψ(x) = uLN1(x) + uRNn(x)

and use the expansion

u(x) ≈ û(x) = ψ(x) +

n−1∑

j=2

ujNj(x) .

The reader should check in detail that û equals uL and uR at x = 0 and
x = 1, respectively. A weighted residual formulation can be obtained by
inserting the expression for û in the differential equation, multiplying by
Wi = Ni, i = 2, . . . , n− 1, and integrating over [0, 1]. Note that we need only
n− 2 weighting functions because there are only n− 2 unknown parameters
(u2, . . . , un−1) to solve for. The second-order derivative is integrated by parts,
resulting in the discrete formulation

n−1∑

j=2

(∫ 1

0

N ′
iN

′
jdx

)
uj =

∫ 1

0

fNidx, i = 2, . . . , n− 1 .

2.3. Finite Elements in One Space Dimension 169

When programming this, it will be convenient to renumber the unknowns
from 1 to n− 2. In other words, we introduce a numbering of the unknowns
in the linear system that is different from the numbering of the nodes. How-
ever, this renumbering is actually not necessary: By introducing essential
boundary conditions directly in the linear system instead of in the expansion,
we can work with u1, . . . , un as unknowns through the whole computational
procedure. We skip the function ψ in the expansion and work directly with

u ≈ û =

n∑

j=1

ujNj

for all types of essential conditions. The linear system now has the complete
set of parameters (u1, . . . , un) as unknowns. To enforce an essential boundary
condition at a node j, we simply replace equation no. j by the boundary
condition equation uj = ψ(x[j]), i.e., in our case u1 = uL or un = uR. This
is a general procedure that applies to all type of finite element functions as
long as Ni(x

[j]) = δij holds, such that uj has the interpretation of being the
value of û at node j. In particular, the approach can be used in 2D and 3D.

2.3.3 Direct Computation of the Linear System

Let us calculate explicit expressions for the n discrete equations arising from
a Galerkin finite element method applied to (2.50). With piecewise linear
Ni functions, we can deduce from the simple sketch in Figure 2.3 that the

matrix entry Ai,j =
∫ 1

0 N
′
iN

′
jdx is different from zero if and only if i and

j are nodes belonging to the same element. In other words, Ai,j 6= 0 only
for j = i − 1, i, i + 1. Assuming constant element size h (this is done only
for simplicity – it is straightforward to handle varying element size as will be
shown later), it is easy to realize that N ′

i = ±1/h. By inspection of Figure 2.3
we can calculate

Ai,i−1 =

∫ 1

0

N ′
i−1N

′
idx = − 1

h

Ai,i =

∫ 1

0

N ′
iN

′
idx =

2

h

Ai,i+1 =

∫ 1

0

N ′
iN

′
i+1dx = − 1

h

for i = 2, . . . , n−1. The end-point contributions are A1,1 = 1/h,A1,2 = −1/h,
An,n−1 = −1/h, and An,n = 1/h.

The expression for the right-hand side vector of the linear system reads

bi =

∫ 1

0

f(x)Ni(x)dx . (2.51)

170 2. Introduction to Finite Element Discretization

21 3 4 5 6 7
x

Fig. 2.3. Sketch of piecewise constantN ′
i(x) functions i 1D for a few elements.

See Figure 2.2 on page 166 for more information.

In order to evaluate this expression, an explicit formula for Ni(x) is needed:

Ni(x) =

0, x ≤ x[i−1]

h−1(x− x[i−1]), x[i−1] ≤ x ≤ x[i]

−h−1(x − x[i+1]), x[i] ≤ x ≤ x[i+1]

0, x ≥ x[i+1]

(2.52)

for 1 < i < n. The formulas for N1(x) and Nn(x) are a slight modification of
(2.52). The integral (2.51) is now split into an integral over [x[i−1], x[i]] and
another integral over [x[i], x[i+1]]. Only in certain cases these integrals can
be evaluated analytically. A general approach is therefore to integrate (2.51)
numerically.

A convenient numerical integration scheme is the trapezoidal rule, with
the nodal points as integration points:

∫ 1

0

f(x)Nidx ≈
h

2
f(x1)Ni(x1) +

n−1∑

j=2

hf(xj)Ni(xj) +
h

2
f(xn)Ni(xn) .

Note that for a fixed i, only one integration point, namely x[i], will contribute
to the integral, because Ni(x

[j]) = δij . This leads to a right-hand side bi =
f(x[i])h, i = 2, . . . , n − 1, like in the finite difference method. At the end
points we get b1 = f(0)h/2 and bn = f(1)h/2. Other numerical integration
schemes with sampling points also inside the elements will lead to a bi value
that is a weighted mean of f in the neighborhood of x = x[i].

2.3. Finite Elements in One Space Dimension 171

We enforce the boundary conditions by replacing the equations for i = 1
and i = n by the conditions themselves: u1 = uL and un = uR. The complete
linear system can be written as

u1 = uL, (2.53)

− 1

h
ui−1 +

2

h
ui −

1

h
ui+1 = f(x[i])h, i = 2, . . . , n− 1, (2.54)

un = uR, (2.55)

with x[i] = (i − 1)h, i = 2, . . . , n− 1. These equations are identical to those
arising from the finite difference method when a centered (second-order ac-
curate) difference is used to approximate u′′(x). The finite element method
gives discrete equations that in general differ from those of the finite dif-
ference method. This is also the case in the present example if analytical
integration or more accurate integration rules are used for the term on the
right-hand side.

2.3.4 Element-by-Element Formulation

The calculation of the linear system above was straightforward, but the tech-
nique is not feasible for multi-dimensional problems with geometrically com-
plicated domains. Therefore we will from now on focus on a more general
computational algorithm that can easily be applied to all kinds of finite el-
ement calculations. The understanding of this general algorithm is funda-
mental for the understanding the problem specification required by generic
software tools like Diffpack.

Background. The general algorithm for constructing the linear system arising
in the finite element method, works in an element-by-element fashion. The
fundamental idea is to write

Ai,j =

∫ 1

0

N ′
iN

′
jdx =

m∑

e=1

A
(e)
i,j where A

(e)
i,j =

∫

Ωe

N ′
iN

′
jdx, (2.56)

and

bi =

∫ 1

0

fNidx =

m∑

e=1

b
(e)
i where b

(e)
i =

∫

Ωe

fNidx . (2.57)

Now, A
(e)
i,j is different from zero if and only if i and j are nodes in element

no. e, because in the case i (or j) corresponds to a node that does not belong

to the present element, N ′
i (orN ′

j) will be zero. Similarly, b
(e)
i is different from

zero if and only if i is a node in element no. e. It is therefore necessary to

consider only the local i and j numbers in the element when computing A
(e)
i,j

and b
(e)
i . For example, i and j are the two node numbers in element no. e

172 2. Introduction to Finite Element Discretization

in the case of linear elements. This motivates the concept of a local node
numbering in each element. At present, we restrict the presentation to linear
elements for simplicity. If Ωe = [x[e], x[e+1]], we refer to x[e] as local node
no. 1 and x[e+1] as local node no. 2. There is clearly a mapping i = q(e, r)
that gives the global node number i corresponding to local node number r
in element no. e. For the present linear elements we have q(e, r) = e− 1 + r,
r = 1, 2. In multi-dimensional problems with nontrivial domain geometry,
the q function has no simple analytical expression and is known only in form
of a table.

Local Coordinates. We collect the nonzero contributions to A
(e)
i,j in a 2 × 2

element matrix Ã
(e)
r,s , where r, s = 1, 2 are local node numbers. An element

vector b̃
(e)
r , r = 1, 2, is also introduced. The element matrix and vector involve

integrals over element no. e. It will be convenient, at least in nontrivial multi-
dimensional problems, to map the physical element onto a reference element
of fixed size. In 1D we map Ωe = [x[e], x[e+1]] onto [−1, 1]. The new coordinate
ξ ∈ [−1, 1] is related to x through x = x(e)(ξ), where

x(e)(ξ) =
1

2

(
x[e] + x[e+1]

)
+ ξ

1

2

(
x[e+1] − x[e]

)
. (2.58)

We now need expressions for the basis functions in local coordinates in order
to compute the integrals. Let us denote the basis functions in local coordi-
nates as Ñr(ξ). It is easy to construct these functions, because we know that
Ñ1(−1) = Ñ2(1) = 1, Ñ1(1) = Ñ2(−1) = 0, and that the functions must be
linear. The unique choice is then

Ñ1(ξ) =
1

2
(1− ξ), Ñ2(ξ) =

1

2
(1 + ξ) . (2.59)

We have in general Ñr(ξ) = Ni(x
(e)(ξ)), i = q(e, r), when x ∈ Ωe.

The expansion of û over the reference element is now û =
∑2

s=1 Ñs(ξ)ũs,
ξ ∈ [−1, 1], provided x(e)(ξ) ∈ Ωe. The parameters ũ1 and ũ2 are the values
of û at local nodes 1 and 2 in the element; in general we have ũr = uq(e,r).

Notice that the expressions for Ñr(ξ) can be used for all the element
matrices and vectors, whereas the formulas for the basis functions in physical
coordinates depend on the element’s shape and size. Basis functions for multi-
dimensional finite elements are frequently defined in local coordinates only.
The general mapping between local and global (or physical) coordinates is
taken as

x(e)(ξ) =

ne∑

r=1

Ñr(ξ)x
[q(e,r)], (2.60)

where ne is the number of nodes in the element (ne = 2 for linear elements).
This formula coincides with the relation (2.58) for the special case of linear
elements. When the Ñr functions are used for both interpolating the unknown

2.3. Finite Elements in One Space Dimension 173

function and for mapping the reference element to global coordinates, the
element is referred to as an isoparametric element. The associated mapping
(2.60) is called the isoparametric mapping.

Transforming Derivatives and Integrals. Changing coordinates from x to ξ
affects both the integral and the derivatives. The Jacobian matrix J = dx/dξ
of the mapping x = x(e)(ξ) is fundamental when transforming the integral
and the derivatives in the integrand. The derivative transforms according to

dNi

dx
=
dÑr

dξ

dξ

dx
= J−1 dÑr

dξ
, i = q(e, r) .

The integral then becomes

x[e+1]∫

x[e]

N ′
i(x)N

′
j(x)dx =

1∫

−1

J−1 dÑr(ξ)

dξ
J−1 dÑs(ξ)

dξ
det Jdξ,

with i = q(e, r) and j = q(e, s). From (2.60) we have J = (x[e+1] − x[e])/2,
or J = h/2 if the element size is constant. Although J is a scalar in the
integral above, the formula carries over to 2D and 3D when x(e)(ξ) is a
vector mapping. Then J is a d × d matrix and Ji,j = ∂xj/∂ξi in d space
dimensions. The gradient operator is transformed according to the formula
∇Ni = J−1 · ∇ξÑr, where ∇ξ = (∂/∂ξ1, . . . , ∂/∂ξd)

T (and i = q(e, r) as
usual).

Here is an example of transforming the integral of ∇Ni · ∇Nj over a 2D

element Ωe to the corresponding reference element Ω̃, which is taken to be
the square [−1, 1]× [−1, 1]:

∫

Ωe

∇Ni · ∇Njdx1dx2 =

1∫

−1

1∫

−1

J−1∇ξÑr · J−1∇ξÑs det J dξ1dξ2.

Notice that J−1∇ξÑj is a matrix-vector product, resulting in a vector, such
that we end up with the inner product of two vectors and hence a scalar
integrand.

The formulation of finite element problems for implementation in Diffpack
makes use of the weak formulation restricted to the reference element Ω̃, but
we omit the explicit transformation of derivatives and the explicit shape of
the reference element. This means that we write

∫

Ωe

∇Ni · ∇NjdΩ =

∫

Ω̃

∇Ñr · ∇Ñs det J dξ1 · · · dξd .

We also often use i and j as indices on the right-hand side, i, j = 1, . . . , ne

(this prevents us of course from using i and j in the left-hand side expression).

174 2. Introduction to Finite Element Discretization

Diffpack provides tools for evaluating Ñr, ∇Ñr, and det J at a point in
Ω̃. A Laplace term in the PDE is then reflected in the program code through
the integrand

∇Ñr · ∇Ñs det J (2.61)

times a weight in the numerical integration rule used for evaluating integrals.

The Element Matrix and Vector in the Model Problem. We can now write the
explicit expressions for the element matrix and vector in our model problem
(2.50):

Ã(e)
r,s =

1∫

−1

2

h
Ñ ′

r(ξ)
2

h
Ñ ′

s(ξ)
h

2
dξ, r, s = 1, 2, (2.62)

b̃(e)r =

1∫

−1

f(x(e)(ξ))Ñr(ξ)
h

2
dξ . (2.63)

Inserting the formulas for basis functions in local coordinates and carrying
out the integration for each pair (r, s), r = 1, 2, results in an element matrix

{
Ã(e)

r,s

}
=

1

h

(
1 −1
−1 1

)
. (2.64)

The element vector calculated by the numerical integration rule

1∫

−1

g(ξ)dξ ≈ g(−1) + g(1)

reads {
b̃(e)r

}
=
h

2

(
f(x(e)(−1))

f(x(e)(1))

)
. (2.65)

Incorporating Essential Boundary Conditions. Recall from Chapters 2.3.2
and 2.3.3 that the essential boundary conditions correspond to known values
of some of the nodal values (u1, . . . , un). Instead of modifying the global linear
system, we can insert the conditions at the element level. In element no. 1,
local node no. 1 is subjected to an essential boundary condition. Hence, we
try to modify the element matrix and vector such that the first equation in
the local 2 × 2 linear system reflects the boundary condition ũ1 = uL. The
modification of (2.64) and (2.65) can be carried out by replacing the first
row in the element matrix by zeroes, except on the main diagonal, where we
insert the value 1. The first entry in the element vector is overwritten with
the boundary value uL. It follows that the modified element linear system
becomes (

1 0
− 1

h
1
h

)(
ũ1

ũ2

)
=

(
uL

h
2 f(x(1)(1))

)
. (2.66)

2.3. Finite Elements in One Space Dimension 175

The original element matrix and the corresponding global matrix were sym-
metric. This is an important property to preserve when it comes to storage
requirements and efficient algorithms for solving linear systems. Unfortu-
nately, our modifications for incorporating the essential boundary conditions
destroyed the symmetry of the element matrix, with the consequence that
also the global matrix will become nonsymmetric. Nevertheless, it is possible
to incorporate the condition ũ1 = uL and still preserve symmetry. This re-
quires the subtraction of column 1 in the element matrix, times the boundary
value uL, from the right-hand side. The general algorithm, where an arbitrary
nodal value ũk is prescribed as uL, reads:

b̃(e)r ← b̃(e)r − uLÃ
(e)
r,k, r = 1, . . . , ne, (2.67)

Ã
(e)
r,k ← 0, r = 1, . . . , ne, (2.68)

Ã
(e)
k,r ← 0, r = 1, . . . , ne, (2.69)

Ã
(e)
k,k ← 1, (2.70)

b̃
(e)
k ← uL . (2.71)

Using this general algorithm, the element equations in our example become
(

1 0
0 1

h

)(
ũ1

ũ2

)
=

(
uL

h
2 f(x(1)(1)) + 1

huL

)
. (2.72)

The corresponding procedure can be used for the element matrix and vector
for element no. m. In that case, ũ2 = uR and we need to modify row 2 and
column 2 in the element matrix. The result is

(
1
h 0
0 1

)(
ũ1

ũ2

)
=

(
h
2 f(x(m)(−1)) + 1

huR

uR

)
. (2.73)

Numerical Integration. Although many integrals can be computed by analyt-
ical means in 1D and over geometrically simple 2D and 3D domains, integrals
in finite element computations must normally be computed numerically. This
is conveniently performed in local coordinates. The general numerical inte-
gration rule in 1D has the form

1∫

−1

g(ξ)dξ ≈
nI∑

k=1

g(ξk)wk,

where ξk is a numerical integration point (sampling point) and wk is a weight.
The accuracy of the rule is determined by the number of integration points
nI and the location ξk of the points. Most of the rules used in finite element
computations are constructed to integrate a polynomial of a given order p
exactly. Some widely used rules are listed in table 2.1. See references [63],
[137], or [154] for more complete information on integration rules.

176 2. Introduction to Finite Element Discretization

Table 2.1. Numerical integration (quadrature) rules for integrals on [−1, 1]
that integrate a polynomial of degree p exactly. The Gauss-Lobatto rules with
2 and 3 points coincide with the well known trapezoidal and Simpson’s rules,
respectively.

name nI p weights points

Gauss-Legendre 1 1 (2) (0)

Gauss-Legendre 2 3 (1, 1) (−1/
√

3, 1/
√

3)

Gauss-Legendre 3 5 (5/9, 8/9, 5/9) (−
p

3/5, 0,
p

3/5)
Gauss-Lobatto 2 1 (1, 1) (−1, 1)
Gauss-Lobatto 3 3 (1/3, 4/3, 1/3) (−1, 0, 1)

Finite element procedures on uniform grids with element length h result
in an error ||u− û|| that usually goes to zero like hr, where r depends on the
norm || · || and the type of finite elements being used. Numerical integration
introduces additional errors that might destroy the convergence rate. How-
ever, it can be shown that the value of r is retained by using Gauss-Legendre
rules with q points if the finite element basis functions are polynomials of
degree q − 1. In 1D we should therefore use the two-point rule for linear
elements and the three-point rule for quadratic elements.

Assembly of Element Matrices and Vectors. We recall the splitting of the
global coefficient matrix in a sum of element matrices as indicated in (2.56).
How do we actually add Ã(e) to Ai,j? The entry (r, s) in the element matrix
corresponds to the coupling of local nodes r and s in element no. e. Hence,
this entry is a contribution to the coupling of the global nodes i and j, where
i = q(e, r) and j = q(e, s). We can then formulate the algorithm for updating

Ai,j with the entries in Ã
(e)
r,s :

Aq(e,r),q(e,s) ← Aq(e,r),q(e,s) + Ã(e)
r,s . (2.74)

The right-hand side is updated in a similar way:

bq(e,r) ← bq(e,r) + b̃(e)r . (2.75)

As usual, r and s runs from 1 to the number of nodes in the element (ne).
The process of adding element contributions to the global linear system is
called assembly of element matrices and vectors.

Figure 2.4 shows how the 2×2 element matrices in our 1D model problem
are added to the global matrix. Carrying out this process, we get the following

2.3. Finite Elements in One Space Dimension 177

element matrices global matrix

3

4

q(e,r)

Fig. 2.4. Illustration of matrix assembly: element matrices, corresponding to
element no. 3 and 4 in a 1D problem with linear elements, are added to the
global system matrix.

global system, provided h is constant:

1 0 0 · · · · · · · · · · · · · · · 0
0 2

h − 1
h

. . .
. . .

. . .
. . .

...

0 − 1
h

2
h − 1

h

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . . 0 − 1

h
2
h − 1

h 0
...

...
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . − 1
h

2
h 0

0 · · · · · · · · · · · · · · · 0 0 1

u1

u2

...

...

...

...

...

...
un−1

un

=

b1
b2
...
...
...
...
...
...

bn−1

bn

,

where b1 = uL, b2 = hf(x[2]) + uL/h, bi = hf(x[i]), i = 3, . . . , n− 2, bn−1 =
hf(x[n−1]) +uR/h, and bn = uR. Notice that in the assembly process we use
the relation f(x(e)(−1)) = f(x(e−1)(1)) = f(x[e]).

Non-Constant Element Size. Elements of unequal lengths are trivially in-
corporated in the element-by-element formulation presented above. The im-
portant observation to make is that the element matrix and vector involve
only the length of the current element. All we have to do is to replace h
by he = x[e+1] − x[e] in the expressions for the element matrix and vector.
In case of nonsymmetric modifications of the element matrices and vectors

178 2. Introduction to Finite Element Discretization

due to essential boundary conditions, one obtains the following linear system
corresponding to −u′′ = f , u(0) = uL, and u(1) = uR, on a non-uniform
grid:

u1 = uL, (2.76)

− 1

hi−1
ui−1 +

(
1

hi−1
+

1

hi

)
ui −

1

hi
ui+1 =

1

2
(hi−1 + hi)f(x[i]), (2.77)

i = 2, . . . , n− 1,

un = uR . (2.78)

Exercise 2.7. .
Consider the model problem from Exercise 1.17 on page 113. There we

solve

−u′′(x) = f(x), f(x) = −(α+ 1)xα, u(0) = 0, u′(1) = 1 .

Introduce a uniform finite element mesh consisting of m linear elements and
n = m+ 1 nodes. Use the Galerkin finite element method with exact evalua-
tion of all integrals. Compute the global linear system directly by the method
in Chapter 2.3.3. Compute also element matrices and vectors and assemble
the contributions. Compare the discrete finite element equations with those
obtained by the finite difference method. Show that both methods end up
with a difference scheme

ui−1 − 2ui + ui+1 = h2bi,

at internal points, where bi = −f(xi) in the finite difference method and

bi =
1

α+ 2
h−2(xα+2

i−1 − 2xα+2
i + xα+2

i+1)

is the expression that one can show arises in the finite element method.
Observe that bi in the finite element case is the discrete second derivative
of the exact solution. That is, the finite element solution is exact at interior
points ([δxδxû = δxδxu]i). Check that this is also true for the discrete equation
associated with the end point x = 1. Formulate the discrete finite element
equations also for a nonuniform mesh. �

Remark to Exercise 2.7. The accuracy of finite difference schemes are often
determined from calculating the truncation error (Appendix A.4.9 gives an
introduction to the truncation error concept). Analysis of the truncation er-
rors can, of course, also be performed in a finite element context when we
have analytical expressions for the discrete equations. One can show that the
truncation error of the discrete equations obtained in Exercise 2.7 can be
written in the form

τ = [δxδxu]i − [δxδxg]i,

2.3. Finite Elements in One Space Dimension 179

where g(x) = xα+2/(α + 2). This g is actually the analytical solution of
the boundary-value problem, and τ is therefore zero, which shows that the
numerical solution is exact. However, in the normal truncation error analysis,
we try to form an expression involving the PDE at a grid point, plus a series
with powers of the discretization parameter h. In the present application, we
can make a Taylor expansion of the term [δxδxg]i, which leads to4

τ = [δxδxu+ f]i +
h2

12
[u′′′′]i −

h2

12(α+ 2)
[g′′′′]i +O(h4) .

Hence, τ = O(h2) as when the finite difference method is applied to this
problem. Before making the Taylor-series expansion we saw, however, that
the finite element solution is in fact exact for this particular problem. This
result cannot be generalized to state that the finite element method is superior
to the finite difference method. We shall, for example, meet a problem in
Chapter 2.4 where the finite element method is inferior to its finite difference
counterpart.

2.3.5 Extending the Concepts to Quadratic Elements

The finite element examples so far have been restricted to linear elements in
one space dimension. However, we have tried to parameterize the number of
nodes and integration points in an element etc., such that it shall be easy to
adapt the procedures to elements with more nodes and other basis functions.

Consider quadratic elements as an example, where the basis functions
are second-order polynomials. We then have three nodes per element. In the
reference element, node 1, 2, and 3 are given as ξ = −1, ξ = 0, and ξ = 1,
respectively. The local basis functions are quadratic polynomials fulfilling the
condition Ñr = δrs at local node no. s. The expression for Ñ1(ξ) is determined
by setting a second-order polynomial Ñ1(ξ) = aξ2 + bξ + c equal to zero for
ξ = 0 (node 2) and ξ = 1 (node 3), and to unity for ξ = −1 (node 1).
The three equations determine a, b, and c. The two other basis functions are
determined similarly. The mathematical expressions for the basis functions
take the following form:

Ñ1(ξ) =
1

2
ξ(ξ − 1), (2.79)

Ñ2(ξ) = (1 + ξ)(1− ξ), (2.80)

Ñ3(ξ) =
1

2
ξ(1 + ξ) . (2.81)

Figure 2.5 displays the three basis functions in the reference element.
The mapping from x to ξ is in general given by (2.60), but if local node

no. 2 is located at the mid point of the element, (2.60) reduces to a linear

4 Observe that [δxδxg]i = g′′
i + O(h2) and g′′

i = (α + 1)xα
i = −fi.

180 2. Introduction to Finite Element Discretization

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

Quadratic basis functions in the reference element

N_1(x)
N_2(x)
N_3(x)

Fig. 2.5. Illustration of the three basis functions Ñi(ξ), i = 1, 2, 3, in a
quadratic finite element.

form similar to (2.58). Numbering nodes and elements consecutively with
increasing x, a quadratic element no. e will have the nodes x[2e−1], x[2e], and
x[2e+1]. The linear mapping (2.58) must hence be written as

x(e)(ξ) = x[2e] + ξ
1

2

(
x[2e+1] − x[2e−1]

)
(2.82)

for quadratic elements with the mid node in the center of the element. In
this case, det J = he/2, where he = x[2e+1] − x[2e−1] is the length of the
element. With the formulas for Ñr and det J at hand, we can run through
the algorithm from Chapter 2.3.6 and solve 1D differential equations using
quadratic elements.

Example 2.2. Applying the Galerkin method to the two-point boundary-
value problem

−u′′(x) = 1, x ∈ (0, 1), u(0) = u(1) = 0,

leads to these expressions for the element matrix and vector on quadratic
elements:

Ã(e)
r,s =

2

he

1∫

−1

Ñ ′
r(ξ)Ñ

′
s(ξ)dξ, r, s = 1, 2, 3,

b̃(e)r =
he

2

1∫

−1

Ñr(ξ)dξ, r = 1, 2, 3 .

2.3. Finite Elements in One Space Dimension 181

We have here assumed that the mapping between the x and ξ coordinates are
given by (2.58), such that det J = he/2 and J−1 = 2/he. The only difference
from the corresponding expressions for linear elements is just the range of r

and s. As an example, the entry Ã
(e)
3,1 is calculated as

Ã
(e)
3,1 =

2

he

1∫

−1

(
1

2
+ ξ

)(
ξ − 1

2

)
dξ =

1

3he
.

Carrying out all the integrations analytically results in the following element
matrix and vector:

{
Ã(e)

r,s

}
=

1

3he

7 −8 1
−8 16 −8

1 −8 7

 ,

{
b̃(e)r

}
=
he

6

1
4
1

 .

The q(e, r) mapping of local node r in element e takes the form

q(e, r) = 2(e− 1) + r

for quadratic elements with a natural left-to-right global numbering of nodes
and elements. We can then easily perform the assembly of the element ma-
trices and vectors, according to (2.74) and (2.75). This results in the discrete
equation

1

3h
(ui−2 − 8ui−1 + 14ui − 8ui+1 + ui+2) =

h

3
, (2.83)

when i is the number of an end node in an element, i.e., i is odd. For i = 1 and
i = 2 we use the boundary conditions u1 = 0 and un = 0. We have assumed
that all elements have equal length h. Assembled equations associated with
mid nodes in the elements take the form

1

3h
(−8ui−1 + 16ui − 8ui+1) =

2h

3
, (2.84)

for i even.
We can eliminate all the ui values at the mid nodes, using (2.84):

ui =
h2

8
+

1

2
(ui−1 + ui+1) .

Inserting this expression for the mid nodes ui−1 and ui+1 in (2.83) results in

1

3h

(
ui−2 − 8

(
h2

8
+

1

2
(ui−2 + ui)

)
+ 14ui − 8

(
h2

8
+

1

2
(ui + ui+2)

))
=
h

3

or simplified to
1

h
(−ui−2 + 2ui − ui+2) = h,

182 2. Introduction to Finite Element Discretization

for i = 3, 5, 7, . . . , n − 2. This is an equation relating the end nodes of the
elements only. It is therefore natural to introduce a new numbering i =
1, 2, . . . , n of the end nodes. This is the same numbering as used for linear
elements. The discrete equation at node i is then

1

h
(−ui−1 + 2ui − ui+1) = h .

Quite surprising is this the same discrete equation as we get from linear
elements applied to the current boundary-value problem! This means that
the u values at the nodes are the same for linear and quadratic elements.
However, the variation between the nodes is different for the two element
types.

It turns out that linear elements in this problem give exact ui values at the
nodes. Quadratic elements can reproduce linear elements as a special case and
will also lead to exact ui values at the nodes. Because the analytical solution is
a quadratic function (u = x(1− x)/2), the quadratic elements give an exact
finite element solution û(x), whereas linear elements give piecewise linear
solution û(x), which deviates from the exact solution between the nodes.

For more details regarding hand calculations with quadratic basis func-
tions we refer to [38, Ch. 8.3] or [12, Ch. 2.9]. �

Exercise 2.8. .
This is a continuation of Exercise 2.7. Now we shall make use of a uni-

form finite element mesh consisting of m quadratic elements and n = 2m+ 1
nodes. Use the Galerkin finite element method with (i) exact evaluation of
all integrals and (ii) three-point Gauss-Lobatto (i.e. Simpson’s) rule for ap-
proximating integrals over one element. Compute the element matrices and
vectors. Assemble the contributions from each element, and write each equa-
tion in the linear system. The results from Example 2.2 can be helpful. �

Exercise 2.9. .
In the model problem from Exercise 2.8, eliminate the unknowns at the

mid nodes in each element as shown in Example 2.2. Alternatively, the pa-
rameter ũ2 can be eliminated from the linear system

3∑

s=1

Ã(e)
r,sũs = b̃(e)r , r = 1, 2, 3,

at the element level. This results in a 2×2 element matrix and a correspond-
ing element vector with 2 entries. Calculate this reduced element matrix
and vector, assemble the contributions, and show that the resulting discrete
equations are the same as obtained for linear elements in Exercise 2.7. Linear
elements lead to exact solution at the nodes in the present model problem,
so there is no surprise that quadratic elements lead to exact ui values and
the same discrete equations. Since the exact solution is a power function

2.3. Finite Elements in One Space Dimension 183

(u(x) ∼ xα), both linear and quadratic elements give numerical solutions
that deviate from the exact solution between the nodes. How can we quan-
tify how much we gain by using quadratic elements? �

Exercise 2.10. .
This exercise concerns the two-point boundary-value problem

−(λ(x)u′(x))′ = f(x), x ∈ (0, 1), u(0) = uL, u
′(1) = γ .

Calculate the element matrices and vectors, as well as the global linear sys-
tem, corresponding to a uniform grid with linear elements. All integrals
should be evaluated by the trapezoidal rule. Then extend the calculations
to quadratic elements, with a three-point Gauss-Lobatto (Simpson’s) rule
for integration. Compare the representation of λ in the finite element equa-
tions with the representation of λ in the finite difference method (see Chap-
ter 1.3.6). �

2.3.6 Summary of the Element-by-Element Algorithm

Algorithm 2.1 summarizes the element-by-element construction of the global
linear system, where all evaluations of the basis functions are performed in
local coordinates and all integrals are computed by numerical integration.
The formulation of this finite element algorithm is general enough to make
it relevant for a wide range of boundary-value problems (although formulas
associated with our model problem (2.50) are used in the algorithm as ex-
amples on expressions when sampling the integrands in the weighted residual
formulation).

184 2. Introduction to Finite Element Discretization

Algorithm 2.1.

Finite element assembly algorithm.

initialize global linear system:

set Ai,j = 0 for i, j = 1, . . . , n
set bi = 0 for i = 1, . . . , n
loop over all elements:

for e = 1, . . . ,m

set Ã
(e)
r,s = 0, r, s = 1, . . . , ne

set b̃
(e)
r = 0, r = 1, . . . , ne

loop over numerical integration points:

for k = 1, . . . , nI

evaluate Ñr, dÑr/dξ, dÑr/dx, and J at ξ = ξk
add contribution to element matrix and vector from

the current integration point:

for r = 1, . . . , ne

for s = 1, . . . , ne

Ã
(e)
r,s ← Ã

(e)
r,s + dÑr

dx
Ñs

dx det J wk

b̃
(e)
r ← b̃

(e)
r + f(x(e)(ξk))Nr det J wk

incorporate essential boundary conditions:

for r = 1, . . . , ne

if node r has an essential boundary condition then

modify Ã
(e)
r,s and b̃

(e)
r due to this condition

assemble element matrix and vector:

for r = 1, . . . , ne

for s = 1, . . . , ne

Aq(e,r),q(e,s) ← Aq(e,r),q(e,s) + Ã
(e)
r,s

bq(e,r) ← bq(e,r) + b̃
(e)
r

The nomenclature for Algorithm 2.1 reads as follows: n is the number
of nodes, m is the number of elements, ne is the number of nodes in an
element, nI is the number of numerical integration points, ξk is the numerical
integration points, wk is the numerical integration weights, q(e, r) is the global
node number corresponding to local node r in element e, Ai,j is the global

coefficient matrix, Ã
(e)
r,s is the element matrix, bi is the global right-hand side

in the linear system, and b̃
(e)
r is the element vector.

2.4. Example: A 1D Wave Equation 185

2.4 Example: A 1D Wave Equation

In this section we shall investigate the application and performance of finite
element methods in a problem involving the wave equation:

∂2u

∂t2
= c2

∂2u

∂x2
, x ∈ (0, 1), t > 0, (2.85)

u(x, 0) = f(x), x ∈ [0, 1], (2.86)

∂

∂t
u(x, 0) = 0, x ∈ [0, 1], (2.87)

∂

∂x
u(0, t) = 0, t > 0, (2.88)

∂

∂x
u(1, t) = 0, t > 0 . (2.89)

2.4.1 The Finite Element Equations

Discretizing the PDE (2.85) in time by second-order finite differences yields
a sequence of spatial problems. Each spatial problem is then discretized by
the finite element method, using the approximation û` =

∑
j=1 u

`
jNj(x) to

the unknown u(x, t) at time level `. See Chapter 2.2 for a derivation of the
finite element formulation. The discrete equations can be written as

n∑

j=1

Mi,ju
0
j =

∫ 1

0

f(x)Nidx,

n∑

j=1

Mi,ju
−1
j =

∫ 1

0

[
û0Ni −

1

2
(c∆t)2

dNi

dx

dû0

dx

]
dx+

1

2
(c∆t)2

(
dû0

dx
Ni

∣∣∣∣
x=1

− dû0

dx
Ni

∣∣∣∣
x=0

)
,

n∑

j=1

Mi,ju
`+1
j =

∫ 1

0

[(
2û` − û`−1

)
Ni − (c∆t)2

dNi

dx

dû`

dx

]
dx, ` ≥ 0,

where Mi,j =
∫ 1

0
NiNjdx is the mass matrix. In the following, we omit the

boundary terms by demanding f ′ = 0, and thereby approximately dû0/dx =
0, at x = 0, 1, just for making the expressions more compact. Notice that
with f ′(0) 6= 0 or f ′(1) 6= 0 we also get an extra boundary term (from the
integration by parts) in the equation for u`+1

j when ` = 0.
Sometimes it is convenient to express the right-hand side of the linear

system as a matrix-vector product. This is particularly the case for analytical
work and formulation of fast computer implementations in many problems.
To this end, we simply insert û` =

∑n
j=1 u

`
jNj on the right-hand side, move

the sum outside the integrals and write the terms as matrix-vector products.

186 2. Introduction to Finite Element Discretization

The result becomes

n∑

j=1

Mi,ju
0
j =

∫ 1

0

f(x)Nidx, (2.90)

n∑

j=1

Mi,ju
−1
j =

n∑

j=1

Mi,ju
0
j −

1

2
(c∆t)2

n∑

j=1

Ki,ju
0
j , (2.91)

n∑

j=1

Mi,ju
`+1
j = 2

n∑

j=1

Mi,ju
`
j −

n∑

j=1

Mi,ju
`−1
j − (c∆t)2

n∑

j=1

Ki,ju
`
j , (2.92)

with Ki,j =
∫ 1

0
N ′

i(x)N
′
j(x)dx.

2.4.2 Interpretation of the Discrete Equations

We shall interpret the various terms in the difference equations and thereby
see how the finite element formulation above relates to certain finite difference
schemes. For this purpose, it will be convenient to assemble the Mi,j and Ki,j

matrices separately, since they correspond to different terms in the original
PDE. Concentrating on the general scheme (2.92) for ` ≥ 0, we can easily
calculate the element mass and stiffness matrices:

{
M̃ (e)

r,s

}
=
h

6

(
2 1
1 2

)
,
{
K̃(e)

r,s

}
=

1

h

(
1 −1
−1 1

)
. (2.93)

Assembling a typical row in the global mass matrix results in the only nonzero
entries Mi−1,i = Mi+1,i = h/6 and Mi,i = 4h/6. We can then evaluate, for a
fixed 1 < i < n:

∑

j

Mi,ju
`+1
j =

h

6

(
u`+1

i−1 + 4u`+1
i + u`+1

i+1

)
. (2.94)

This is the contribution from the mass matrix terms to the difference equa-
tions corresponding to (2.92). The finite difference method leads to a single
term u`+1

i only, which would be hu`+1
i in the finite element context since we

integrate and thereby get the factor h. We can rewrite the right-hand side of
(2.94) as

h

(
u`+1

i +
1

6

(
u`+1

i−1 − 2u`+1
i + u`+1

i+1

))
.

Using the difference operator notation from Appendix A.3, this can be written
as

h[u+
h2

6
δxδxu]

`+1
i .

Expressing discrete finite element equations in terms of finite difference oper-
ators has several important aspects: (i) the notation becomes more compact,

2.4. Example: A 1D Wave Equation 187

(ii) the interpretation of finite element equations as finite difference approxi-
mations to derivatives becomes evident, and (iii) the tools for analyzing sta-
bility and accuracy of finite difference schemes can immediately be applied
to finite element schemes.

The contributions from
∑

j Ki,ju
`
j yield a standard centered finite dif-

ference formula: −h[δxδxu]`i . The scheme according to (2.92) can then be
written, after division by h,

[δtδt(u+
h2

6
δxδxu) = c2δxδxu]

`
i . (2.95)

Compared with the standard finite difference scheme for the same wave equa-
tion, see (1.56) on page 37, we observe that the finite element method intro-
duces an extra term [16h

2δtδtδxδxu]
`
i , arising from the time derivative ∂2u/∂t2

in the PDE. The extra term looks like a kind of diffusion, but the effect of
the new term is to alter the velocity of a wave component, not its ampli-
tude. This is hence a dispersion term in the discrete equations. On the other
hand, in PDEs with first-order time derivatives the extra term takes the form
1
6h

2[δtδxδxu]
`
i (see Exercise 2.11) and can in such cases represent a negative

diffusion, which can have a destabilizing effect on the numerical scheme.
To explicitly demonstrate that our finite element scheme requires solution

of coupled equations, we may write out the δtδt operator, yielding

[u+
h2

6
δxδxu]

`+1
i = 2[u+

h2

6
δxδxu]

`
i − [u+

h2

6
δxδxu]

`−1
i + (c∆t)2[δxδxu]

`
i .

(2.96)
It is now evident that we have to solve a tridiagonal matrix system with
coefficient matrix corresponding to the difference operator (1 + 1

6h
2δxδx);

that is, the coefficient matrix is the mass matrix.

Lumped (Diagonal) Mass Matrix. To obtain an explicit scheme, it is common
to lump the mass matrix such that it becomes diagonal. The original mass
matrix is referred to as the consistent mass matrix, whereas the diagonal
version is commonly named the lumped mass matrix. The simplest lumping
method is to approximate Mi,j by

M
(L)
i,j =

{∑
k Mi,k, i = j,

0, i 6= j
(2.97)

This is often referred to as the row-sum technique. Another lumping strategy
is to use nodal-point integration. In that case, the basis functions are always
evaluated at a node, resulting in the value 0 or 1. At an arbitrary node k
we then have Ni(x

[k])Nj(x
[k]) = δikδjk ; that is, we get nonzero contributions

only when i = j, which means that the matrix becomes diagonal. Both the
row-sum technique and nodal-point integration give the same results for the
lumped version of the mass matrix when using linear elements, which is

{M (L)
i,j } = (h/2)diag(1, 1). The reader should verify that the finite element

188 2. Introduction to Finite Element Discretization

scheme now coincides with the standard finite difference scheme (1.56). This
means that mass lumping removes the extra term 1

6h
2[δtδtδxδxu]

`
i in (2.95).

We remark that the row-sum technique and nodal-point integration do
not work for all element types. For example, a 6-node quadratic triangular
element then leads to vanishing diagonal terms Mii for nodes i corresponding
to the corner nodes of the elements. The right-hand side also vanishes in this
case. More sophisticated techniques (e.g. the moving least squares method
briefly touched on page 304 are then required.

2.4.3 Accuracy and Stability

Since we have transformed the finite element equation to a set of difference
equations, we can use the tools for analyzing finite difference schemes also
in a finite element context. For example, the accuracy can be measured by
calculating the truncation error. Alternatively, we can use the concept of
numerical dispersion relations to obtain an exact analytical solution of the
difference equations, and using this solution, accuracy and stability can be
investigated. These techniques are introduced in detail in Appendix A.4. The
reader should be familiar with this material before proceeding with the ap-
plication of the techniques to the present wave equation problem.

With the aid of Table A.3 we can compute the contribution to the trun-
cation error from the various terms in (2.95). The [δtδtu]

`
i term gives a con-

tribution (
∂2u

∂t2

)`

i

+
∆t2

12

(
∂4u

∂t4

)`

i

+O(∆t4) . (2.98)

The [δxδxu]
`
i term gives a similar contribution to the truncation error:

(
∂2u

∂x2

)`

i

+
h2

12

(
∂4u

∂x4

)`

i

+O(h4) . (2.99)

The additional term h2

6 [δtδtδxδxu]
`
i generated by the consistent mass matrix

results in

h2

6

(
∂2

∂x2
(δtδtu)

)`

i

+O(h4)

=
h2

6

(
∂4u

∂x2∂t2

)`

i

+O(h2∆t2) +O(h4) +O(∆t4) .

Summarizing the various contributions, the truncation error becomes

τ =
∆t2

12

(
∂4u

∂t4

)`

i

− c2h
2

12

(
∂4u

∂x4

)`

i

+
h2

6

(
∂4u

∂x2∂t2

)`

i

+O(h2∆t2, ∆t4, h4) .

Let us then turn the attention to numerical dispersion relations as a mea-
sure of the accuracy and stability. We know from Appendix A.4.3 that the

2.4. Example: A 1D Wave Equation 189

analytical dispersion relation reads ω = ±ck. The corresponding numerical
dispersion relation is found by inserting u`

j = A exp (i(kjh− ω̃`∆t)) into the
scheme (2.95) and using Table A.1, yielding

− 4

∆t2
sin2 ω̃∆t

2
+
h2

6

4

∆t2
sin2 ω̃∆t

2

4

h2
sin2 kh

2
= −c2 4

h2
sin2 kh

2
,

which can be written

sin2 ω̃∆t

2
=
c2∆t2

h2

(
1− 2

3
sin2 kh

2

)−1

sin2 kh

2
.

Following the reasoning in Appendix A.4.7, a complex ω̃ must be avoided
since this will always give rise to instability. This means that the amplitude
of the sin2 kh/2 term must be equal to or less than unity:

c2∆t2

h2

(
1− 2

3
sin2 kh

2

)−1

≤ 1 .

The worst case arises when the sine function equals unity, leading to C ≤
1/
√

3 as the stability criterion. This criterion is more severe than the one
(C ≤ 1) we have met in the finite difference scheme, which is equivalent to
the finite element scheme with lumped mass matrix. To summarize, lumping
the mass matrix improves stability and makes the scheme explicit.

Remark. When solving other types of PDEs, in particular the convection-
diffusion equation, see e.g. (6.1), lumping the mass matrix can reduce the
numerical accuracy significantly. Gresho and Sani [48, Ch. 2] present a com-
prehensive treatment of this subject.

To calculate the error in the numerical dispersion relation associated with
our discretization of the wave equation, we can solve for ω̃ and make a Taylor-
series expansion in terms of h and ∆t:

Eω(k, h,∆t) ≡ ω(k)− ω̃(k;h,∆t)

= − 1

24
ck3

(
h2 + c2∆t2

)
+O(h2∆t2, h4, ∆t4) . (2.100)

If we compare this result with the similar result on page 690, we see that there
is no cancellation of error terms now for the maximum C (1/

√
3) value. The

relative error in phase velocity (Eω/ω) is shown in Figure 2.6. Comparison
with Figure A.2 on page 691 reveals that lumping the mass matrix in fact
improves the accuracy when solving the wave equation by linear finite ele-
ments. For a uni-directional wave equation ∂u/∂t+ c∂u/∂x = 0, lumping the
mass matrix reduces the accuracy significantly, see [48, Ch. 2] for a thorough
study.

Exercise 2.11. .
Apply the steps of the calculations and analysis in Chapter 2.4 to a one-

dimensional heat equation. �

190 2. Introduction to Finite Element Discretization

–0.7

–0.6

–0.5

–0.4

–0.3

–0.2

–0.1

0

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
p

Fig. 2.6. Error in numerical phase velocity, normalized by the exact phase
velocity, as a function of p = kh. The wave 1D equation is discretized by lin-
ear finite elements, keeping the mass matrix consistent. The different curves
correspond to different Courant numbers: the stability limit C = 1/

√
3 (bot-

tom curve), C = 0.3, and C = 0.1 (top curve). The corresponding results
when using a lumped mass matrix are shown in Figure A.2 on page 691.

Exercise 2.12. .
Lumping the mass matrix might seem like a trick with little physical

or mathematical justification. Nevertheless, by approximating a continuous
medium by a set of discrete particles, we can justify the lumped version of
the mass matrix. For example, waves on a string lead to the unscaled PDE

%(x)
∂2u

∂t2
= T

∂2u

∂x2
,

where u(x, t) is the string displacement, %(x) is the mass per unit length of the
string, i.e., a measure of the density, and T is the tension of the string. The
equation is derived in Chapter 1.4.1. The term %(x)∂2u/∂t2 reflects mass (per
unit length) times the acceleration, and usually % is constant. In the Galerkin
finite element formulation this term gives rise to an integral of the form∫
%NiNjdx. Instead of having the mass of the string uniformly distributed

(constant %), we can think of lumping the mass at the nodes. That is, the
string consists of particles with massmi, located at each node i and connected
with massless springs. Such a model is explained in detail by Spiegel [130,
Problems 8.29-32, 8.79-80]. In a continuum setting we can then model %(x)

2.4. Example: A 1D Wave Equation 191

in terms of Dirac delta functions δ(x):

%(x) =

n∑

j=1

mjδ(x − x[j]) .

An important property of the delta function is that
∫ ε

−ε
δ(x)dx = 1 for any

ε > 0. Moreover, δ(x) = 0 for all x 6= 0 (the value of δ(0) is hence infinite).
We see that

∫
%(x)dx =

∑
j mj which is the total mass of the spring. Assume

now that the density is constant, equal to %0, and that we distribute the mass
of each element equally between its two nodes. Then mi = %0h for 1 < i < n,
while at the end points we have m1 = mn = %0h/2. Use the lumped model
representation %(x) in the mass matrix term

∫
%(x)NiNjdx and demonstrate

that exact integration then results in a diagonal mass matrix. Also compute
the corresponding mass matrix term

∫
%0NiNjdx, using standard lumping in

terms of the row-sum technique or nodal-point numerical integration. Show
that the different approaches yield the same diagonal mass matrix.

The mass matrix often arise from terms in the PDE corresponding to the
acceleration term in Newton’s second law, and the reasoning in this exercise
can then be applied to justify the lumping technique from a physical point
of view. �

Exercise 2.13. .
We consider the mathematical problem (2.85)–(2.89) solved by quadratic

elements in space and a higher-order difference scheme in time. For the spa-
tial discretization we apply a Galerkin finite element method with quadratic
elements. Establish the 3 × 3 element matrix corresponding to the terms
∂2u/∂t2 and ∂2u/∂x2. Show that the internal node of an element is only cou-
pled to the other nodes in that element. This means that the internal node
can be eliminated from the element equations. The associated procedure is
called static condensation and is frequently used in many finite element con-
texts. The first step in the static condensation method is to write the element
matrix system in block form,

(
AE,E AE,I

AI,E AI,I

)(
uE

uI

)
=

(
bE

bI

)
. (2.101)

The subscript E refers to external nodes, i.e., the nodes that are coupled to
other elements, whereas the subscript I identifies contributions from internal
nodes. Eliminating uI (which will not interact with contributions from other
elements), yields

uI = A−1
I,I(bI −AI,EuE).

Inserting this expression in the system (2.101) yields a modified equation
system at the element level. Go through this procedure for the quadratic
1D element and set up the resulting 2 × 2 system. Assemble the element
matrices and vectors and identify a difference approximation to the second
order spatial derivative.

192 2. Introduction to Finite Element Discretization

For the discretization in time we shall use two methods: (i) standard
three-point finite difference approximation and (ii) the standard three-point
approximation combined with correction terms (FD-corr). In the latter case
we add a new term R to the partial differential equation. By performing a
standard truncation error analysis, we can choose R such that terms in the
truncation error expression cancel. This will result in a higher-order scheme
in time. Carry out the procedure by considering the time-discrete equation

1

∆t2
(
u`+1 − 2u` + u`−1

)
= c2

∂2u`

∂x2
+R.

Finally, write up the complete discrete equations. How can the accuracy of
this method be established? �

2.5 Naive Implementation

In this section, we present a simple implementation of the finite element al-
gorithm from Chapter 2.3.6. The program is written in C++ using Diffpack
arrays, but it can be straightforwardly translated into any other computer
language5. The nested loops of the finite element algorithm can of course be
coded directly in a main program, but to increase the modularity of the code,
we try to break up the algorithm into some basic pieces, where each piece is
coded as a function. Other element types, integration rules, or equations can
then easily be incorporated by switching functions. The mathematical sym-
bols used in the algorithm on page 184 have been replaced by somewhat more
self-explanatory C++ variables. Many of the function and variable names in
the example program are also found in the general finite element toolbox in
Diffpack.

Here is a table of the basic mathematical symbols and the corresponding
C++ names used in the code.

n nno number of nodes
m nel number of elements
ne nne number of nodes in an element
nI no itg pts number of numerical integration points
ξk num itg points numerical integration points
wk num itg weights numerical integration weights
q(e, r) nodel(e,r) global node number of local node r in elm. e
Ai,j A global coefficient matrix

Ã
(e)
r,s elm matrix(r,s) element matrix

bi b global right-hand side in the linear system

b̃
(e)
r elm vector(r) element vector
xi coor(i) nodal coordinates

5 To this end, class variables become global variables and class functions become
ordinary global functions.

2.5. Naive Implementation 193

For a specific implementation example, we choose linear elements, f(x) =
β = constant, uL = 0, and uR = 1 in the 1D problem (2.50) on page 168.
The most important functions in our program are listed next.

scan: read n and β, allocate vectors, matrices, etc., call initGrid.

initGrid: compute xi and q(e, r), i.e., the finite element grid.

makeSystem: calculate the linear system.

solve: solve the linear system by Gaussian elimination.

calcElmMatVec: compute element matrix and vector for an element.

integrands: evaluate the integrands of the weighted residual statement (this
is the part of the program that really depends on the PDE being solved!).

N: evaluate the basisfunctions in local coordinates.

dN: evaluate the derivatives of the basisfunctions in local coordinates.

The program is, as usual in Diffpack, realized as a class. The source code can
be found in src/fem/MyFirstFEM. Here is the definition of the solver class.

class MyFirstFEM

{

Vec(real) u; // solution to be found

Vec(real) b; // right-hand side of linear system

Mat(real) A; // global coefficient matrix

int nel; // number of elements

int nne; // number of nodes in an element

int nno; // number of nodes

int no_itg_pts; // number of integration points

real beta; // equation parameter

Vec(real) coor; // nodal coordinates

MatSimple(int) nodel; // element connectivity array

Vec(real) num_itg_weights; // weights in numerical integration rule

Vec(real) num_itg_points; // points in numerical integration rule

// compute value of basis func. no. i at local point xi:

real N (int i, real xi);

// compute derivative of basis func. no. i at local point xi:

real dN (int i, real xi);

void initGrid (); // set up coor and nodel in 1D

void makeSystem (); // the assembly process

void solve (); // solve linear system by Gaussian elim.

// compute the elemental matrix and vector:

void calcElmMatVec (Mat(real)& m, Vec(real)& v, int e);

194 2. Introduction to Finite Element Discretization

// evaluate the integrand in the weighted residual statement:

void integrands (Mat(real)& m, Vec(real)& v, int e, int p);

public:

void scan (); // read no of elements, initialize

void solveProblem (); // main administering function of the class

void resultReport (); // compare with analytical solution

};

The implementation of the member functions of this class is located in a file
MyFirstFEM.cpp:

#include <MyFirstFEM.h>

void MyFirstFEM:: scan()

{

initFromCommandLineArg("-nel", nel, 10);

initFromCommandLineArg("-beta", beta, 0.1);

nne = 2; nno = nel+1;

A.redim (nno,nno); b.redim (nno); u.redim (nno);

no_itg_pts = 2;

num_itg_weights.redim (no_itg_pts);

num_itg_points. redim (no_itg_pts);

if (no_itg_pts == 2) { // two-point Gauss rule:

num_itg_points(1) = -1/sqrt(3.0); num_itg_weights(1) = 1;

num_itg_points(2) = 1/sqrt(3.0); num_itg_weights(2) = 1;

}

initGrid();

}

void MyFirstFEM:: initGrid () // compute coor and nodel

{

coor.redim (nno);

real h = 1.0/nel;

coor(1) = 0;

for (int j = 2; j <= nno; j++)

coor(j) = coor(j-1) + h; // const partition, 2 nodes per element

nodel.redim (nel, nne);

for (int e = 1; e <= nel; e++)

for (int i = 1; i <= nne; i++)

nodel(e, i) = e*(nne-1)+i-1;

}

void MyFirstFEM:: solveProblem () { makeSystem(); solve(); }

2.5. Naive Implementation 195

void MyFirstFEM:: makeSystem ()

{

A.fill(0.0); b.fill(0.0);

Mat(real) elm_matrix (nne,nne); Vec(real) elm_vector (nne);

for (int e = 1; e <= nel; e++) { // element-by-element loop

elm_matrix.fill(0.0); elm_vector.fill(0.0);

calcElmMatVec(elm_matrix, elm_vector, e);

if (e==1) // enforce the boundary condition u(0)=0

{ elm_matrix(1,1)=1; elm_matrix(1,2)=0; elm_vector(1)=0; }

if (e==nel) // enforce the boundary condition u(1)=1

{ elm_matrix(2,2)=1; elm_matrix(2,1)=0; elm_vector(2)=1; }

// assemble local contributions into A and b

for (int r=1; r <= nne; r++) {

for (int s=1; s <= nne; s++)

A(nodel(e,r),nodel(e,s)) += elm_matrix(r,s);

b(nodel(e,r)) += elm_vector(r);

}

}

}

void MyFirstFEM:: solve ()

{

LinEqSystemStd eq_system(A, u, b); // make linear system Au=b

GaussElim gauss; // Gaussian elim. solver

gauss.solve (eq_system);

// could also used A.factLU() and A.forwBack(b,u)

}

void MyFirstFEM:: calcElmMatVec

(Mat(real)& elm_matrix, Vec(real)& elm_vector, int e)

{

// numerical integration over the element:

for (int p = 1; p <= no_itg_pts; p++)

integrands (elm_matrix, elm_vector, e, p);

}

void MyFirstFEM:: integrands

(Mat(real)& elm_matrix, Vec(real)& elm_vector, int e, int p)

{

real h = coor(e+1)-coor(e); // length of this element

real detJxW = h/2 * num_itg_weights(p); // Jacobian * weight

int r,s;

for (r = 1; r <= nne; r++) {

196 2. Introduction to Finite Element Discretization

for (s = 1; s <= nne; s++)

elm_matrix(r,s) += dN(s, num_itg_points(p))*2/h

* dN(r, num_itg_points(p))*2/h * detJxW;

elm_vector(r) += beta * N(r, num_itg_points(p)) * detJxW;

}

}

real MyFirstFEM:: N (int i, real xi)

{

if (i==1) return 0.5*(1-xi);

else return 0.5*(1+xi);

}

real MyFirstFEM:: dN (int i, real /*xi*/)

{

if (i==1) return -0.5;

else return +0.5;

}

void MyFirstFEM:: resultReport ()

{

Vec(real) u_exact (nno);

int i;

for(i = 1; i <= nno; i++)

u_exact(i) = -0.5*beta*coor(i)*coor(i) + (0.5*beta + 1)*coor(i);

s_o << "\n \n x numerical exact: "

<< "difference:\n"; // \n is newline

for (i = 1; i <= nno; i++) {

s_o << oform("%4.3f %8.6f %8.6f %8.6f \n",

coor(i), u(i), u_exact(i), u_exact(i)-u(i));

}

}

The reader should realize that the coefficient matrix is represented by a
Mat(real) object, that is, a dense matrix. We know that with 1D elements,
the global coefficient matrix is tridiagonal, and Diffpack’s tridiagonal matrix
object, MatTri(real) should be used (see Chapter 1.3.5).

Extension of the code to quadratic elements in 1D will involve a pentadi-
agonal matrix. The relevant Diffpack matrix is then a banded matrix, repre-
sented by class MatBand(real). Of course, a special case of MatBand(real) is
a tridiagonal matrix. In Chapter 3 we present finite element programs where
the particular matrix format and solution procedure for the linear system
can be flexibly chosen at run time. Explicit appearance of the matrix format
(Mat vs. MatTri or MatBand) in the code is then avoided.

The main program associated with class MyFirstFEM looks like this:

2.5. Naive Implementation 197

#include <MyFirstFEM.h>

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

MyFirstFEM problem;

problem.scan(); problem.solveProblem(); problem.resultReport();

return 0; // success

}

It is easy to verify that a simulation with three elements and β = 0.1, i.e.,
./app -nel 3 -beta 0.1, results in numerical values that coincide with the
exact solution, as expected (see page 18).

Exercise 2.14. .
Modify class MyFirstFEM such that it employs a tridiagonal global coeffi-

cient matrix. Then implement the problem from Project 1.5.2:

u′(x) = εu′′(x), x ∈ (0, 1), ε > 0, u(0) = 0, u(1) = 1, (2.102)

using linear elements on a nonuniform grid. Assume that one first generates
a uniform grid and then moves a node xi to a new position x∗i according to
a function µ(x): x∗i = µ(xi). From the results of Project 1.5.2 we know that
the gradients are large in the vicinity of x = 1. Suggest a function µ(x) that
concentrates the nodes in this critical region and test if a nonuniform mesh
can cure the oscillations that appear when (2.102) is solved on a uniform grid
with h/ε > 2. See also Chapter 2.9 for various other approaches that stabilize
the finite element solution of (2.102) when h/ε > 2. �

Exercise 2.15. .
Go through the source code of class MyFirstFEM and figure out the neces-

sary extensions that are required for solving the PDE −u′′ + u = 1, u(0) =
u(1) = 0, using quadratic elements. �

While solving Exercise 2.15, the reader will notice that extending the code
in class MyFirstFEM to handle quadratic elements require modifications that
are unfortunately scattered all over the code. When we think of programs for
multi-dimensional time-dependent and nonlinear PDEs combined with flexi-
ble choice of finite elements, grids, numerical integration rules, etc., scattered
editing of a code for adapting it to a different problem or method is neither
efficient nor reliable. The main purpose of program systems like Diffpack is to
provide a programming environment for nontrivial applications where only
the strongly problem-dependent parts of the problem at hand are visible in
the application code. Ingredients that are the same from problem to problem
are programmed and tested once and thereafter made available in generic
libraries.

198 2. Introduction to Finite Element Discretization

Weakly Imposed Essential Conditions. We shall now investigate an alterna-
tive method of imposing boundary conditions. Let the model problem be

−u′′(x) = 0, u(0) = 0, u(1) = 1 .

The finite element approximation û to u reads as usual û =
∑n

j=1 ujNj(x).
We introduce a weighted residual formulation where we add a boundary term
consisting of a (large) parameter λ times the difference between u and the
essential boundary conditions, in general integrated along the boundary:

−
∫ 1

0

û′′(x)Widx+ λ ((û− 1)Wi|x=1 + (û− 0)Wi|x=0) = 0,

for i = 1, . . . , n. This approach is often referred to as incorporation of bound-
ary conditions by penalization. Using Wi = Ni and assuming that Ni(x

[j]) =
δij , we get

n∑

j=1

(∫ 1

0

N ′
iN

′
jdx

)
uj + λδinun + λδi1u1 = λδin, i = 1, . . . , n .

Straightforward computations result in the following system:

(
1

h
+ λ)u1 −

1

h
u2 = 0, (2.103)

1

h
(−ui−1 + 2ui − ui−1) = 0, i = 2, . . . , n− 1, (2.104)

− 1

h
un−1 + (

1

h
+ λ)un = λ . (2.105)

Let us try to find an analytical solution of these discrete equations. Inserting
ui = Qi in (2.104) results in a double root Q = 1. A candidate for solution is
then ui = A + iB. The constants A and B can be determined from (2.103)
and (2.105). This gives

ui =
1

λ+ 2
+

λ

λ+ 2
(i− 1)h .

Since the exact solution of the continuous problem is u(xi) = (i − 1)h, we
realize that the numerical approximation becomes correct in the limit λ→∞
for any h. From the discrete equations we also see that λ → ∞ recovers the
equations corresponding to our general method for incorporating essential
boundary conditions.

Exercise 2.16. .
Formulate the penalization approach for a 3D Poisson equation problem

with u = g on the boundary. Apply a Gauss-Lobatto (nodal-point) inte-
gration rule for the new boundary term. Explain that the method can be
implemented by first computing the element matrix and vector without pay-
ing attention to boundary conditions and then adding λ on the main diagonal
and the right-hand side for each node that is located at the boundary. �

2.6. Projects 199

The advantage of the penalization method is that the handling of essen-
tial boundary conditions becomes simpler from an implementational point
of view. Constraints on the solution, such as periodic boundary conditions
u(0) − u(1) = 0, are also easy to implement. The disadvantage is that the
conditions are only fulfilled approximately and that a large value of λ leads
to ill-conditioning of the coefficient matrix. Nevertheless, the penalization
approach is widely used in finite element software (but not in Diffpack), see
for example [129, Ch. 3.8], [2, Ch. 20.5], and [31, Ch. 9].

Instead of letting λ → ∞, one can enforce the boundary condition as an
extra constraint

∫
∂Ω(u− g)dΓ = 0 and view λ as a Lagrange multiplier [114,

p. 227].

2.6 Projects

2.6.1 Steady Heat Conduction with Cooling Law

Mathematical Problem. We consider a two-point boundary-value problem on
(0, 1) with a special boundary condition known as a cooling law or Robin
condition at x = 1:

d

dx

(
k(x)

du

dx

)
= 0, x ∈ (0, 1), (2.106)

u(0) = 1, (2.107)

−k(1)u′(1) = β(u(1)− US) . (2.108)

The quantity k > 0 is a given function of x, whereas β and US are prescribed
constants.

Physical Model. The problem (2.106)–(2.108) can be derived from a more
general model for heat conduction,

%C
∂u

∂t
= ∇ · (k∇u) + f(x, t), x ∈ Ω ⊂ IRd, t > 0, (2.109)

u(x, 0) = gI(x), x ∈ Ω, (2.110)

u = gD(x, t), x ∈ ∂ΩD, (2.111)

−k ∂u
∂n

= gN (x, t), x ∈ ∂ΩN , (2.112)

−k ∂u
∂n

= gT (u− US), x ∈ ∂ΩR . (2.113)

Here, % is the density, C is the heat capacity, u is the temperature, k is the
heat conduction coefficient, and f denotes external heat sources. The initial
condition is specified by (2.110), (2.111) models parts of the boundary where
the temperature is controlled, (2.112) models boundaries with a known heat
flux, and (2.113) is the so-called Newton’s cooling law, modeling heat transfer

200 2. Introduction to Finite Element Discretization

from the medium (Ω) to its surroundings. In (2.113), gT is a heat transfer
coefficient and US is the temperature in the surroundings. At each point on
the boundary, only one of the conditions (2.111)–(2.113) applies.

We shall consider stationary heat conduction, without heat sources, in a
cylindrical rod, 0 ≤ x ≤ L, y2 + z2 ≤ a2. At x = 0, u is fixed at uL. At
the outer boundary y2 + z2 = a2 the rod is insulated, i.e., the heat flux is
zero, and at x = L the cooling law (2.113) applies. If uL, gT , and US do
not vary with y or z, the initial and boundary conditions suggest that u is
independent of y and z, thus reducing the original 3D problem to a 1D model.
Set up the resulting stationary 1D model, perform a suitable scaling (use uL

as temperature scale), and derive (2.106)–(2.108).

Numerical Method. Start with formulating a Galerkin procedure, with u ≈
û(x) = ψ +

∑M
j=1 ujNj(x), for (2.106)–(2.108). The function ψ is used to

incorporate the essential boundary condition. Moreover, Nj(0) = 0.

Analysis. Explain how the cooling law −ku′(1) = β(u(1) − US) contributes
to the coefficient matrix and the right-hand side in the linear system for
u1, . . . , uM . Restrict the choice of Ni to typical finite element basis functions,
and discuss how this simplifies the boundary terms. Set up the resulting
discrete equations in the case k is constant and we use linear elements on
a uniform mesh. Then explain how to deal with the boundary conditions
using Algorithm 2.1. Set up the corresponding discrete equations. How are
these equations changed if we apply quadratic elements (see Example 2.2 on
page 180)? Finally, suggest a finite difference method for the problem and
compare the discrete equations of the finite element and difference methods.

Derive a closed-form expression for the analytical solution of the problem.
(Hint: Integrate (2.106) directly to u = 1 + C

∫ x

0
[k(τ)]−1dτ and determine

the integration constant C from the condition at x = 1.) Choose a specific k
function and specialize the analytical solution in this case.

Implementation. Modify class MyFirstFEM from Chapter 2.5, or the more ad-
vanced solver Poisson1 from Chapter 3.2, to handle the present problem using
linear elements. Partially verify the implementation by comparing interme-
diate numerical results against the hand-calculated numerical expressions for
the element matrices and vectors in the case k is constant.

2.6.2 Stationary Pipe Flow

Mathematical Problem. The purpose of this project is to study the application
of the finite element and finite difference method to a Poisson equation with
radial symmetry:

1

r

d

dr

(
r
du

dr

)
= −4, 0 < r < 1, u′(0) = u(1) = 0 . (2.114)

2.6. Projects 201

Physical Model. The problem (2.114) models stationary flow of a viscous
incompressible Newtonian fluid in a straight pipe with circular cross section.
The coordinate r is the distance from a point in the fluid to the axis of the
pipe. The particular form (2.114) is a scaled version of the boundary-value
problem

µ
1

r

d

dr

(
r
du

dr

)
= −β, 0 < r < a, (2.115)

du

dr

∣∣∣∣
r=0

= 0, (2.116)

u(a) = 0, (2.117)

which arises as a simplification of the Navier-Stokes equations. The parame-
ter µ is the fluid viscosity, β is the pressure gradient, which drives the flow,
and a is the radius of the pipe. Set up the Navier-Stokes equations in cylin-
drical coordinates, assume a velocity field v = u(r)i, directed along the pipe,
and derive (2.115)–(2.117). Explain how we scale (2.115)–(2.117) to arrive at
(2.114) .

Numerical Method. Formulate a Galerkin finite element method for this prob-
lem. In the derivation of the weighted residual form, we integrate over a unit
length of the whole pipe, i.e.,

x0+1∫

x0

2π∫

0

1∫

0

[
1

r

d

dr

(
r
dû

dr

)
+ 4

]
Ni(r)rdrdθdx = 2π

1∫

0

[
d

dr

(
r
dû

dr

)
+ 4

]
Ni(r)dr .

Note that the x axis is directed along the pipe. Derive the element matrices
and vectors, assuming linear elements of equal length. Assemble the element
contributions to form the global system of algebraic equations.

Try to derive a finite difference method for (2.114). (Hint: The difference
scheme at r = 0 is non-trivial, but work with r0, r−1/2 = r0 − h/2, and
r1/2 = r0 + h/2, where r0 = 0, and show that the r terms in the nominator
and denominator cancel.) Compare the resulting discrete equation system
arising from the finite element and finite difference method.

Implementation. Modify the program from Chapter 2.5 such that it solves
the problem in this project. Derive the analytical solution and use this to
compute the numerical error in the program.

How do you expect quadratic elements to behave in this problem? Com-
pute the solution by hand using one quadratic element.

2.6.3 Transient Pipe Flow

Mathematical Problem. This project is identical to Project 1.8.2, except that
we study flow in a pipe instead of a channel. The mathematical difference

202 2. Introduction to Finite Element Discretization

is that the PDE is formulated in cylindrical coordinates. We recommend to
work through Project 2.6.2 first to get experience with the finite element
method in cylindrical coordinates.

The initial-boundary value problem of the present project can be written

∂u

∂t
=

1

r

∂

∂r

(
r
∂u

∂r

)
+ β(t), r ∈ (0, 1), t > 0, (2.118)

∂

∂r
u(0, t) = 0, t > 0, (2.119)

u(1, t) = 0, t > 0, (2.120)

u(r, 0) = 0, r ∈ [0, 1] . (2.121)

Physical Model. The physical problem modeled by (2.118)–(2.121) concerns
flow in a straight pipe with circular cross section. The flow is driven by a
time-dependent pressure gradient, giving rise to the source term β(t) in the
governing PDE.

Derive the model (2.118)–(2.121) from the incompressible Navier-Stokes
equations in cylindrical coordinates (r, θ, x) and a suitable scaling.

Numerical Method. Discretize this problem by the θ-rule in time and the
Galerkin finite element method in space. When deriving the weighted residual
form, integrate over a unit length of the whole pipe, i.e.,

∫

Ω

RWidΩ =

x0+1∫

x0

2π∫

0

1∫

0

RWi(r)rdrdθdx = 2π · 1 ·
1∫

0

RWi(r)rdr .

The x axis is directed along the pipe. Compute element matrices and vec-
tors in case of linear elements, assemble the system of linear equations, and
identify a set of difference equations to be implemented.

Implementation. Implement the difference equations, derived by a finite ele-
ment method, in a copy of the Heat1D finite difference program from Chap-
ter 1.7.6. As in Project 1.8.2, u and β must be dumped to file for later
plotting.

To verify the implementation, one can construct a simple solution u(x, t)
of a closely related problem. One can, e.g., work with u of the form f(t) +
C · (1 − r2), where C is a constant. The equation determines f(t) in terms
of β(t). Boundary and initial conditions must then be adjusted accordingly.
With a constant β, the scheme should recover the exact solution in the limit
t→∞.

Computer Experiments. Make movies as outlined in Project 1.8.2 and use
numerical experiments to find out whether there are qualitative differences
between channel and pipe flow.

2.6. Projects 203

2.6.4 Retardation of a Well-Bore

Mathematical Problem. The current project involves a simplified version of
the incompressible Navier-Stokes equations. The simplification results in the
following set of equations:

∂u

∂t
=

∂

∂r

(
∂u

∂r
− u

r

)
+

2

r

(
∂u

∂r
− u

r

)
, r ∈ (α, 1), t > 0, (2.122)

∂u

∂t
= β

(
∂u

∂r
− u

r

)
, r = α, t > 0, (2.123)

u(1, t) = 0, t > 0, (2.124)

u(r, 0) = α
r−1 − r
1− α2

, r ∈ [α, 1], (2.125)

∂p

∂r
=
u2

r
, r ∈ (α, 1), t > 0 . (2.126)

Equations (2.122)–(2.125) constitute an initial-boundary value problem for
u(r, t), while the function p(r, t) can be found from (2.126) when u(r, t) is
known. The parameter β is a dimensionless constant. Notice that a time
derivative enters the boundary condition at r = α, cf. (2.123).

b

a

Ω

r

Fig. 2.7. Flow of a viscous fluid between one rotating and one fixed cylinder.

Physical Model. We consider flow between two concentric cylinder (often
referred to as circular Couette flow), see Figure 2.7. The inner cylinder 0 ≤
r ≤ a models a well-bore rotating with constant angular velocity Ω, while
the outer cylinder r ≥ b models the fixed wall of the well. At t = 0, the
external forces causing the steady rotation of the bore are turned off, with
the result that the friction in the fluid will eventually bring the inner cylinder
to rest. The mathematical model (2.122)–(2.125) can be used to simulate the
retardation process and determine the time it takes to stop the cylinder. The
function u(r, t) is the fluid velocity in angular direction and p(r, t) is the fluid
pressure.

204 2. Introduction to Finite Element Discretization

The fluid motion is assumed to be governed by the incompressible Navier-
Stokes equations, while the relation between the torque on the inner cylinder
and the time rate of change of its angular momentum determines the gov-
erning equation for the well-bore. After a scaling, (2.122) and (2.126) corre-
spond to the simplified Navier-Stokes equation and (2.123) stems from the
rigid-body motion of the well-bore. Steady state rotation of the inner cylinder
results in a fluid velocity according to (2.126), in scaled form, which acts as
initial condition for the retardation problem. Derive (2.122)–(2.126) in detail
and perform a suitable scaling6.

Numerical Method. The problem (2.122)–(2.125) is to be solved by a stan-
dard Galerkin finite element method in space and a θ-rule in time. When
formulating the Galerkin equations in radial coordinates, one should recall
that the one-dimensional problem is actually a simplification of PDEs for the
corresponding 3D axisymmetric problem. If we integrate over the 3D axisym-
metric domain, with unit length in the direction z of the cylinder axis, but
utilize the property that u ≈ û =

∑
j ujNj(r) only varies with r, we typically

get
b∫

a

2π∫

0

1∫

0

L(û)Ni(r)dzdθrdr = 2π

b∫

a

L(û)Ni(r)rdr .

Here (r, θ, z) are the cylindrical coordinates, and L is a differential operator.
Set up the global system of discrete equations to be solved at each time

level. Allow for arbitrary grid spacing in the r direction. The element choice
can be restricted to the linear type.

Implementation. After having found the difference equations arising from the
finite element method, one can create a finite difference-like solver7 based on
these discrete equations.

Computer Experiments. Let T be the dimensionless retardation time of the
well-bore, defined by u(α, T) ≤ 10−5. Set up a set of experiments and deter-
mine T as a function of β.

2.7 Higher-Dimensional Finite Elements

Figure 2.8 demonstrates how finite elements typically look like in two space
dimensions. The elements are of triangular or rectangular shape, with possi-
bly curved sides. This gives great flexibility in discretizing domains of com-
plicated shape. An important requirement of the subdivision is that a node

6 The characteristic length is chosen as b, the characteristic velocity is aΩ, the
characteristic pressure is %a2Ω2, where % is the density of the fluid, and the
characteristic time equals %b2/µ, µ being the viscosity of the fluid.

7 The program in src/fdm/Parabolic1D is an appropriate starting point.

2.7. Higher-Dimensional Finite Elements 205

on the boundary between two elements must be a node in both elements. For
example, the mesh of rectangular elements as shown in Figure 2.9 is not a
proper finite element mesh. However, by dividing the left-most element into
two new elements, a legal mesh is obtained.

Fig. 2.8. Example on combining various 2D finite elements for discretizing a
nontrivial geometry. The circles mark the nodes.

illegal node

Fig. 2.9. Improper construction of a finite element mesh.

Our formulation of the finite element method in the previous sections
makes it easy to define two- and three-dimensional elements and use these
in Algorithm 2.1 from page 184. The elements are conveniently defined in a
local coordinate system and then mapped by the isoparametric transforma-
tion (2.60) to the global physical coordinate system. The local coordinates
are denoted by (ξ1, . . . , ξd) or ξ, while the corresponding global coordinates
read (x1, . . . , xd) or x.

2.7.1 The Bilinear Element and Generalizations

Basic Constructions. An obvious generalization of the one-dimensional linear
element is the two-dimensional rectangle [−1, 1]× [−1, 1] in local coordinates,
with nodes at the corners, see Figure 2.10. Since there are four nodes, and
therefore four constraints of the type Ñr(ξ

[s]) = δrs, we need four parameters

206 2. Introduction to Finite Element Discretization

ξ

ξ

2

1

1 2

3 4

(-1,-1)

(-1,1) (1,1)

(1,-1)

Fig. 2.10. Local numbering of nodes in the 2D bilinear element.

in the local basis functions. This implies that the two-dimensional polynomial
over a rectangle must be bilinear,

Ñr(ξ1, ξ2) = ar + brξ1 + crξ2 + drξ1ξ2, r = 1, 2, 3, 4 .

The term ξ1ξ2 gives rise to the name bilinear.
The reader can now set up a 4 × 4 linear system for ar, br, cr, and dr, for
a given r, based on the conditions that Ñr = δrs at node s, s = 1, 2, 3, 4. A
worked example involving this process is given in Chapter 2.7.2.

Applying the standard isoparametric transformation (2.60) to the bilinear
element results in an element in global coordinates with four straight sides
as depicted in Figure 2.11.

ξ

ξ

global

2

1

x2

x1

local

Fig. 2.11. Sketch of a two-dimensional rectangular element with 4 nodes and
bilinear functions in its reference domain. The isoparametric mapping (2.60)
results in an element, in global coordinates, that has 4 straight sides.

2.7. Higher-Dimensional Finite Elements 207

Tensor-Product Generalization of 1D Elements. When constructing higher
order elements, the linear systems for determining the coefficients in expres-
sions for Ñr become tedious to solve analytically. It is therefore advantageous
to use simpler procedures for determining Ñr. One such procedure is based
on so-called tensor-product generalization of 1D elements. We can write the
expressions for the bilinear basis functions Ñr(ξ1, ξ2) in terms of the one-
dimensional linear Ñr(ξ) functions:

Ñ1(ξ1, ξ2) = Ñ1(ξ1)Ñ1(ξ2), (2.127)

Ñ2(ξ1, ξ2) = Ñ2(ξ1)Ñ1(ξ2), (2.128)

Ñ3(ξ1, ξ2) = Ñ1(ξ1)Ñ2(ξ2), (2.129)

Ñ4(ξ1, ξ2) = Ñ2(ξ1)Ñ2(ξ2) . (2.130)

The point now is to observe that the functions Ñ1, . . . , Ñ4 can be viewed
as tensor products of the linear 1D basis functions. The tensor (or dyadic)
product ab of two vectors a = (a1, a2)

T and b = (b1, b2)
T is

(
a1

a2

)(
b1 b2

)
=

(
a1b1 a1b2
a2b1 a2b2

)
.

If we use indicial notation, two vectors ai and bi simply form the tensor prod-

uct aibj . The construction can be generalized to n vectors a
(1)
i , a

(2)
i , . . . , a

(n)
i

whose tensor product becomes a
(1)
i1
a
(2)
i2
· · ·a(n)

in
, where (i1, i2, . . . , in) is an n-

tuple index.
Forming the vector v(ξ) = (Ñ1(ξ), Ñ2(ξ))

T , the bilinear functions appear
as the tensor product v(ξ1)v(ξ2)

T . Alternatively, we may use indicial notation
and write the basis functions as Ñp(ξ1)Ñq(ξ2), p, q = 1, 2. The single-index

numbering of the 2D function Ñr(ξ1, ξ2) is then “columnwise” in the tensor
product v(ξ1)v(ξ2)

T or Ñp(ξ1)Ñq(ξ2), where columnwise numbering corre-
sponds to forming the vector (A1,1, A1,2, A2,1, A2,2) from a 2× 2 matrix Ai,j ,
or equivalently, the vector index r equals (p− 1)2 + q.

The advantage of the tensor-product formalism is that it becomes very
easy to construct higher order elements and elements in higher space di-
mensions. Basis functions in three-dimensional elements [−1, 1] × [−1, 1] ×
[−1, 1] can be generated from tensor products Ñi(ξ1)Ñj(ξ2)Ñk(ξ3) of one-
dimensional basis functions Ni(ξ). Using linear one-dimensional basis func-
tions results in the 3D trilinear element (each polynomial Ñr(ξ1, ξ2, ξ3) is
trilinear). Moreover, tensor products of 1D quadratic basis functions imme-
diately yield biquadratic (2D) and triquadratic (3D) elements. The tensor-
product construction can easily be applied for defining elements for PDEs
in an arbitrary number of space dimensions. Such higher-dimensional PDEs
arise, for example, in stochastic models from economics and engineering.

Numerical integration over the bilinear rectangle element is accomplished
by a tensor product of the one-dimensional rules. For example, the relevant

208 2. Introduction to Finite Element Discretization

Gauss-Legendre rule with two points (−1/
√

3, 1/
√

3) can be used in a ten-
sor product representing the four integration points in the rectangle. The
corresponding vector, using a columnwise ordering, reads

(
(−1/

√
3,−1/

√
3), (1/

√
3,−1/

√
3), (−1/

√
3, 1/
√

3), (1/
√

3, 1/
√

3)
)
.

A similar procedure is used for the weights. Numerical integration rules for
other elements that arise from tensor-product generalization of 1D elements,
is similarly constructed from tensor products of 1D rules. Notice that multiple
indices arising from tensor-product constructions must be converted to single
indices, such that the single-index based Algorithm 2.1 remains applicable.
It is then just a matter of adjusting ne, nI , the basis functions, and the
numerical integration points and weights when applying the algorithm to
problems involving higher-dimensional elements.

Applying the general isoparametric mapping (2.60) and transforming the
bilinear element to global coordinates, results in an element shape as depicted
in Figure 2.11. The sides of the element are still straight. The angles must
be less than π for the mapping (2.60) to be well defined, and angles close to
π may lead to inaccurate numerical results.

2.7.2 The Linear Triangle

Local Coordinates. Linear polynomials in two variables have three coeffi-
cients. This means that a finite element with linear basis functions in 2D
must have three nodes and hence be a triangle. Local coordinates for tri-
angles are usually not varying in the interval [−1, 1], but in [0, 1]. One can
define local node no. 1 to be the point (1, 0), local node no. 2 is then (0, 1),
whereas local node no. 3 is (0, 0), see Figure 2.12.

Let us demonstrate the procedure for computing, e.g., Ñ2(ξ1, ξ2) in detail.
We know from the general principles that (i) Ñ2(ξ1, ξ2) must be a polynomial,
and that (ii) Ñ2 = δij at local node no. j. Since condition (ii) gives three

constraints (from three local nodes), Ñ2 can only have three free parameters;
that is, Ñ2 must be a linear function:

Ñ2(ξ1, ξ2) = α2 + β2ξ1 + γ2ξ2.

The three constraints read

Ñ2(1, 0) = α2 + β2 = 0,

Ñ2(0, 1) = α2 + γ2 = 1,

Ñ2(0, 0) = α2 = 0 .

This is a linear system in the three unknowns α2, β2, and γ2. The solution
is trivial to find: α2 = β2 = 0, γ2 = 1. Hence, Ñ2(ξ1, ξ2) = ξ2. Following this

2.7. Higher-Dimensional Finite Elements 209

procedure for Ñ1 and Ñ3 as well, one finds the local trial functions

Ñ1(ξ1, ξ2) = ξ1, (2.131)

Ñ2(ξ1, ξ2) = ξ2, (2.132)

Ñ3(ξ1, ξ2) = 1− ξ1 − ξ2 . (2.133)

The reference element can be mapped by (2.60) onto a general triangle with
straight sides as depicted in Figure 2.12. A typical basis function in global
coordinates is shown in Figure 2.13.

Notice that tensor-product generalizations of expressions for 1D elements
do not make sense for a triangle, since its geometry is not a tensor product
of an interval. Basis functions and numerical integration rules must therefore
be especially constructed for triangles. We do not present appropriate inte-
gration rules here, but refer to more comprehensive textbooks on the finite
element method, for instance [153,154]. The important information is that
such rules exist and can be formulated in our general form as nI 2D points
with nI corresponding weights.

ξ

ξ

local global

2

1

x

x1

2

1

2

3

Fig. 2.12. Sketch of a two-dimensional triangular element with 3 nodes and
linear functions in its reference domain. The isoparametric mapping (2.60)
results in an element, in global coordinates, that has 3 straight sides.

Global Coordinates. The advantage of working in local coordinates is hardly
present when using linear finite elements in 1D. The same is true for multi-
dimensional linear basis functions. The main reason for this is that there
are simple formulas, expressed directly in global coordinates, for most of the
common discrete terms that arise in PDE applications. These formulas will
be given below.

Let the three nodes, with local numbers i, j, and k, of a triangle have

global coordinates (x
[i]
1 , x

[i]
2), (x

[j]
1 , x

[j]
2), and (x

[k]
1 , x

[k]
2). The linear basis func-

tions are then

Ni(x1, x2) =
1

2∆
(αi + βix1 + γix2) , (2.134)

210 2. Introduction to Finite Element Discretization

Fig. 2.13. Sketch of a typical basis function over a patch of linear triangular
elements.

αi = x
[j]
1 x

[k]
2 − x

[k]
1 x

[j]
2 , (2.135)

βi = x
[j]
2 − x

[k]
2 , (2.136)

γi = x
[k]
1 − x

[j]
1 , (2.137)

2∆ = det

1 x
[i]
1 x

[i]
2

1 x
[j]
1 x

[j]
2

1 x
[k]
1 x

[k]
2

 , ∆ = area of the element . (2.138)

A very useful result exists for the integral of products of basis functions over
a linear triangular finite element Ωe:

∫

Ωe

Np
i N

q
jN

r
kdx1dx2 =

p!q!r!

(p+ q + r + 2)!
2∆, p, q, r ∈ IN . (2.139)

2.7.3 Example: A 2D Wave Equation

We shall now demonstrate how the formulas (2.134)–(2.139) can be used
for hand-calculation of element matrices and vectors for a two-dimensional
problem. As example, we consider the 2D wave equation

∂2u

∂t2
= c2∇2u

with appropriate initial and boundary conditions. Chapter 2.2.1 deals with
the finite element formulation of this problem. At the element level, we have
the following central equation:

3∑

s=1

M̃ (e)
r,s ũ

`+1
s = 2

3∑

s=1

M̃ (e)
r,s ũ

`
s −

3∑

s=1

M̃ (e)
r,s ũ

`−1
s

−c2∆t2
3∑

s=1

∫

Ωe

∇Nr · ∇Nsdx1dx2 ũ
`
s, r = 1, 2, 3,

2.7. Higher-Dimensional Finite Elements 211

where

M̃ (e)
r,s =

∫

Ωe

NrNsdx1dx2

is an element mass matrix that can be lumped by the row-sum technique or
nodal-point integration (see Chapter 2.4). All the integrals above are straight-
forwardly calculated analytically using the preceding formulas. First, we con-
sider the terms arising from the time derivative,

∫

Ωe

NrNsdx1dx2 =

{
∆/12, r 6= s
∆/6, r = s

The element matrix associated with the ∇2 operator becomes

∫

Ωe

∇Nr · ∇Nsdx1dx2 =

∫

Ωe

(
∂Nr

∂x1

∂Ns

∂x1
+
∂Nr

∂x2

∂Ns

∂x2

)
dx1dx2

= (βrβs + γrγs)
1

4∆2

∫

Ωe

dx1dx2

=
1

4∆
(βrβs + γrγs) .

Given the coordinates of the nodal-points, it is now easy to evaluate the
element matrix and vector. On a regular grid, it is sufficient to study the
patch of triangles illustrated in Figure 2.14. Element numbers in that figure

2

3

1 2
1

3
2

2

3

1

1

31

1 2
3

2

5

3

2

1

64

3

h

h

Fig. 2.14. Patch of six triangles contributing to the discrete equation that
corresponds to the common node in the middle.

212 2. Introduction to Finite Element Discretization

are surrounded by circles, and local nodal numbers appear in the corners
of each element. There are basically two types of elements, exemplified by
element no. 1 and 2. With our special local numbering in the elements, we
find that the element matrices are the same for both types of elements.

{βrβs} = h2

1 −1 0
−1 1 0

0 0 0

 , {γiγj} = h2

1 0 −1
0 0 0
−1 0 1

 .

Noting that ∆ = h2/2, we get the following element matrices associated with

the ∇2 operator and the M̃
(e)
r,s term, respectively:

1

2

2 −1 −1
−1 1 0
−1 0 1

 ,

h2

24

2 1 1
1 2 1
1 1 2

 .

Let us assemble the equations for the mid node of the patch. To easily inter-
pret the resulting discrete equations as a finite difference scheme, we assign
the index pair (i, j) to the mid-node. Local node no. 1 in element no. 3 then
has index pair (i− 1, j) and so on. All elements that contain the node (i, j)
will contribute to equation no. (i, j), i.e., we must assemble the matrices
from elements 1–6. Let (r, s; e) denote entry (r, s) in the element matrix from
element no. e. Equation (i, j) can be written as

ci,j−1ui,j−1 + ci+1,j−1ui+1,j−1 + ci−1,jui−1,j + ci,jui,j+

ci+1,jui+1,j + ci−1,j+1ui−1,j+1 + ci,j+1ui,j+1 = 0,

where the coefficients equal

ci,j−1 = (1, 3; 4) + (3, 1; 5)

ci+1,j−1 = (3, 2; 5) + (2, 3; 6)

ci−1,j = (1, 2; 4) + (2, 1; 3)

ci,j = (1, 1; 1) + (3, 3; 2) + (2, 2; 3) + (1, 1; 4) + (3, 3; 5) + (2, 2; 6)

ci+1,j = (1, 2; 1) + (2, 1; 6)

ci−1,j+1 = (2, 3; 3) + (3, 2; 2)

ci,j+1 = (3, 1; 2) + (1, 3; 1)

For the ∇2 operator term we find the following contribution to equation
no. (i, j):

−ui,j−1 − ui−1,j − ui+1,j − ui,j+1 + 4ui,j .

We observe that this is the standard 5-point finite difference stencil (modulo
a factor h−2) for the Laplace operator. For the mass matrix term we get this
contribution to equation no. (i, j):

h2

12
(ui,j−1 + ui+1,j−1 + ui−1,j + ui+1,j + ui−1,j+1 + ui,j+1) +

h2

2
ui,j .

2.7. Higher-Dimensional Finite Elements 213

By lumping the mass matrix, the element mass matrix becomes 1
6h

2diag(1, 1, 1),
which assembles to one term h2ui,j . The reader is strongly encouraged to work
through the details of this section as this will improve the understanding of
the finite element method.

Exercise 2.17. .
Consider the model problem

−∇2u = 0 on [0, 1]× [0, 1] (2.140)

with boundary conditions u = 0 on x = 0, ∂u/∂n = 1 on x = 1, and
∂u/∂n = 0 on y = 0 and y = 1. Find the exact solution u(x, y). Divide
the domain into two linear triangles. Compute the two element matrices and
vectors. Assemble the element contributions and solve by hand the resulting
linear system. Compare the numerical solution with the exact solution. �

2.7.4 Other Two-Dimensional Element Types

The examples so far should illustrate the fairly straightforward definition of
basis functions in local coordinates and the flexibility of the element shape
in global coordinates that results from the isoparametric mapping (2.60).
Higher-order elements are easily defined in local coordinates and enable ele-
ments with curved sides in global coordinates. For example, a 9-node reference
element has 9 parameters that can be used to define a biquadratic polynomial
in ξ1 and ξ2. The basis functions can easily be constructed from a tensor prod-
uct of the 1D quadratic functions. Figure 2.15 depicts this 2D element. Each
straight side in the reference element is mapped by a biquadratic function
through (2.60) and will result in a parabola in the physical domain (global
coordinates). This gives a high degree of flexibility in fitting the elements
to curved boundaries. Moreover, the higher polynomial degree usually gives
higher accuracy for a fixed number of unknowns, compared with bilinear or
linear elements.

Exercise 2.18. .
Construct the expressions for the basis functions in the 9-node biquadratic

element: Ñ1(ξ1, ξ2), . . . , Ñ9(ξ1, ξ2). Hint: Use the tensor products of quadratic
1D basis functions. Derive also an appropriate numerical integration rule. �

The element in Figure 2.15 has 9 nodes, but the internal node is not used
for geometric flexibility and can be removed. The resulting 8-node element
has basis functions without the ξ21ξ

2
2 term. The sides in the physical domain

are still of parabolic shape. Figure 2.16 depicts this element, which is popular
in structural analysis.

We can also define quadratic elements of triangular shape. For example,
extending the linear triangular element with nodes on each side results in
6 parameters (nodes) which can be used to fit quadratic basis functions.

214 2. Introduction to Finite Element Discretization

ξ

ξ

local

2

1

x

x1

2

global

Fig. 2.15. Sketch of a two-dimensional rectangular element with 9 nodes and
biquadratic functions in its reference domain. The isoparametric mapping
(2.60) results in an element, in global coordinates, that has 4 curved sides.
Each side has the shape of a parabola.

ξ

ξ

local global

2

1

x2

x1

Fig. 2.16. Sketch of a two-dimensional rectangular element with 8 nodes
and quadratic functions in its reference domain. The isoparametric mapping
(2.60) results in an element, in global coordinates, that has 4 curved sides.
Each side has the shape of a parabola.

Figure 2.17 shows this element. Each straight side of the reference element
can be mapped to a parabola in the physical domain. Together with the
triangular shape, this gives a very high degree of flexibility for partitioning a
geometrically complicated domain into triangles with curved sides. See [154,
Ch. 7.8] for useful formulas regarding triangular elements with quadratic basis
functions.

2.7.5 Three-Dimensional Elements

It should be obvious that the ideas presented so far can be carried over to
three dimensions. The trilinear element, with eight nodes at the corners of
a cube [−1, 1]3, was briefly mentioned in Chapter 2.7.1. The isoparametric

2.7. Higher-Dimensional Finite Elements 215

x

ξ

ξ

local global

2

1

x

1

2

Fig. 2.17. Sketch of a two-dimensional triangular element with 6 nodes
and quadratic functions in its reference domain. The isoparametric mapping
(2.60) results in an element, in global coordinates, that has 3 curved sides.
Each side has the shape of a parabola.

mapping (2.60) will then map the cube to a deformed cube with plane sides
in the physical domain.

Triquadratic basis functions are enabled by having a cube [−1, 1]3 with 27
(3×3×3) nodes. The basis functions can be constructed from the three-factor
tensor product of 1D quadratic functions, similarly to the trilinear functions.
Appropriate integration rules are also constructed from three-factor tensor
products of 1D rules. The isoparametric mapping now consists of second-order
polynomials so the shape of the sides in the physical domain is described by
quadratic functions. Other element shapes in 3D, like tetrahedra or prisms,
are also straightforwardly constructed.

The flexibility of tetrahedral elements are often required when gridding
complex 3D geometries. Linear basis functions over a tetrahedron frequently
make it possible to compute element matrices and vectors analytically. One
can hence avoid numerical integration and thereby improve the efficiency of
simulation codes (see Appendix B.7.3). We therefore list closed-form expres-
sions for the linear basis functions over a tetrahedron, together with a useful
integration formula.

Let the local nodes have the numbers i, j, m, and p. The ordering of these
nodes must follow a right-hand rule in the sense that the first three nodes
are numbered in an anti-clockwise manner when viewed from the last one.
The local nodes are chosen as (1, 0, 0), (0, 1, 0), (0, 0, 1), and (0, 0, 0), with the
corresponding numbering 1-4. The expressions for Ñi in local coordinates are
then trivial:

Ñ1(ξ1, ξ2, ξ3) = ξ1, (2.141)

Ñ2(ξ1, ξ2, ξ3) = ξ2, (2.142)

Ñ3(ξ1, ξ2, ξ3) = ξ3, (2.143)

Ñ4(ξ1, ξ2, ξ3) = 1− ξ1 − ξ2 − ξ3 . (2.144)

216 2. Introduction to Finite Element Discretization

As for linear triangles, the formulas for hand calculation of element ma-
trices and vectors are given in global coordinates. Let the global coordinates

of node i be given as (x
[i]
1 , x

[i]
2 , x

[i]
3). The basis functions in global coordinates

become

Ni(x1, x2, x3) =
1

6V
(αi + βix1 + γix2 + δix3) , (2.145)

where the coefficients αi, βi, γi, δi, and the element volume V are given as

αi = det

x

[j]
1 x

[j]
2 x

[j]
3

x
[m]
1 x

[m]
2 x

[m]
3

x
[p]
1 x

[p]
2 x

[p]
3

 , βi = det

1 x
[j]
2 x

[j]
3

1 x
[m]
2 x

[m]
3

1 x
[p]
2 x

[p]
3

 ,

γi = det

x

[j]
1 1 x

[j]
3

x
[m]
1 1 x

[m]
3

x
[p]
1 1 x

[p]
3

 , δi = det

x

[j]
1 x

[j]
2 1

x
[m]
1 x

[m]
2 1

x
[p]
1 x

[p]
2 1

 ,

6V = det

1 x
[i]
1 x

[i]
2 x

[i]
3

1 x
[j]
1 x

[j]
2 x

[j]
3

1 x
[m]
1 x

[m]
2 x

[m]
3

1 x
[p]
1 x

[p]
2 x

[p]
3

 .

Integrals are easily computed by the formula

∫

Ωe

N q
i N

r
j N

s
mN

t
pdx1dx2dx3 =

q!r!s!t!

(q + r + s+ t+ 3)!
6V, (2.146)

with q, r, s, t ∈ IN. See [154, Ch. 7.12] for appropriate formulas regarding
quadratic tetrahedral elements.

Remark: Simplified Notation for the Rest of the Book. So far in this intro-
duction to the finite element method, it has been important to distinguish
between local and global quantities, and we used a tilde to mark the element-
level quantities. For the rest of the book we will, however, mostly drop the

tilde and use Ni, A
(e)
i,j , b

(e)
i , etc. as symbols also at the element level. It will

be apparent from the context whether a quantity refers to the local or global
level.

2.8 Calculation of Derivatives

Having computed a finite element field û =
∑n

j=1 ujNj(x), it is trivial to
calculate the derivatives,

∇û =
∑

j=1

uj∇Nj(x) .

2.8. Calculation of Derivatives 217

Such derivatives are ingredients in formulas for derived quantities, like flux,
stress, velocity, etc., which can often be of more physical importance than the
primary unknown u. However, there is a fundamental problem with calcu-
lating derivatives of finite element fields: Typical finite element functions Nj

have discontinuous derivatives, which implies that the values of the deriva-
tives at the nodes or other points at the element boundaries are not uniquely
defined. To obtain continuous derivatives, some smoothing procedure can be
applied.

2.8.1 Global Least-Squares Smoothing

Our interest now concerns the derivative q of a finite element field,

q =
n∑

j=1

uj
∂Nj

∂x1
.

The aim of the smoothing procedure to be described here is to approximate
q by a continuous finite element field q̂,

q̂ =

n∑

j=1

qjNj(x) .

To this end, we can solve the equation q̂ = q approximately, using a least-
squares method or a Galerkin approach. Both procedures lead to the linear
system

n∑

j=1

Mi,jqj = bi, i = 1, . . . , n, (2.147)

with

Mi,j =

∫

Ω

NiNjdΩ, bi =

∫

Ω

Niq dΩ . (2.148)

As usual, it is customary to lump the mass matrix Mi,j to increase the effi-
ciency of the solution process.

It turns out that the derivatives are most accurate at certain points inside
an element. These points correspond to the integration points of a Gauss-
Legendre rule of one order lower than what is the required rule for integrating
the mass matrix (and preserving the convergence rate expected from the
order of the finite element polynomials). This is commonly referred to as a
reduced Gauss-Legendre rule. The associated integration points are referred
to as reduced integration points. For multilinear basis functions (linear in 1D,
bilinear in 2D, and trilinear in 3D), a Gauss-Legendre rule with 2d points
is the standard rule. The reduced rule has hence (2 − 1)d = 1 point, which
means that the derivatives of multilinear finite element fields have optimal
accuracy at the centroid of each element. The reduced rule should be applied
for the computation of bi such that we sample q at the point(s) with optimal
accuracy.

218 2. Introduction to Finite Element Discretization

2.8.2 Flux Computations in Heterogeneous Media

In many situations we are not primarily interested in the solution of a PDE,
but the derivative of the solution multiplied by a variable coefficient. We
shall here use the term flux for such quantities. Consider, for example, the
multi-dimensional PDE

−∇ · [λ(x)∇u(x)] = 0, x ∈ Ω ⊂ IRd, (2.149)

with appropriate boundary conditions. The associated flux is here the vector
−λ∇u. In solid mechanics (Chapter 5) the stress represents the counterpart
to the flux −λ∇u.

It can be motivating to have in mind a specific physical application where
the flux is of primary interest. One such application is porous media flow,
where (2.149) is the governing PDE and the flux v = −λ∇u is the velocity
of the fluid.

Porous Media Flow. A porous medium, like sand, soil, or rock, contains a
geometrically complicated network of pores where a fluid can flow under
the action of pressure and gravity forces. The mathematical model for the
flow of a single fluid in a porous medium consists of basically two equations,
one reflecting mass conservation and one reflecting Newton’s second law. Let
v(x, t) be the velocity of the fluid averaged over a large number of pores in the
medium. If the fluid is considered as incompressible, which is often relevant for
flow of water, oil, and air in the small pores, the mass conservation equation
reads ∇ · v = 0. Newton’s second law takes the form ∇p+ (µ/K)v− %g = 0,
where p is the fluid pressure, µ is the viscosity coefficient, K (called the
permeability) is a quantity that reflects the medium’s ability to transport
the fluid through the porous network, % is the fluid density, and g is the
acceleration of gravity. This version of Newton’s second law is usually called
Darcy’s law and states that the pressure forces ∇p balance viscous forces in
the pores (µv/K) and gravity (%g). We can eliminate v by solving Darcy’s
law with respect to v and inserting v in the mass conservation equation
∇ · v = 0, yielding the PDE

∇ ·
[
K

µ
(∇p+ %g)

]
= 0 .

With constant %g we get (2.149), where λ equals K/µ and u is the pressure.
For simplicity, we drop the gravity term %g in the forthcoming discussion.
The associated flux v = −λ∇u is then the fluid velocity.

Porous media are often of geological nature, and the spatial variations
of the physical properties can therefore be significant. This is particularly
true for the permeability K and thereby λ (the fluid property µ can be re-
garded as constant). Geological media are also often layered, and the physical
parameters normally change rapidly between two layers. This leads to dis-
continuous coefficients, and especially the permeability can exhibit jumps of
several orders of magnitude.

2.8. Calculation of Derivatives 219

As a remark, we mention that the d-dimensional version of the heat con-
duction problem from Chapter 1.3.1 also takes the form (2.149), now with λ
as the heat conduction coefficient, u as the temperature, and −λ∇u as the
heat flow (heat flux). The heat conduction properties will then change in a
discontinuous way between the geological layers.

One can show that −λ∇u · n is continuous across any surface S with
outward unit normal n. That means that if λ has large jumps, ∇u becomes
discontinuous. In the discrete case, −λ∇û · n is continuous in a weak sense.
We refer to [48, Ch. 2.2.1] for details on these issues. The following exercise
demonstrates that the finite element method is capable, at least in a sim-
ple 1D example, of computing an exact flux even when λ is discontinuous,
provided that the jump in λ appears on the element boundaries.

Exercise 2.19. .
Consider the equation (λu′)′ = 0 inΩ = (0, 1) with u(0) = 1 and u(1) = 0.

The function λ(x) equals λ1 for x ∈ Ω1 = (0, 0.5) and λ2 for x ∈ Ω2 = [0, 5, 1).
Solve the problem first analytically by integrating the PDE independently
in Ω1 and Ω2 and using the boundary conditions and the requirement of
continuous u and −λu′ at x = 0.5. Then let each of Ω1 and Ω2 consist of
a single linear element. Calculate the two element matrices, assemble the
system for the unknown value u2 at x = 0.5, solve for u2, and show that u2

coincides with the solution of the continuous problem. Also show that the
flux from the finite element computations coincides with the exact flux. �

In the case λ varies continuously, ∇u is also continuous, and if Γ then
intersects an element the overall accuracy of the method will be preserved.
However, when λ is discontinuous, there is no way we can force a discontinu-
ity of ∇u in the interior of an element. The possible inaccuracy of letting the
jumps in λ appear in the interior of an element can be explored by the exper-
imental procedure to be presented in the following, involving a 1D Poisson
equation. Project 3.14.1 experiments with a 2D time-dependent heat equation
and the impact of a discontinuous coefficient.

Experimental Analysis of a 1D Case. To gain insight into various aspects
of flux computations in a finite element setting, we can study a simple 1D
problem,

− (k(x)u′)′ = f0, x ∈ (0, 1), u(0) = 1, u(1) = 0, (2.150)

where f0 is a constant. Our aim is to investigate the effect of jumps in k. To
this end, we choose

k(x) =

{
1, x < γ
k0, x ≥ γ (2.151)

for some γ ∈ (0, 1). The corresponding solution u(x) can be found by direct
integration of (2.150) and determining the integration constants from the

220 2. Introduction to Finite Element Discretization

boundary conditions, leading to

u(x;x < γ) = 1− f0
2
x2 − x

γ + 1−γ
k0

[
1− f0

2

(
γ2 +

1− γ2

k0

)]
(2.152)

u(x;x ≥ γ) = 1− f0
2

(
γ2 +

x2 − γ2

k0

)

−
γ + x−γ

k0

γ + 1−γ
k0

[
1− f0

2

(
γ2 +

1− γ2

k0

)]
. (2.153)

The associated flux is

q = −ku′ = f0x+
1

γ + 1−γ
k0

[
1− f0

2

(
γ2 +

1− γ2

k0

)]
. (2.154)

For the discretization, we divide (0, 1) into 2m linear elements and let γ =
1
2 + ε/h, with 0 ≤ ε < 1 and h as the constant element length. The jump in
k is then located in element no. m + 1, either at its left boundary (ε = 0)
or in the interior (0 < ε < 1). If the jump appears at the element boundary
(i.e. ε = 0), one can quite easily prove that linear elements are able to predict
the jump correctly, but the details are left for the reader as an extension of
Exercise 2.19.

To investigate what happens when f0 6= 0 or ε > 0, it might be instructive
to create a simulator for the current problem. Such a simulator is located in
the directory src/fem/Poisson2. Let us look at the quality of the solution
with 10 elements and γ = 0.50, 0.51. The script gui-sec2.8.2.py provides a
simple graphical user interface to the current test problem, where the user
can adjust γ, k0, f0, the element type, and the grid. Alternatively, the test
case can be run directly from the command line:

./app --batch --class Poi2flux --gamma ’{ 0.5 & 0.51 }’ --k0 10

--gridfile ’P=PreproBox | d=1 [0,1] | d=1 e=ElmB2n1D [10] [1]’

--f0 0 --casename flux1

netscape flux1-report.html

The precise meaning of the command-line options is explained in Chapter 3,
but for now it suffices to know that --gamma, --k0, and --f0 assign values to
γ, f0, and k0, whereas linear elements are specified by ElmB2n1D (quadratic
elements would be ElmB3n2D), and the number of divisions between nodes8 is
10 ([10]). As you can see, the simulator makes a web page with plots of u,
the error in u, as well as various types of numerical computations of the flux
−ku′. An example on plotting the latter quantity is given in Figure 2.18.

8 Switching to quadratic elements, ElmB3n2D, but keeping the number of divisions
between nodes constant at 10, then gives 5 elements. In this way the number of
nodes is kept constant when the element type changes, which is convenient in
convergence studies.

2.8. Calculation of Derivatives 221

In the case γ = 0.5, the error in u and −ku′ is zero (at least within
machine precision), whereas for γ = 0.51, the error is piecewise linear in u.
You can check how the error is reduced by decreasing h. Simply replace 10

(in [10]) by

{ 10 & 20 & 40 & 80 & 160 }

and set --gamma 0.51 (the same settings apply in the graphical user inter-
face as well). This input implies that we investigate the case γ = 0.51
for h = 1/10, 1/20, 1/40, 1/80, 1/160. Run the application and reload the
flux1-report.html into the web browser. You will see that the error is al-
ways piecewise linear with three regions, where the mid region consists of
element no. m+ 1. However, it appears that refining the mesh does not lead
to a monotone reduction in the error. We can investigate this phenomenon
further by choosing four quadratic elements (8 divisions between nodes) and
three γ values: γ = 0.5, 0.51, 0.55. The execution command becomes

./app --batch --class Poi2flux --gamma ’{ 0.5 & 0.51 & 0.55 }’

--k0 10 --f0 0 --gridfile ’P=PreproBox | d=1 [0,1] |

d=1 e=ElmB3n1D [8] [1]’ --casename flux3

If you prefer the graphical user interface, choose a 3-node element and use
the syntax for the three γ values as in the above command when filling
out the gamma entry. Again we obtain exact results when the jump occurs
at x = 0.5, i.e., at the boundary between two elements. Figure 2.18 dis-
plays a plot of the flux −ku′ computed by various methods for the cases
γ = 0.51 and γ = 0.55. The “smooth GLS” curve applies the global least-
squares smoothing technique, based on sampling −ku′ at the reduced Gauss
points. The curve marked with “smooth MLS” corresponds to a more so-
phisticated, but also more computationally expensive, smoothing technique,
called moving least-squares smoothing (see page 304). The curve labeled
with “optimal points” consists of a straight line drawn between the optimal
sampling (reduced Gauss) points. “FE derivative” means that we compute
−ku′ = −k∑j ujN

′
j(x) at a dense collection of discrete points inside each

element.
We realize from Figure 2.18 that for γ = 0.51 the smoothed curves devi-

ate slightly from the analytical flux value throughout the domain, whereas
pointwise evaluation of −ku′ = −k∑j ujN

′
j(x) lead to a large error in the

small region [0.50, 0.51]. However, when the point of discontinuity in k is
moved more to the interior of the element (γ = 0.55), the errors in all meth-
ods increase significantly. The global flux is fortunately not much disturbed
by the discontinuity; the dominant errors are localized to the element where
the jump occurs and its neighbors. When performing convergence studies,
the relative location of the jump in k inside the element (i.e. the ε value)
will change, so reducing the element size may lead to an increase in the error.
However, the main trend over many successively refined grids is that the error

222 2. Introduction to Finite Element Discretization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1

real flux

smooth_MLS
smooth_GLS

optimal_points
FE_derivative

analytical

(a)

-1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1

real flux

smooth_MLS
smooth_GLS

optimal_points
FE_derivative

analytical

(b)

Fig. 2.18. The flux −ku′ computed by various numerical methods (see the
text for explanations), using four quadratic elements, k0 = 10, and f0 = 0.
(a) γ = 0.51; (b) γ = 0.55.

decreases. Uniform refinement is actually a waste of computational resources
as the nature of this problem calls for refining only the element containing
the jump in k. This leads to adaptive finite element methods, which is treated
in Chapters 2.10 and 3.7, with Exercise 3.9 being particularly relevant for the
present case study.

The lessons learned from these experiments are that severe inaccuracy
may occur if variable coefficients exhibit jumps in the interior of elements,
but the inaccuracy is a local phenomenon. The reader is encouraged to play
around with the solver and the HTML report to learn more about finite
element computations with discontinuous coefficients.

Remark. Our preceding exposition of finite element flux computations focuses
on −λ∇û as a field throughout the domain Ω. In many applications one is
mainly interested in the normal component −λ∇û·n at the boundary or at an
internal surface. The simple flux computation method that we have outlined
here can then be significantly improved by defining a separate finite element
problem for the flux at the boundary or internal surface. We refer to [48,
Ch. 4] for details on this numerical approach as well as for computations of
derivatives of finite element fields in general.

2.9 Convection-Diffusion Equations

The finite element methods from the previous sections are readily applied to
the convection-diffusion equation v · ∇u = k∇2u, where v is a vector. In two

2.9. Convection-Diffusion Equations 223

space dimensions, the explicit form of this equation reads

vx
∂u

∂x
+ vy

∂u

∂y
= k

(
∂2u

∂x2
+
∂2u

∂y2

)
,

if v = (vx, vy)T . When solving such equations by the Galerkin method, the
solutions may be polluted by nonphysical oscillations. This calls for a modi-
fication of the Galerkin approach. The present section briefly explains some
of the problems with Galerkin methods for convection-diffusion problems
and then outlines some strategies for obtaining more qualitatively correct
solutions. The purpose is, as usual in this book, to introduce the reader
to the fundamental ideas such that further information from the special-
ized literature is easier to process. Fortunately, the book by Morton [101]
gives an excellent survey of finite element, difference, and volume methods
for convection-diffusion problems. The particular subject of advanced finite
element methods for convection-diffusion problems is presented, at an intro-
ductory level, by Eriksson et al. [37]. The recent text by Gresho and Sani [48]
contains the most comprehensive treatment of finite element discretization
of convection-diffusion PDEs at the time of this writing and constitutes an
important source for gaining a thorough understanding of the topic.

We consider the following initial-boundary value problem:

β
∂u

∂t
+ v · ∇u = k∇2u+ f, x ∈ Ω, t > 0, (2.155)

u(x, 0) = I(x), x ∈ Ω, (2.156)

u = g(x), x ∈ ∂ΩE , (2.157)

−k ∂u
∂n

= 0, x ∈ ∂ΩN . (2.158)

Here, u(x, t) is the primary unknown, β is a parameter that is either zero or
unity, with the purpose of turning the time derivative on or off in the problem,
v is a prescribed velocity field, k is a constant diffusion coefficient, f(x, t)
is a prescribed function, and I and g are known functions. The complete
boundary ∂Ω = ∂ΩE ∪∂ΩN , where ∂ΩE covers at least the inflow boundary
where v ·n < 0, n being the outward unit normal vector to the boundary. The
boundary ∂ΩN is often an outflow boundary (v ·n > 0) where we can assume
constant behavior outside the computational domain (i.e. a homogeneous
Neumann condition applies).

The dimensionless form of the convection-diffusion equation is derived in
Appendix A.1, and the important physical parameter of the problem is the
Peclet number Pe = UL/k, where U is a characteristic size of v, and L is a
characteristic length in Ω. In Appendix A.1 we show that the Peclet number
measures the relative importance of the convective and the diffusive terms.
Looking at convection and diffusion in an element, it is more appropriate to
choose the element size h∗ as the characteristic length. The relative impor-
tance of convection and diffusion in an element is hence described by the local

224 2. Introduction to Finite Element Discretization

mesh Peclet number Pe∆ = Uh∗/k. The quality of the results produced by a
Galerkin method depends strongly on the size of Pe∆.

2.9.1 A One-Dimensional Model Problem

Let us restrict the attention to a stationary 1D problem on Ω = [0, L] with
constant v = (U, 0, 0)T and Dirichlet conditions u(0) = 0 and u(L) = α. The
equation to be solved is then, in dimensionless variables,

u′(x) = εu′′(x), u(0) = 0, u(1) = 0, (2.159)

where ε−1 = Pe = UL/k. The dimensionless primary unknown u equals
the original u function divided by its typical scale, α, but we have as usual
dropped special labeling of dimensionless quantities.

Finite difference methods for the problem (2.159) represent the subject
of Projects 1.5.2 and 1.5.3. We strongly recommend the reader to go through
these projects before proceeding. The main results from Projects 1.5.2 and
1.5.3 can be summarized as follows:

1. Centered (second-order accurate) finite differences for (2.159), written in
the notation of Appendix A.3,

[δ2xu = εδxδxu]i, (2.160)

leads to nonphysical oscillations in the solution if h/ε > 2. The quantity
Pe∆ = h/ε is the local mesh Peclet number9.

2. An upwind one-sided finite difference for the convection term stabilizes
the method,

[δ−x u = εδxδxu]i . (2.161)

Qualitatively correct solutions are now achieved for all values of the local
mesh Peclet number. Formally, the upwind scheme has a truncation error
of first order in h, whereas the centered scheme has second-order accuracy.

3. The upwind scheme (2.161) can alternatively be obtained by adding artifi-
cial diffusion of size h/2 in dimensionless variables (Uh∗/2 in the unscaled
problem) and discretizing the equations by centered differences:

[δ2xu = (ε+
h

2
)δxδxu]i .

Discretizing (2.159) by a Galerkin finite element method with linear basis
functions on a uniform grid, results in the centered difference scheme (2.160).
The finite element method therefore faces exactly the same problems as the
centered finite difference approach. Unfortunately, upwind differences are not

9 With m cells, we have h∗ = L/m, h = 1/m, and therefore Pe∆ = hε−1 =
hULk−1 = m−1LUk−1 = h∗Uk−1.

2.9. Convection-Diffusion Equations 225

trivially constructed via finite elements, but the artificial diffusion technique
can easily be applied in a finite element context.

A popular way of constructing upwind differences is to perturb the weight-
ing functions for the convective term. Taking

Wi(x) = Ni(x) + τN ′
i (x)

leads to the following modified representation of the convection term in the
weighted residual statement:

∫ 1

0

u′Widx =

∫ 1

0

u′Nidx+

∫ 1

0

τN ′
iu

′dx .

The last term, arising from the perturbation of the weighting function, can
be interpreted as a Galerkin formulation of an extra diffusion term τu′′ in the
governing PDE. We are then left with a Galerkin formulation of a differential
equation with artificial diffusion. Knowing that Galerkin’s method and linear
elements lead to centered difference approximations of the derivatives, the
resulting equations become identical to those arising from an upwind finite
difference scheme or centered finite differences for a differential equation with
artificial diffusion. To get the equivalence with the upwind scheme, we must
take τ = h/2.

We shall now explain that our 1D model problem can in fact be solved
exactly by a modified finite difference or finite element method. The computer
experiments from Projects 1.5.2 and 1.5.3 reveal that the upwind scheme
has too much diffusion for intermediate mesh Peclet numbers, whereas the
centered scheme has too little diffusion in the same parameter region. An
obvious improvement is to introduce a difference approximation to u′ that is
a weighted sum of an upwind and a centered difference:

[u′]i ≈ [θδ−x u+ (1− θ)δ2xu]i, 0 ≤ θ ≤ 1 .

Letting θ = θ(Pe∆), with

lim
Pe∆→0

θ = 0, lim
Pe∆→∞

θ = 1,

should give the desired qualitative behavior of this new difference approxi-
mation.

We can find an analytical solution to the modified difference scheme

[θδ−x u+ (1− θ)δ2xu = εδxδxu]i, (2.162)

using the methods of Appendix A.4.4. Inserting ui = γi gives a quadratic
equation for the constant γ. One root is equal to unity, while the other can
be forced to equal the analytical behavior: u ∼ exp (x/ε) = (exp (Pe∆))i, i.e.,
γ = exp (Pe∆). Using the full expression for the second root leads to

θ(Pe∆) = coth
Pe∆

2
− 2

Pe∆
. (2.163)

226 2. Introduction to Finite Element Discretization

Reordering (2.162), we can rewrite the difference scheme as

[δ2xu = εδxδxu+ τoδxδxu]i, τo =
h

2
θ(Pe∆) . (2.164)

This is again a centered difference approximation to a modified PDE, where
the modification consists in adding an artificial diffusion term τou

′′. With
the optimal value τo of the artificial diffusion coefficient, the solution of the
discrete equations becomes exact at the grid points in a uniform mesh.

It should be obvious how to construct a finite element method that also
gives the exact solution at the nodes; τo is simply used either in the expression
for the perturbed weighting function or in an artificial diffusion term. Notice
that the formulas above are not restricted to the dimensionless form of our
model problem. If we work with Uu′ = ku′′, we simply use (2.164) with
Pe∆ = Uh∗/k.

One can also use other types of perturbed weighting functions. In fact,
there are numerous numerical approaches to our model problem that recover
the exact solution at the grid points. See Morton [101] for further material
about this topic.

2.9.2 Multi-Dimensional Equations

So far we have analyzed and cured the finite element method by (i) recogniz-
ing that the Galerkin approach and linear elements are equivalent to centered
finite difference approximations to derivatives in 1D problems and by (ii) di-
rectly using results from the improvements of the centered finite difference
method. When moving to multi-dimensional problems in IRd, transferring fi-
nite difference technology to the finite element world is less attractive, because
multi-dimensional upwind finite difference schemes are known to contain too
much diffusion. Artificial diffusion is in fact only needed in the direction of v,
i.e. in the streamline direction. Straightforward upwind differences lead to sig-
nificant cross-wind diffusion (normal to the streamline), and this is undesired
from a qualitative point of view.

Diffusion in a particular direction is enabled by working with a tensor
diffusion coefficient kij . Choosing kij = τvivj/||v||2 gives a diffusive flux

qi =

d∑

j=1

kij
∂u

∂xj
= αvi, α =

τ

||v||2
d∑

j=1

vj
∂u

∂xj
= τ

v · ∇u
||v||2 .

Or in other words, qi is proportional to vi, which means that all diffusion is di-
rected along the streamlines as required. Notice that in the multi-dimensional
expressions we work with quantities with dimension, i.e., our model equation
is v · ∇u = k∇2u.

Writing τ∗ = τ/||v||2, we can now add the streamline-diffusion term

d∑

i=1

d∑

j=1

∂

∂xi

(
τ∗vivj

∂u

∂xj

)
(2.165)

2.9. Convection-Diffusion Equations 227

to the multi-dimensional convection-diffusion equation and apply a standard
Galerkin finite element method. Alternatively, we can perturb the weighting
function for the convective term,

Wi = Ni + τ∗
d∑

j=1

vj
∂Ni

∂xj
= Ni + τ∗v · ∇Ni .

The product of the convective term and the perturbation above yields a term
that coincides with what we get from a standard Galerkin technique applied
to the term (2.165). The particular perturbation of the weighting functions
is therefore equivalent to adding a streamline-diffusion term to the original
PDE.

Another justification for the weighting function perturbation τv · ∇Ni

follows by looking at a least-squares formulation of the reduced equation
v · ∇u = 0: ∫

Ω

v · ∇u v · ∇Ni dΩ = 0,

which is a weighted residual formulation of v ·∇u = 0 with weighting function
v · ∇Ni.

Various choices of τ∗ appear in the literature. In the next formulas, h∗

represents a characteristic element length. A simple choice [101, Ch. 5.5] is
τ = max(||v||h∗ − k, 0). An obvious extrapolation of the optimal 1D results
gives τ∗ = τo with Pe∆ = ||v||h∗/k [59]. Claes Johnson and co-workers
have developed streamline-diffusion methods with parameters calculated from
precise error analysis [37, Ch. 18]. Application of their methods to the current
problem involves perturbed weighting functions τ ∗v · ∇Ni and an artificial
diffusion term ε̂∇2u.

So far we have applied the perturbed weighting functions to the convective
term only. A strong property of the weighted residual method is that the
analytical solution of the problem is also always a solution of the weighted
residual statement, simply because R = 0 (exact solution of the PDE) fulfills∫

Ω RWidΩ = 0. If we apply different weighting functions to different terms in
the PDE, we can no longer factor out a common weighting function. In other
words, R = 0 is no longer a solution of the weighted residual statement. This
motivates for applying the same weighting function Wi 6= Ni to all the terms
in the PDE. The literature on numerical methods for convection-dominated
transport refers to this approach as a consistent Petrov-Galerkin formulation.
In our model problem this leads to

n∑

j=1

∫

Ω

(
Wiv · ∇Nj + k∇Ni · ∇Nj + τ∗v · ∇Nik∇2Nj

)
dΩ uj = · · · ,

where the dots on the right-hand side indicate possible surface integrals aris-
ing from integration by parts of the term Nik∇2u. The term τ∗v ·∇Nik∇2Nj

228 2. Introduction to Finite Element Discretization

poses some problems since integration by parts cannot remove the second-
order derivatives. The term vanishes in the interior of linear elements, and it
has been common in the literature to neglect it also for multi-linear elements.
In other words, the consistent Petrov-Galerkin formulation leads to the same
results as we obtained by applying the perturbed weighting function to the
convection term only, provided we use linear or multi-linear elements.

Figure 3.31a on page 410 shows the stabilizing effect of a Petrov-Galerkin
formulation in a challenging 2D convection-dominated transport problem.

2.9.3 Time-Dependent Problems

Petrov-Galerkin Methods. Most of the preceding methods can be directly
applied to the time-dependent version of the model problem (2.155)–(2.158)
(see e.g. Project 1.5.1 for an example of upwind differencing in a pure con-
vection problem). The common methodology nowadays is to use consistent
Petrov-Galerkin formulations, where the perturbed weighting functions also
affects the time-derivative term. The optimal value of τ ∗ might, however, be
different in time-dependent problems. One early suggestion was τ ∗ = ∆t/2,
which is justified in the next paragraph.

The Lax-Wendroff and Taylor-Galerkin Schemes. The Lax-Wendroff finite
difference method has long been popular for solving convection-dominated
problems with smooth solutions. The basic idea of the method is simple.
Having a solution u` at time level ` (continuous or discrete), find a new
solution at the next time level from a forward Taylor-series expansion to
second order:

u`+1 = u` +∆t

[
∂u

∂t

]`

+
1

2
∆t2

[
∂2u

∂t2

]`

.

Then we use the PDE to replace the time derivatives by spatial derivatives
and discretize the spatial derivatives by centered (second-order accurate) fi-
nite difference approximations. As an example, consider the PDE

∂u

∂t
+ U

∂u

∂x
= 0 . (2.166)

It follows that
∂

∂t
= −U ∂

∂x
.

Using this in the Taylor-series expansion results in

u`+1 = u` − U∆t
[
∂u

∂x

]`

+
1

2
U2∆t2

[
∂2u

∂x2

]`

, (2.167)

which can be interpreted as

[
δ+t u = −U ∂u

∂x
+

1

2
U2∆t

∂2u

∂x2

]`

. (2.168)

2.9. Convection-Diffusion Equations 229

We immediately observe that (2.168) is a forward temporal scheme for the
original equation with an additional artificial diffusion term 1

2U
2∆t∂2u/∂x2.

The original Lax-Wendroff method approximates the spatial derivatives
in (2.168) by centered differences, resulting in the scheme

[δ+t u+ Uδ2xu =
1

2
U2∆tδxδxu]

`
i . (2.169)

One can equally well apply a Galerkin finite element method to (2.167).
Galerkin’s method with linear elements results in centered difference approx-
imations to the spatial derivatives. If we also lump the mass matrix, the
Galerkin method recovers (2.169). This finite element approach is usually
referred to as the Taylor-Galerkin method in the literature.

In multi-dimensional problems, e.g.,

∂u

∂t
+ v · ∇u = 0,

we have
∂

∂t
= −v · ∇, ∂2

∂t2
= v · ∇(v · ∇) .

For a divergence-free velocity field, ∇·v = 0, which appears if the convection-
diffusion process takes place in incompressible fluid flow, we can rewrite the
second-order derivative in time such that it takes the form of anisotropic
diffusion:

∂2

∂t2
= ∇ · vv∇ =

d∑

r=1

d∑

s=1

∂

∂xr

(
vrvs

∂

∂xs

)
.

Inserting this in a three-term temporal Taylor-series expansion gives

[δ+t u+ v · ∇u =
1

2
∆t∇ · (vv∇u)]` .

The artificial anisotropic diffusion term has the same form as the streamline-
diffusion term introduced in the stationary case, but now τ ∗ = ∆t/2. This
suggests the usage of τ∗ = ∆t/2 in Petrov-Galerkin formulations for transient
problems.

Other Methods for Unsteady Convection-Dominated Problems. During the
last two decades, numerous successful methods have been developed for ac-
curate solution of convection-dominated transport, see Morton [101, Ch. 7].
Advanced techniques, combining space-time finite elements and streamline
diffusion are well explained in [37, Ch. 19]. See also [43, Ch. 9-10] and [42]
for overview of many successful methods.

The brief presentation of various strategies for handling convection terms
in the finite element method indicates that streamline diffusion is a funda-
mental concept. Some popular standard choices of streamline diffusion-based
methods are supported in Diffpack, see Chapter 3.9.

230 2. Introduction to Finite Element Discretization

Exercise 2.20. .
Consider the model problem (2.166). A popular finite difference upwind

scheme for this equation reads

[δ+t u+ Uδ−x u = 0]`i .

The stability condition is given as ∆t ≤ h/U , and the optimal choice is to use
the largest possible ∆t value (this recovers the exact solution at the nodes as
was proved in Project 1.5.1). An interesting question is how we can construct
finite element methods that are mathematically equivalent to the upwind
scheme above. Follow three alternative strategies: (i) add a suitable artificial
diffusion term in the equation and apply Galerkin’s method, (ii) devise an in-
consistent Petrov-Galerkin formulation (perturbed weighting function on the
convective term only), and (iii) use a Taylor-Galerkin approach. Emphasize
the value of “free parameters” like τ in each case. Use linear elements and
lumped mass matrices. �

2.10 Analysis of the Finite Element Method

The numerical properties of finite element methods can be established by
applying techniques from finite difference analysis to the difference equations
arising from a particular finite element discretization. Such an approach was
demonstrated in Chapter 2.4.3, and the methodology is generally applicable,
although it can become quite tedious to derive difference schemes for 2D and
3D problems, especially if quadratic elements are involved.

Despite the obvious idea of reusing finite difference analysis in a finite
element context, the literature on finite element analysis employs almost ex-
clusively a mathematical framework based on functional analysis for inves-
tigating the properties of the methods. The results from these theories are
powerful; one can prove existence and uniqueness of the solutions u and uh

to the continuous and discrete10 problem, one can derive bounds on u and uh

in terms of coefficients in the PDE, and one can derive general bounds on the
numerical error u − uh in different norms. Tools from this analysis are fun-
damental for constructing adaptive finite element discretizations, where the
numerical error can be controlled and the element size can be distributed in
an optimal way throughout the mesh. The theoretical results from this type
of finite element analysis are applicable to a wide range of PDEs discretized
by various types of elements in any number of space dimensions.

The mathematical analysis literature on the finite element method is com-
prehensive, and finite element practitioners will occasionally need to exploit

10 We have previously used û for the discrete finite element solution. The literature
on mathematical analysis of the finite element method normally applies the sym-
bol uh for the discrete solution, and this notation will be adopted in the present
section.

2.10. Analysis of the Finite Element Method 231

parts of this literature. Unfortunately, the literature frequently employs ad-
vanced mathematical tools and is mainly written by and for mathematicians.
There is hence a need for a gentle introduction to the subject that can be
understood on basis of straight calculus and linear algebra. The present expo-
sition guides the reader through the basic concepts, some fundamental results,
and some tools used to prove the results. With this knowledge, it should be
easier for researchers in computational sciences to proceed with the many
excellent books on mathematical analysis of the finite element method, for
example, Brenner and Scott [14], Ciarlet [29], Glowinski [47], Johnson [65],
Quarteroni and Valli [114], or Reddy [115]. These books contain a more com-
prehensive and precise treatment of the various mathematical topics than
what we aim at in the following.

2.10.1 Weak Formulations

Galerkin’s Method Revisited. We recall from Chapter 2.1 that Galerkin’s
method for a partial differential equation L(u) = 0 in a domain Ω reads

∫

Ω

L(uh)NidΩ = 0, i = 1, . . . ,M (2.170)

where

uh = ψ +

M∑

j=1

ujNj ,

and Ni are linearly independent functions that vanish on the part of the
boundary ∂Ω where essential boundary conditions are prescribed. The Ni

functions then span a vector space Vh with basis

B = {N1, . . . , NM} .

The subscript h in Vh indicates that the vector space has finite dimension
(M = dimVh), that is, we are dealing with a discrete formulation.

Let us define the inner product

(u, v) =

∫

Ω

uv dΩ . (2.171)

The weighted residual statement (2.170) can now be viewed as an inner prod-
uct of the residual and the weighting function, i.e., Galerkin’s method can be
expressed as

find uh − ψ ∈ Vh such that (L(uh), v) = 0 ∀v ∈ Vh .

In the rest of this chapter we will for simplicity drop the ψ function and
assume homogeneous essential boundary conditions. See [114, p. 166] for how

232 2. Introduction to Finite Element Discretization

nonhomogeneous Dirichlet conditions can be incorporated in the results we
derive in the following.

Normally, one performs an integration by parts if L is a second- or higher-
order differential operator. Let

a(uh, v) = L(v)

denote the equation that arises from an integration by parts of (L(uh), v) = 0.

For example, if L(uh) = u′′h(x) + f(x) on (0, 1), a(uh, v) =
∫ 1

0
u′hv

′dx, and

L(v) =
∫ 1

0
fvdx. The Galerkin method can now be formulated as follows:

find uh ∈ Vh such that a(uh, v) = L(v) ∀v ∈ Vh .

Intuitively, we expect that uh → u as M → ∞ and Vh → V . The limiting
space V , containing the solution u of the continuous problem, has of course
infinite dimension. We therefore anticipate that the corresponding continuous
problem can be expressed as

find u ∈ V such that a(u, v) = L(v) ∀v ∈ V . (2.172)

Instead of having a partial differential equation that is fulfilled at every point
in the domainΩ, we have an integral statement that is supposed to be fulfilled
for an infinite number of test functions v. The integral statement is a kind
of average and is hence weaker than the pointwise requirement of fulfilling
a partial differential equation, motivating the term weak formulation for the
statement (2.172). Other frequently used terms are variational formulation or
variational problem. Sometimes we will use the term weak form or variational
form for the equation a(u, v) = L(v).

Example 2.3. The weak form a(u, v) = L(v) of the continuous problem is nor-
mally obtained by multiplying the PDE by a test function v ∈ V , integrating
over the domain Ω, and performing integration by parts (of second-derivative
terms). As an example, consider

−∇ · [λ(x)∇u] = f(x), x ∈ Ω, (2.173)

u = 0, x ∈ ∂ΩE , (2.174)

−λ∂u
∂n

= β(u− Us), x ∈ ∂ΩN . (2.175)

The expressions for a(u, v) and L(v) then becomes

a(u, v) =

∫

Ω

λ∇u · ∇v dΩ +

∫

∂ΩN

βuvdΓ, (2.176)

L(v) =

∫

Ω

fvdΩ +

∫

∂ΩN

βUsvdΓ . (2.177)

The functions in the space V must vanish on ∂ΩE . �

2.10. Analysis of the Finite Element Method 233

The integration by parts leads to a statement a(u, v) = L(v) where only
the first-order derivatives of u and v enters. The partial differential equation,
on the other hand, requires second-order derivatives of u to exist, but no re-
quirements on the derivatives of v. The space V is therefore “larger” than the
space containing the analytical solution of the partial differential equation,
because it has less restrictions on the regularity of its member functions.

Weak Formulation with Temporal Derivatives. In time-dependent problems
we can establish a weak formulation in space. For example, consider the PDE

∂2u

∂t2
= ∇ · [λ∇u], x ∈ Ω,

with u known on the complete boundary ∂Ω. An appropriate weak form then
involves the sum of two bilinear forms,

(
∂2u

∂t2
, v) + a(u, v),

with (·, ·) defined in (2.171) and a(u, v) =
∫

Ω λ∇u · ∇v dΩ.

Discretization. Given a continuous weak formulation,

find u ∈ V such that a(u, v) = L(v) ∀v ∈ V,

we can derive a corresponding discrete form by introducing a finite dimen-
sional subspace Vh ⊂ V and state

find uh ∈ Vh such that a(uh, v) = L(v) ∀v ∈ Vh .

Some Remarks. The procedure of first deriving a continuous weak formula-
tion and then discretizing the problem by restricting the weak formulation
to a finite dimensional function space is similar to the method of weighted
residuals, but the actions are performed in a different order. The weighted
residual method is more intuitive and therefore easier to extend to new situa-
tions. That is why the finite element formulations in the application parts of
this book are based on the weighted residual method. Discretizing a contin-
uous weak formulation gives the same system of algebraic equations as one
obtains from the weighted residual method.

2.10.2 Variational Problems

By requiring some properties of a(u, v) and L(v), we can derive useful general
results regarding the continuous and the discrete problem. Let us first list
some definitions.

– A linear form L(v) on a linear space V is a mapping L : V → IR such
that

L(αv + βw) = αL(v) + βL(w) .

234 2. Introduction to Finite Element Discretization

– A bilinear form a(u, v) on a linear space V is a mapping a : V × V → IR
such that a(u, v) is linear in both arguments:

a(αu+βw, v) = αa(u, v)+βa(w, v), a(u, αv+βw) = αa(u, v)+βa(u,w) .

– The bilinear form a(u, v) is symmetric if a(u, v) = a(v, u).

– A (real) inner product, denoted by (·, ·), is a symmetric bilinear form on
a linear space V that satisfies

(v, v) ≥ 0 ∀v ∈ V and (v, v) = 0⇔ v = 0 .

– A linear space V together with an inner product defined on it is called an
inner-product space. This space has an associated norm ||v||V =

√
(v, v).

In the presentation and derivation of the mathematical results, the following
properties of a(u, v) and L(v) are fundamental:

1. L(v) is a linear form on V .

2. a(u, v) is a bilinear form on V × V .

3. L(v) is bounded (or continuous) if there exists a positive constant c0 such
that

|L(v)| ≤ c0||v||V ∀v ∈ V .

4. a(u, v) is bounded (or continuous) if there exists a positive constant c1
such that

|a(u, v)| ≤ c1||u||V ||v||V ∀u, v ∈ V .

5. a(u, v) is V -elliptic (or coercive) on V if there exist a positive constant
c2 such that

a(v, v) ≥ c2||v||2V ∀v ∈ V .

6. a(u, v) is symmetric: a(u, v) = a(v, u).

These six items will later be referred to as properties 1-6.

Remark. Property 3 is classified as a continuity requirement of L(v), and this
may seem a bit strange. Note, however, that since L is linear we have

|L(v)− L(w)| = |L(v − w)| ≤ c0||v − w||V .

Hence, if w → v it follows that L(v)→ L(w), i.e., L is continuous. A similar
argument can be used to justify the formulation of property 4.

2.10. Analysis of the Finite Element Method 235

Some Hilbert Spaces with Associated Inner Products and Norms. Hilbert
spaces play a central role in weak formulations of boundary-value problems.
We refer to Brenner and Scott [14] for information about relevant Hilbert
spaces for finite element problems. Here, we merely take the intuitive ap-
proach and say that Hilbert spaces are function spaces where certain integrals
of the derivatives of the functions exist. For example, when solving an equa-
tion containing the ∇2 operator, we need to ensure that

∫
∇v · ∇v dΩ <∞.

This places a restriction on the type of functions v that V can contain.
Let Ω be a bounded and smooth domain in IRd, and define L2(Ω) to be

the set of square-integrable functions on Ω, that is,

L2(Ω) = {v |
∫

Ω

v2dΩ <∞} . (2.178)

The space V = L2(Ω) is equipped with the inner product

(u, v)L2(Ω) =

∫

Ω

uv dΩ (2.179)

and the associated norm

||v||L2(Ω) = (v, v)
1
2

L2(Ω) .

A common Hilbert space in the analysis of second-order PDEs is V = H1(Ω),
which is the subset of functions in L2(Ω) whose first derivatives are square
integrable:

H1(Ω) =

{
v ∈ L2(Ω) | ∂v

∂xi
∈ L2(Ω) for i = 1, . . . , d

}
. (2.180)

The inner product is given by

(u, v)H1(Ω) =

∫

Ω

(uv +∇u · ∇v) dΩ

= (u, v)L2(Ω) +

d∑

r=1

(
∂u

∂xr
,
∂v

∂xr
)L2(Ω) . (2.181)

The norm is, as usual, defined in terms of the inner product,

||v||H1(Ω) = (v, v)
1
2

H1(Ω) .

Sometimes we work with boundary-value problems where the unknown u = 0
on a part ∂ΩE of the boundary. We must then restrict all functions in V to
vanish on ∂ΩE . The appropriate subspace of H1(Ω) is then

H1
0 (Ω) =

{
v ∈ H1(Ω) | v = 0 on ∂ΩE

}
. (2.182)

236 2. Introduction to Finite Element Discretization

The norm and inner product are inherited from H1(Ω). Occasionally we also
need a Hilbert space with square-integrable second-order derivatives,

H2(Ω) =

{
v | v ∈ L2(Ω),

∂v

∂xi
∈ L2(Ω),

∂2v

∂xi∂xj
∈ L2(Ω)

}
, (2.183)

for i, j = 1, . . . , n. The associated inner product reads

(u, v)H2(Ω) = (u, v)H1(Ω) +

d∑

r=1

d∑

s=1

(
∂2u

∂xr∂xs
,

∂2v

∂xr∂xs
)L2(Ω)

and the norm is
||v||H2(Ω) = (v, v)

1
2

H2(Ω) .

We shall in the following also make use of so-called semi-norms

|v|H1(Ω) =

(∫

Ω

∇v · ∇v dΩ
) 1

2

= ||∇v||L2(Ω),

|v|H2(Ω) =

(∫

Ω

d∑

r=1

d∑

s=1

(
∂2v

∂xr∂xs

)2

dΩ

) 1
2

.

The semi-norm | · |Hk(Ω) measures the L2 norm of the partial derivatives of
order k. Since we can have |v|Hk(Ω) = 0 even if v 6= 0, e.g. when v ≡ 1,
| · |Hk(Ω) is not a proper norm.

2.10.3 Results for Continuous Problems

In the following, we list some basic theorems that are valid for a large class
of stationary PDEs11. The theorems assume in general the existence of a
Hilbert space V , a bilinear form a(v, w) with v, w ∈ V , a linear functional
L(v) with v ∈ V , and that the bilinear form and the linear functional fulfill
properties 1-6. Sometimes not all six properties are required for a theorem to
hold. Property 6, the symmetry of a, can in particular be relaxed.

Theorem 2.4. Existence and uniqueness of the continuous problem (the
Lax-Milgram Theorem). There exists a unique u ∈ V such that a(u, v) = L(v)
∀v ∈ V .

Proof. The existence part of this theorem follows from Riesz representation
theorem, see [14, p. 60]. We shall here only prove uniqueness. Assume that
we have two solutions u1, u2 ∈ V , that is,

a(u1, v) = L(v) ∀v ∈ V,
a(u2, v) = L(v) ∀v ∈ V .

11 This class of PDEs is often referred to as elliptic PDEs, here recognized by
fulfilling the requirement of V -ellipticity. See also Appendix A.5 for information
on the nature of elliptic PDEs.

2.10. Analysis of the Finite Element Method 237

Subtracting these equalities yields

a(u1 − u2, v) = 0 ∀v ∈ V .

Choosing v = u1 − u2 ∈ V , it follows from property 5 (the V -ellipticity of a)
that

0 = a(u1 − u2, u1 − u2) ≥ c2||u1 − u2||2V ≥ 0,

which implies u1 = u2. ut

Theorem 2.5. Stability of the continuous problem. The solution u ∈ V ,
fulfilling a(u, v) = L(v) ∀v ∈ V , obeys the stability estimate

||u||V ≤
c0
c2
. (2.184)

Proof. Since u ∈ V and a(u, v) = L(v) ∀v ∈ V , we can choose v = u and use
properties 3 and 5 to get

c2||u||2V ≤ a(u, u) = L(u) ≤ c0||u||V ,

and then divide by c2||u||V . ut

Exercise 2.22 on page 242 demonstrates how (2.184) can be used to predict
the stability of u due to perturbations of the input data to the PDE problem.

We remark that Theorems 2.4 and 2.5 do not require symmetry of a(u, v)
(property 6), but this is central for the next result.

Theorem 2.6. Equivalent minimization problem (continuous case). The weak
formulation: find u ∈ V such that a(u, v) = L(v) ∀v ∈ V , is equivalent with
the minimization problem: Find u ∈ V such that

J(u) ≤ J(v) ∀v ∈ V, J(v) =
1

2
a(v, v)− L(v) .

That is, u minimizes the functional J(v).

Proof. We first prove that if u ∈ V satisfies a(u, v) = L(v) ∀v ∈ V , then
J(u) ≤ J(v) ∀v ∈ V . Define w = v−u ∈ V . Using the definition of J , we get

J(v) = J(u+ w)

=
1

2
a(u+ w, u+ w)− L(u+ w)

=
1

2
a(u, u)− L(u) +

1

2
a(w,w) + a(u,w)− L(w)︸ ︷︷ ︸

=0

= J(u) +
1

2
a(w,w) ≥ J(u) .

238 2. Introduction to Finite Element Discretization

That is, J(u) ≤ J(v) ∀v ∈ V . The next task is to prove that the minimization
problem implies a(u, v) = L(v) ∀v ∈ V . Suppose u ∈ V satisfies

J(u) ≤ J(v) ∀v ∈ V,
and define the function g(ε) = J(u + εw) for an arbitrary w ∈ V . Since J
attains its minimum at u, we have g′(0) = 0. Using the definition of g,

g(ε) =
1

2
a(u, u) + εa(u,w) +

1

2
ε2a(w,w) − L(u)− εL(w)

and
g′(ε) = a(u,w) + εa(w,w)− L(w) .

The requirement g′(0) = 0 then gives a(u,w) = L(w). Since w was arbitrarily
chosen, we have that a(u,w) = L(w) ∀w ∈ V . ut

In some literature, the minimization problem is referred to as a variational
problem. We will, however, use this term exclusively for the problem a(u, v) =
L(v) ∀v ∈ V . The term variational principle is also used for the minimization
problem and should cause no confusion. Formulation of a mathematical model
as a minimization problem is often closely related to physical principles, where
the motion of a continuum is such that the potential or kinetic energy, or a
combination of them, is minimized.

Example 2.7. Irrotational fluid flow is recognized by ∇ × v = 0, where v is
the velocity field in the fluid. This is a reasonable assumption in many flow
cases where viscous effects can be neglected. The property ∇×v = 0 implies
in general that v = ∇φ, where φ is a velocity potential. Mass conservation
of an incompressible fluid leads to the requirement that ∇ · v = 0. Inserting
v = ∇φ in the latter equation yields the governing equation ∇2φ = 0 for φ
in a fluid domain Ω. An appropriate boundary condition is v · n = 0, which
means no flow through boundaries (n is a normal vector to the boundary).
This implies ∂φ/∂n = 0 at ∂Ω. (The solution of the boundary-value problem
is not unique so we need an additional condition, for example,

∫
Ω
φdΩ = 0.)

We can easily establish that a(u, v) =
∫

Ω ∇u · ∇v dΩ and L(v) = 0, with
the associated Hilbert space H1(Ω). Provided that properties 1-6 are fulfilled
(and this can be shown to be the case [47, p. 335]), solving the PDE for φ
is equivalent to minimizing J(v) = 1

2a(v, v) =
∫

Ω |∇v|2dΩ. The physical
interpretation of ∇v is the velocity v. Forming the expression for the kinetic
energy of a flow,

∫
Ω

1
2%v

2dΩ = const
∫

Ω |∇φ|2dΩ, where % is the constant
density of the fluid, we have justified the following physical principle: The
motion of an irrotational fluid in a domain Ω is such that the kinetic energy∫

Ω
1
2%v

2dΩ is minimized. �
Exercise 2.21. .

Find expressions for a(u, v), L(v), and J(v) in the case where −(ku′)′ = f
on (0, 1) with u(0) = 0 and u′(1) = 1. (Just assume that properties 1-6 are
fulfilled.) �

2.10. Analysis of the Finite Element Method 239

Theorem 2.8. The energy norm. The bilinear form a(u, v) defines the en-
ergy norm

||v||a = a(v, v)
1
2 v ∈ V . (2.185)

Moreover, a(u, v) is an inner product. The energy norm is equivalent to the
V norm, √

c2||v||V ≤ ||v||a ≤
√
c1||v||V ∀v ∈ V . (2.186)

Proof. Provided properties 2, 4, 5, and 6 are fulfilled, a(u, v) fulfills the re-

quirement of being an inner product with a(v, v)
1
2 as the associated norm.

Properties 4 and 5 give

c2||v||2V ≤ |a(v, v)| ≤ c1||v||2V ,

which leads to (2.186). ut

Some Boundary-Value Problems that Fit into the Framework. The purpose
now is to verify that properties 1-6 are fulfilled in some examples involving
common boundary-value problems. To this end, we need two inequalities, the
Cauchy-Schwartz inequality,

|(v, w)L2(Ω)| ≤ ||v||L2(Ω)||w||L2(Ω), v, w ∈ L2(Ω), (2.187)

|(v, w)H1(Ω)| ≤ ||v||H1(Ω)||w||H1(Ω), v, w ∈ H1(Ω), (2.188)

and Poincaré’s inequality,

||v||2L2(Ω) ≤ CΩ ||∇v||2L2(Ω), 0 < CΩ <∞ and v ∈ H1
0 (Ω) . (2.189)

Poincaré’s inequality also holds for v ∈ H1(Ω) provided
∫

Ω
vdΩ = 0.

Example 2.9. We consider

− u′′(x) + u(x) = f(x), x ∈ Ω = (0, 1), (2.190)

u′(0) = u′(1) = 0 . (2.191)

The appropriate function space is

V = H1(Ω) =

{
v |
∫ 1

0

[
(v(x))2 + (v′(x))2

]
dx <∞

}
.

Unless otherwise stated, we shall assume here and in the rest of this chapter
that f ∈ L2(Ω). Multiplying the differential equation by a test function v ∈
H1(Ω) and integrating over the domain, using integration by parts, lead to

a(u, v) =

∫ 1

0

[u′(x)v′(x) + u(x)v(x)] dx,

L(v) =

∫ 1

0

f(x)v(x)dx .

The next step is to check the validity of properties 1-6.

240 2. Introduction to Finite Element Discretization

1. L(v) is a linear form because

L(αv + βw) =

∫ 1

0

f(αv + βw)dx (2.192)

= α

∫ 1

0

fvdx+ β

∫ 1

0

fwdx = αL(v) + βL(w) . (2.193)

2. Using the same technique as we applied for showing property 1, it follows
that a(u, v) is a bilinear form because of the linearity of the integral
operator.

3. To show that L(v) is bounded, we use the Cauchy-Schwartz inequality
and the fact that ||v||L2(Ω) ≤ ||v||H1(Ω), cf. (2.181),

|L(v)| = |
∫ 1

0

fvdx|

= |(f, v)L2(Ω)| ≤ ||f ||L2(Ω)||v||L2(Ω) ≤ ||f ||L2(Ω)||v||H1(Ω) .

Hence, we can choose c0 = ||f ||L2(Ω). We now see why it is natural to
demand f ∈ L2(Ω).

4. The bound on a(u, v) follows from the observation that a(u, v) equals the
inner product on H1(Ω), and application of Cauchy-Schwartz’ inequality:

a(v, w) = (v, w)H1(Ω) ≤ ||v||H1(Ω)||w||H1(Ω),

which means that c1 = 1.

5. The V -ellipticity is trivial to show, since a(v, w) = (v, w)H1(Ω) implies
a(v, v) = ||v||H1(Ω) and therefore c2 = 1.

6. Finally, a(v, w) is symmetric since vw = wv and v′w′ = w′v′ in the
integral expression for a(v, w).

Having proved that properties 1-6 are fulfilled, we know that there exists a
unique solution u ∈ H1(Ω) of the variational problem a(u, v) = L(v) ∀v ∈
H1(Ω). Moreover, u satisfies the bound ||u||H1(Ω) ≤ ||f ||L2(Ω). �

Example 2.10. This example concerns −u′′(x) = f(x) in Ω = (0, 1), with
u(0) = u(1) = 0. The relevant space is now

V = H1
0 (Ω) =

{
v ∈ H1(Ω) | v(0) = v(1) = 0

}
.

We multiply the PDE by v ∈ H1
0 (Ω), integrate over (0, 1), and apply inte-

gration by parts, leading to

a(u, v) =

∫ 1

0

u′(x)v′(x)dx, L(v) =

∫ 1

0

f(x)v(x)dx .

2.10. Analysis of the Finite Element Method 241

To check properties 1-3, we proceed as in Example 2.9. Property 4 follows
from the Cauchy-Schwartz inequality (this time in L2(Ω)) and the fact that
||v′||L2(Ω) ≤ ||v||H1(Ω):

|a(v, w)| = |(v′, w′)L2(Ω)| ≤ ||v′||L2(Ω)||w′||L2(Ω) ≤ ||v||H1(Ω)||w||H1(Ω) .

Hence, c1 = 1. Property 5, the V -ellipticity, follows from Poincaré’s inequal-
ity,

||v||2H1(Ω) =

∫ 1

0

(v2 + (v′)2)dx ≤ (CΩ + 1)

∫ 1

0

(v′)2dx = (CΩ + 1)a(v, v) .

This means that c2 = 1/(CΩ + 1). The final property regarding symmetry is
obviously fulfilled. Therefore, there exists a unique solution u of this varia-
tional problem, satisfying the bound ||u||H1(Ω) ≤ (1 + CΩ)||f ||L2(Ω). �

Example 2.11. Consider the multi-dimensional boundary-value problem

−∇2u+ u = f, x ∈ Ω ⊂ IRd, (2.194)

∂u

∂n
= 0, x ∈ ∂Ω . (2.195)

The appropriate space is V = H1(Ω) as defined in (2.180). Multiplying the
PDE by a test function v ∈ H1(Ω) and integrating over Ω, with the aid of
integration by parts, yield

a(u, v) =

∫

Ω

(∇u · ∇v + uv) dΩ, L(v) =

∫

Ω

fv dΩ .

Using the ideas of Example 2.9, it should be trivial to show that L(v) is
linear, a(u, v) is bilinear and symmetric, and L(v) is bounded with c0 =
1. In the present example we observe that a(v, w) = (v, w)H1(Ω). Property
4, the continuity of the bilinear form, then follows from Cauchy-Schwartz’
inequality,

|a(v, w)| = |(v, w)H1(Ω)| ≤ ||v||H1(Ω)||w||H1(Ω),

which means that c1 = 1. The V -ellipticity (property 5) is trivially fulfilled
with c2 = 1 since a(v, w) = (u, v)H1(Ω). We have hence shown the fulfillment
of properties 1-6, and there exists a unique solution u to this variational
problem, with the stability property ||u||H1(Ω) ≤ ||f ||L2(Ω). �

Example 2.12. Our final example is the multi-dimensional analog to Exam-
ple 2.10, namely −∇2u = f in Ω ⊂ IRd, with u = 0 on the boundary ∂Ω.
The appropriate Hilbert space is

V = H1
0 (Ω) =

{
v ∈ H1(Ω) | v = 0 on ∂Ω

}
.

242 2. Introduction to Finite Element Discretization

Recall that the inner product and the norm are the same as for H1(Ω). The
bilinear and linear forms now become

a(u, v) =

∫

Ω

∇u · ∇v dΩ, L(v) =

∫

Ω

fv dΩ .

The boundary term vanishes since v ∈ H1
0 (Ω). Properties 1-3 and 6 are

trivially shown as in the preceding examples. Continuity of a(u, v) follows
the proof of property 4 in Example 2.10:

|a(v, w)| =
∣∣∣∣
∫

Ω

∇v · ∇w dΩ
∣∣∣∣ ≤

∣∣∣∣
∫

Ω

(∇v · ∇w + vw) dΩ

∣∣∣∣
= |(v, w)H1(Ω)| ≤ ||v||H1(Ω)||w||H1(Ω),

that is, c1 = 1. Property 5 (the V -ellipticity) is shown by using Poincaré’s
inequality in the same way as we did in Example 2.10. Again, properties 1-6
are fulfilled, and we can apply the general results regarding the continuous
problem as well as the forthcoming results for the corresponding discrete
problem. �
Exercise 2.22. .

Suppose the f function in Example 2.12 on page 241 is given a pertur-
bation ε (e.g. caused by round-off or measurement errors). Use the general
stability property of Theorem 2.5 and the specific expressions for c0 and c2
in the present problem to establish that the corresponding perturbation in
u, ||∆u||H1(Ω), is bounded by ||ε||L2(Ω). �
Exercise 2.23. .

Consider the problem in Example 2.12. Since properties 1-6 are fulfilled,
we know from Theorem 2.8 that a(v, v)1/2 is a norm. However, choosing
e.g. v = 1 results in a(v, v) = 0 for v 6= 0. How can then a(v, v)1/2 be a
norm? �
Exercise 2.24. .

Extend Example 2.12 to the PDE −∇ · (λ∇u) + αu = f , where α and λ
obey 0 ≤ α ≤ A and λmin ≤ λ ≤ λmax. �

2.10.4 Results for Discrete Problems

The discrete version of the continuous problem is obtained by introducing
a finite dimensional subspace Vh ⊂ V to obtain the weak formulation in Vh

instead of V :

find uh ∈ Vh such that a(uh, v) = L(v) ∀v ∈ Vh . (2.196)

For example, a basis for Vh can exist of all piecewise linear functions as-
sociated with a finite element mesh. The formulation (2.196) is a Galerkin
method for the underlying boundary-value problem.

The next two approximation results are fundamental for deriving error
estimates for various choices of approximation spaces Vh (i.e. finite elements).

2.10. Analysis of the Finite Element Method 243

Theorem 2.13. Best approximation property in the energy norm. Let u ∈ V
be the solution of a(u, v) = L(v) ∀v ∈ V , and let uh ∈ Vh be the solution of
a(uh, v) = L(v) ∀v ∈ Vh. Then uh is the best approximation to u ∈ V among
all v ∈ Vh, measured in the energy norm:

||u− uh||a ≤ ||u− v||a ∀v ∈ Vh . (2.197)

Proof. The statement a(u, v) = L(v) ∀v ∈ V is also valid when v ∈ Vh ⊂ V :

a(u, v) = L(v) ∀v ∈ Vh .

Subtracting this equation and the discrete equation that determines uh:
a(uh, v) = L(v) ∀v ∈ Vh, gives a(u − uh, v) = L(v) − L(v) = 0, which
means that the error e = u − uh is orthogonal to the space Vh with respect
to the inner product a(u, v). That is,

a(e, v) = 0 ∀v ∈ Vh . (2.198)

We now want to show that this orthogonality implies the best approximation
property. Pick an arbitrary v ∈ Vh and define w = uh − v ∈ Vh.

a(u− v, u− v) = a(u− uh + uh − v, u− uh + uh − v)
= a(u− uh + w, u− uh + w)

= a(e, e) + 2 a(e, w)︸ ︷︷ ︸
=0

+ a(w,w) ≥ a(e, e) .

Hence,
a(e, e) ≤ a(u− v, u− v) ∀v ∈ Vh,

which is another way of writing (2.197). ut

Roughly speaking, Galerkin’s method finds the “best” solution uh among all
finite element functions v =

∑
j vjNj associated with a particular grid. This

is indeed a remarkable property.

Theorem 2.14. Best approximation property in the V norm. Let u ∈ V be
the solution of a(u, v) = L(v) ∀v ∈ V , and let uh ∈ Vh be the solution of
a(uh, v) = L(v) ∀v ∈ Vh. If a(u, v) is symmetric, then

||u− uh||V ≤
(
c1
c2

) 1
2

||u− v||V ∀v ∈ Vh . (2.199)

In the case a(u, v) is nonsymmetric the constant in (2.199) is replaced by
c1/c2.

244 2. Introduction to Finite Element Discretization

Proof. The result (2.199) follows from the best approximation property of uh

in the energy norm, as given by equation (2.197), and the equivalence of the
a norm and the V norm, equation (2.186). For any v ∈ Vh we have

||u− uh||V ≤
1√
c2
||u− uh||a ≤

1√
c2
||u− v||a ≤

(
c1
c2

) 1
2

||u− v||V .

If a(u, v) is nonsymmetric, we cannot use (2.186) and (2.197). Neverthe-
less, the following argument does not make use of any symmetry property of
a(u, v). Pick a w ∈ Vh and define v = uh − w ∈ Vh. We then have

c2||v||2V ≤ a(e, e) = a(e, e) + a(e, w) = a(e, e+ w)

= a(e, u− (uh − w)) = a(e, u− v) ≤ c1||e||V ||u− v||V .

Notice that we can add a(e, w) (=0) for any w ∈ Vh since (2.198) does not
require symmetry of a(u, v). Dividing by ||e||V we have

||u− uh|| ≤
c1
c2
||u− v||V ∀v ∈ Vh .

ut

Nonsymmetric Bilinear Forms. More general boundary-value problems than
what we have considered in Examples 2.9–2.12 can also be shown to fit into
the framework, but the proofs are occasionally more technical. The quite
general PDE

v · ∇u = λ∇2u+ αu+ f

with Dirichlet and Neumann boundary conditions can be shown to fulfill
properties 1-5, see [47, App. I] or [114, Ch. 6]. The term v ·∇u makes a(u, v)
nonsymmetric, which means that error estimates based on the results in The-
orem 2.14 typically contain the constant c1/c2. One can show [114, p. 169]
that c2 = λ and

c1 = ε+
√
CΩ ||v||L∞(Ω) + CΩ ||α||L∞(Ω),

where ||v||L∞(Ω) = sup{|v(x)| | x ∈ Ω}. This means that if the size of v

is much larger than λ, the constant c1/c2 also becomes large, resulting in a
poor bound on ||e||V . This effect was demonstrated in simple 1D examples in
Chapter 2.9. Figure 3.31a on page 410 shows a 2D example where the finite
element approximations by the Galerkin method are very inaccurate in a test
case with ||v||L∞(Ω)/λ = 103.

The Galerkin Equations. Let the finite dimensional space Vh be spanned by
linearly independent functions N1, . . . , Nn:

Vh = span{N1, . . . , Nn}, dim Vh = n .

2.10. Analysis of the Finite Element Method 245

The Ni functions are then basis functions for the space Vh, and any element
v ∈ Vh can be expressed as a linear combination of the basis functions:
v =

∑n
j=1 ujNj . The Galerkin method (2.196) is equivalent to

a(uh, Ni) = L(Ni), i = 1, . . . , n .

Inserting uh =
∑

j ujNj gives the linear system

∑

j=1

Ai,juj = bi, Ai,j = a(Nj , Ni), bi = L(Ni), (2.200)

for i = 1, . . . , n. Very efficient solution methods exist for linear systems where
the coefficient matrix is symmetric and positive definite. Let us show that Ai,j

have these two important properties. Symmetry is obvious if property 6 is
fulfilled. To show that Ai,j is positive definite, we first recall that an n × n
matrix A is positive definite if vT Av > 0 for all nonzero v ∈ IRn. Write
v = (v1, . . . , vn)T and v =

∑n
j=1 vjNj . Then,

vT Av =

n∑

i=1

n∑

j=1

viAi,jvj =

n∑

i=1

n∑

j=1

via(Ni, Nj)vj ,

= a(

n∑

i=1

viNi,

n∑

j=1

vjNj) = a(v, v) ≥ c2||v||V > 0,

for any nonzero v. In other words, the positive definiteness of the coefficient
matrix stems from the V -ellipticity (property 4).

We can now easily establish a discrete counterpart to the Lax-Milgram
Theorem (Theorem 2.4).

Theorem 2.15. Existence and uniqueness of the discrete problem. There
exists a unique solution vector (u1, . . . , un)T of the linear system (2.200).

Proof. A symmetric and positive definite matrix is nonsingular. Hence, the
solution of the corresponding linear system exists and is unique. ut

We also have a discrete counterpart to the stability estimate in Theorem 2.5.

Theorem 2.16. Stability of the discrete problem. The solution uh =
∑

j ujNj

of the discrete problem fulfills the stability estimate ||uh||V ≤ c0/c2.

Proof. Since Vh ⊂ V the result follows immediately from Theorem 2.5. Al-
ternatively, we can repeat that proof by using properties 3 and 5, but now
with v = uh ∈ Vh. ut

246 2. Introduction to Finite Element Discretization

Theorem 2.17. Equivalent minimization problem (discrete case). The lin-
ear system (2.200) is equivalent to the minimization problem: Find u =
(u1, . . . , un)T such that

Jh(u) ≤ Jh(v) ∀v ∈ IRd,

where Jh is defined as

Jh(v) =
1

2

n∑

r=1

n∑

s=1

vrAr,svs −
n∑

r=1

brvr, v = (v1, . . . , vn)T ,

=
1

2
vT Av − bT v .

That is, u minimizes the quadratic form Jh(v).

Proof. We first prove that if u ∈ IRd satisfies Au = b, then Jh(u) ≤ Jh(v)
for an arbitrary v ∈ IRd. Define w = v − u. Using the definition of Jh, we
get

Jh(v) = Jh(u + w)

=
1

2
(u + w)T A(u + w)− bT (u + w)

=
1

2
uT Au− bT u +

1

2
wT Aw +

1

2
uT Aw +

1

2
wT Au− bT w

= Jh(u) +
1

2
wT Aw + wT (Au− b)︸ ︷︷ ︸

=0

= Jh(u) +
1

2
wT Aw ≥ Jh(u) .

Here we used that uT Aw = wT Au, which is true when A is symmetric
and positive definite. Next, we prove that the minimization problem implies
Au = b. We shall make use of the Kronecker delta δrs and the fact that∑

r Ar,sδri = Ai,s (see Appendix A.2). Since Jh(v) is a function of n variables,
the minimum of Jh can be calculated by requiring ∂Jh/∂vi to vanish.

∂Jh

∂vi
=

∂

∂vi

(
1

2

n∑

r=1

n∑

s=1

vrAr,svs −
n∑

r=1

brvr

)

=
1

2

n∑

r=1

n∑

s=1

∂vr

∂vi
Ar,svs +

1

2

n∑

r=1

n∑

s=1

vrAr,s
∂vs

∂vi
−

n∑

r=1

br
∂vr

∂vi

=
1

2

∑

r

δri

∑

s

Ar,svs +
1

2

∑

r

vr

∑

s

Ar,sδsi −
∑

r

brδri

=
1

2

∑

s

Ai,svs +
1

2

∑

r

Ar,i︸︷︷︸
=Ai,r

vr − bi

=
n∑

j=1

Ai,jvj − bi = 0 .

2.10. Analysis of the Finite Element Method 247

ut

The reader should notice the need for symmetry of A in the proof above. The
symmetry of A is directly related to the symmetry of the underlying bilinear
form a(u, v) and thereby the properties of the differential operators in the
PDE.

Exercise 2.25. .
Discretize the functional J(v) = 1

2a(v, v)−L(v), using v =
∑

j vjNj ∈ Vh,

and show that this leads to a quadratic form Jh(v) = 1
2vT Av − bT v, v =

(v1, . . . , vn)T , Ai,j = a(Ni, Nj), bi = L(Ni). Minimization of the quadratic
form implies Au = b. In other words, discretization of the functional J(v) also
leads to the discrete equations (2.200). This is called Rayleigh–Ritz ’ method.
It is frequently used in problems where there exists a variational principle,
such as minimization of some type of energy. One can then discretize the
variational principle directly instead of first deriving the corresponding PDE
and then formulate a discrete variational form. �

Interpolation. The standard interpolant Ihv of a function v ∈ V is a finite
element function on the mesh that equals v at the nodal points. Let x[i]

be the coordinates of node no. i in a finite element mesh. Then Ihv(x
[i]) =

v(x[i]) for i = 1, . . . , n. The finite element representation of Ihv is hence
Ihv =

∑n
j=1 Njv(x

[j]).

x

I

v
hv

By means of Ih we can take “any” function v ∈ V and transform it to a
function Ihv ∈ Vh. We shall use this property to estimate the right-hand side
of the error estimate (2.199).

Some basic results regarding the accuracy of interpolation are given next.
These results are fundamental, together with the best approximation prop-
erties, for deriving error estimates in Chapters 2.10.5 and 2.10.7.

Suppose v ∈ Hs(Ω). Then there exists a constant C, independent of h
and v, such that

||v − Ihv||L2(Ω) ≤ Chs|v|Hs(Ω), (2.201)

|∇v −∇(Ihv)|H1(Ω) = ||∇v −∇(Ihv)||L2(Ω) ≤ Chs−1|v|Hs(Ω) . (2.202)

In our context, s is an integer that equals 1 or 2. We refer to, e.g. Ciarlet [30]
for derivation of (2.201)–(2.202) and many more general results regarding

248 2. Introduction to Finite Element Discretization

finite element interpolation. In finite element grids where the element size
h varies significantly, it is convenient to have h inside the norm [37]. For
example, the following estimate is needed in Chapter 2.10.7:

||h−1(v − Ihv)||L2(Ω) ≤ C||∇v||L2(Ω) = C|v|H1(Ω) . (2.203)

The constants C in (2.201)–(2.203) depend on properties of the mesh, as
explained next.

We restrict the attention to finite element grids consisting of linear trian-
gles. For each triangle K, we let hK be the diameter of K, here defined as
the longest side of K. Moreover, we define %K as the diameter of the circle
inscribed in K. The largest element size h is taken as the maximum of hK

over all triangles. The ratio %K/hK is a measure of the smallest angle in the
triangle. Because thin triangles are unfavorable for the accuracy of the inter-
polation operator, we shall demand that %K/hK is bounded from below by
a constant β, reflecting the smallest angle among all elements in the mesh.
The concept of β can be easily generalized to tetrahedral elements. The im-
portant information now is that the constants C in (2.201)–(2.203) depend
on β; reducing β increases C and thereby the interpolation error [65]. This
will have direct influence on the accuracy of the solution, as the forthcoming
Theorems 2.18 and 2.19 predict.

2.10.5 A Priori Error Estimates

We can combine the general approximation result (2.199) with the interpo-
lation results (2.201)–(2.202) to derive estimates for the discretization error
in the finite element method. For simplicity the attention is limited to the
Poisson problem from Example 2.12, discretized by linear triangular or tetra-
hedral elements.

Theorem 2.18. Error estimates for the derivatives. Suppose u ∈ H2(Ω) is
the solution to −∇2u = f in Ω ∈ IRd, with u = 0 on ∂Ω, and that this
problem is discretized by the Galerkin method, utilizing linear elements. Let
uh be the solution of the discrete problem. Then there is a finite constant C,
independent of the element size h, such that

|u− uh|H1(Ω) = ||∇u−∇uh|| ≤ Ch|u|H2(Ω) ≤ Ch||u||H2(Ω) (2.204)

||u− uh||H1(Ω) ≤ Ch|u|H2(Ω) . (2.205)

Proof. To prove (2.204), we start with the best approximation property
(2.197):

||u− uh||a ≤ ||u− v||a ∀v ∈ Vh .

Since

||v||a = a(v, v)
1
2 =

(∫

Ω

∇v · ∇v dΩ
) 1

2

= ||∇v||L2(Ω),

2.10. Analysis of the Finite Element Method 249

we have
||∇u−∇uh||L2(Ω) ≤ ||∇u−∇v||L2(Ω) ∀v ∈ Vh .

We can now choose v = Ihu ∈ Vh, since we have a bound on ||∇u −
∇(Ihu)||L2(Ω) from (2.202) in terms of the element size h:

||∇u−∇uh||L2(Ω) ≤ ||∇u−∇(Ihu)||L2(Ω) ≤ Ch||u||H2(Ω) .

The estimate (2.205) is shown similarly, but we start with the best approxi-
mation property (2.199). Choosing v = Ihu ∈ Vh and using (2.201),

||u− uh||H1(Ω) ≤
(
c1
c2

) 1
2

||u− Ihu||H1(Ω)

=

(
c1
c2

) 1
2 (
||u− Ihu||L2(Ω) + ||∇u−∇(Ihu)||L2(Ω)

)

≤ Ch|u|H2(Ω),

where C absorbs
√
c1/c2 and the constants from each of the estimates (2.201)

and (2.202). ut

The estimate (2.204) can be generalized to finite element basis functions of
order s:

||∇u−∇uh|| ≤ Chs||u||Hs+1(Ω) .

A standard finite difference scheme for Poisson’s equation with homoge-
neous Dirichlet conditions gives a truncation error of second-order in the grid
increments. From Chapter 2.7.3 we know that linear triangles reproduce the
standard 5-point finite difference representation of ∇2u in 2D. Therefore, we
would expect the error to be of order h2, because the truncation error is
O(h2), but the error estimate (2.205) is only of first order in h. The explana-
tion is that the H1 norm in (2.205) also contains terms with the derivatives of
u−uh. According to (2.204), these derivatives have only first-order accuracy.
A more optimal estimate would involve only the L2 norm of u− uh. Such an
estimate can indeed be derived, but the proof is more technical than what
we have seen so far, and a few additional requirements must be fulfilled.

Theorem 2.19. Error estimate in L2(Ω). Suppose we solve the same prob-
lem as in Theorem 2.18. Provided that Ω is a convex bounded domain, with
a polygonal boundary, and f ∈ L2(Ω), there exists a constant C, independent
of the element size h, such that

||u− uh||L2(Ω) ≤ Ch2|u|H2(Ω) . (2.206)

Proof. We start by considering the problem −∇2w = e in Ω, with w = 0 on
∂Ω. The function e is the error u− uh. For this problem we have a(w, v) =∫

Ω
∇w · ∇v dΩ and L(v) =

∫
Ω
ev dΩ. Hence, by choosing v = e we get

a(w, e) = L(e) = ||e||2L2(Ω) .

250 2. Introduction to Finite Element Discretization

We know from (2.198) that e is orthogonal to Vh,

a(e, v) = a(u− uh, v) = 0 ∀v ∈ Vh,

which gives

||e||2L2(Ω) = a(e, w) = a(e, w)− a(e, Ihw) = a(e, w − Ihw),

since Ihw ∈ Vh implies a(e, Ihw) = 0. Cauchy-Schwartz’ inequality can be
used to bound

a(e, w−Ihw) =

∫

Ω

∇e·(∇w−∇(Ihw))dΩ ≤ ||∇e||L2(Ω)||∇w−∇(Ihw)||L2(Ω) .

The second factor can be related to the interpolation error through (2.202),

||∇w −∇(Ihw)||L2(Ω) ≤ Ch|w|H2(Ω),

which means that

||e||2L2(Ω) ≤ ||∇e||L2(Ω)Ch|w|H2(Ω) .

A bound for the |w|H2(Ω) norm in terms of ||e||L2(Ω) can be obtained from a
regularity result for the Poisson equation −∇2u = f in Ω with u = 0 on ∂Ω.
The result tells that

||u||H2(Ω) ≤ Ĉ ||f ||L2(Ω)

for some finite constant Ĉ if Ω is a convex polygonal domain and f ∈ L2(Ω).
With this result we immediately have that

|w|H2(Ω) ≤ ||w||H2(Ω) ≤ Ĉ||e||L2(Ω) .

Summarizing so far,

||e||2L2(Ω) ≤ ||∇e||L2(Ω)CĈh||e||L2(Ω),

or by dividing by ||e||L2(Ω) and writing ∇e = ∇u−∇uh,

||e||L2(Ω) ≤ C̃h||∇u−∇uh||L2(Ω) .

Using (2.202), we can bound the right-hand side, which gives the desired
result:

||e||L2(Ω) ≤ Ch2|u|H2(Ω),

Now, C is a new constant that has absorbed various other constants, including
the interpolation constants that depend on the smallest angle in the mesh.

ut

2.10. Analysis of the Finite Element Method 251

Remark. Since we already know that the finite difference method and the
finite element method with linear elements are equivalent for the Poisson
equation on a uniform mesh (cf. Chapter 2.7.3), we can use (2.206) to esti-
mate the error, and not only the truncation error, of the corresponding finite
difference scheme.

2.10.6 Numerical Experiments

The Model Problem. It is interesting to see if the general theorems above
are in accordance with computational results in specific model problems.
Of particular interest is the convergence rate of the error as predicted by
Theorems 2.18 and 2.19.

The following d-dimensional model problem is considered:

−∇2u+ βu = f, x ∈ Ω = (0, 1)d, (2.207)

u = 0, x1 = 0, x1 = 1, (2.208)

∂u

∂n
= 0, xk = 0, xk = 1, k = 2, . . . , d . (2.209)

With

f(x1, . . . , xd) = (π2d+ β) sin πx1

d∏

j=2

cosπxj ,

the exact solution becomes

u(x1, . . . , xd) = sinπx1

d∏

j=2

cosπxj .

In this particular test example we shall examine the following norms of
the error e = u− uh:

||e||L1(Ω) =

∫

Ω

|e|dΩ,

||e||L2(Ω) =

(∫

Ω

e2dΩ

) 1
2

,

||e||L∞(Ω) = sup {|e(x)| |x ∈ Ω} ,

||e||H1(Ω) =

(∫

Ω

(
e2 +∇e · ∇e

)
dΩ

) 1
2

||e||a =

(∫

Ω

(
βe2 +∇e · ∇e

)
dΩ

) 1
2

.

We refer to these five norms as the L1, L2, L∞, H1, and energy norm, re-
spectively. When β ≥ 0, one can show that properties 1-6 are fulfilled and
that the theorems in the previous sections hold. Our perhaps most interesting

252 2. Introduction to Finite Element Discretization

result, the estimate of the L2 error in Theorem 2.19, was restricted to linear
elements and the Poisson equation with Dirichlet boundary conditions. We
therefore want to check if the same conclusions apply to our model problem,
and what type of results we achieve for quadrilateral elements of first and
second order. In addition, we want to see the effect of negative β values.

The Simulator. We have developed a Diffpack simulator for the current prob-
lem. The simulator class is called Poi2estimates and is a part of the Poisson2

solver, which is thoroughly explained in Chapter 3.5. The reader does not
need to look up the reference to various software tools used in this simula-
tor; the purpose now is just to apply a ready-made program. Diffpack offers
some convenient tools for estimating errors and corresponding convergence
rates, thus making it very simple to develop a flexible solver for problems like
(2.207)–(2.209) and compute quantities that are central in the mathematical
theory of finite elements.

Using Diffpack’s multiple loop functionality (explained in Chapter 3.4.2),
we can easily set up12 a simulation where we run through a sequence of
grids, with element size h = 0.25 · 2−k, for k = 0, 1, 2, 3, 4, using 4-node
bilinear and 9-node biquadratic elements, and varying β among −10, 0, and
1000. Convergence rates are estimated from two successive experiments as
explained in Chapter 3.5.9 or in Project 1.5.2.

We should remark that when β = −10, the coefficient matrix in the
linear system is not positive definite, thus requiring a solver that handles
such type of matrices. The Symmlq solver in Diffpack, combined with SSOR
preconditioning, worked satisfactorily for this and even less favorable negative
values of β. The Conjugate Gradient method with MILU preconditioning is
a good choice when β ≥ 0. A critical point when using iterative solvers
in numerical experiments for estimating convergence rates, is the choice of
termination criterion for the linear solver; we must ensure that the errors due
to approximate solution of the linear systems are negligible compared with
discretization errors. For the experiments here we stopped the iterations when
the initial residual was reduced by a factor of 10−10. Solvers and termination
criteria for linear systems are explained in Appendix C.

Computational Results. Tables 2.2 and 2.3 present convergence rates for dif-
ferent β values and choice of elements13. The convergence rates for the bilin-
ear element are in accordance with the theory of linear elements; that is, the
L2 norm of the error has second-order convergence, whereas the H1 norm of
the error, containing derivatives of u, has first-order convergence. Table 2.2
also shows that the L1 norm and the maximum error (L∞) give second-order
convergence, and that the energy norm rates are close to those of the H1

norm.

12 The appropriate input file for this experiment is found in the directory
src/fem/Poisson2/Verify/femtheory.i.

13 We remark that the tables were automatically generated by the simulation code.

2.10. Analysis of the Finite Element Method 253

Table 2.3 shows that biquadratic elements give convergence rates that are
one order higher than in the bilinear case. The reader is encouraged to learn
about the simulator in Chapter 3 and set up test cases involving triangular
elements of first and second order. One can also verify that the estimated
convergence rates are valid in any number of space dimensions.

The overall conclusion is that the theory in this chapter is in accordance
with at least one real-world example, and as far as discretization errors are
concerned, it seems that the convergence rates hold also in problems not cov-
ered by our exposition of the theory, e.g. the case β = −10 (cf. Exercise 2.24).

Table 2.2. Convergence rates of errors in the model problem (2.207)–(2.209).
Assuming that the error e behaves like e = Chr, where h is the distance
between two nodes in x-direction, we estimate r from two successive exper-
iments, see (1.83) on page 118. The column heading L1 indicates the rate r
associated with the L1 norm of the error, with similar interpretation of the
other headings (a denotes the energy norm). The simulations are based on
uniform grids with 4-node bilinear elements.

β h L1 L2 L∞ a H1

-10 1.2500e-01 1.95 1.92 1.86 0.96 1.02
-10 6.2500e-02 1.99 1.98 1.96 0.99 1.01
-10 3.1250e-02 2.00 1.99 1.99 1.00 1.00
-10 1.5625e-02 2.00 2.00 2.00 1.00 1.00

0 1.2500e-01 2.04 1.99 1.88 0.99 0.99
0 6.2500e-02 2.01 2.00 1.97 1.00 1.00
0 3.1250e-02 2.00 2.00 1.99 1.00 1.00
0 1.5625e-02 2.00 2.00 2.00 1.00 1.00

1000 1.2500e-01 3.04 3.02 2.90 1.10 1.02
1000 6.2500e-02 2.96 2.94 2.83 1.01 1.00
1000 3.1250e-02 2.83 2.79 2.65 1.00 1.00
1000 1.5625e-02 2.55 2.49 2.41 1.00 1.00

2.10.7 Adaptive Finite Element Methods

Computing the solution to a desired level of accuracy and at the same time
minimizing the computational resources, is the ultimate goal of numerical
simulation. Adaptive finite element methods constitute a means for reaching
this goal. To measure the accuracy, we need estimates of the error in the
numerical solution. For this purpose, a priori error estimates of the type we
have met in Theorems 2.18 and 2.19 can be applied. The error bounds involve,
unfortunately, the unknown solution u of the continuous problem. Alternative

254 2. Introduction to Finite Element Discretization

Table 2.3. See the caption of Table 2.2 for details. The difference here is
that the simulations make use of 9-node biquadratic elements.

β h L1 L2 L∞ a H1

-10 1.2500e-01 3.19 3.04 3.05 1.96 1.99
-10 6.2500e-02 3.06 3.02 3.06 1.99 2.00
-10 3.1250e-02 3.02 3.00 3.06 2.00 2.00
-10 1.5625e-02 3.01 3.00 3.04 2.00 2.00

0 1.2500e-01 2.99 2.88 2.65 1.98 1.98
0 6.2500e-02 3.00 2.97 3.02 2.00 2.00
0 3.1250e-02 3.00 2.99 3.03 2.00 2.00
0 1.5625e-02 3.00 3.00 3.02 2.00 2.00

1000 1.2500e-01 2.67 2.55 2.42 2.32 2.05
1000 6.2500e-02 2.91 2.88 2.94 2.29 2.02
1000 3.1250e-02 2.98 2.98 2.97 2.12 2.00
1000 1.5625e-02 3.00 3.00 3.00 2.03 2.00

a posteriori error estimates can be derived, where the error bounds involve
the computed solution uh.

Basic Ideas of Adaptive Algorithms. Suppose we can compute the exact error
eK in element K. If the overall target error for the computation is ε, we want
that

∑
K eK ≤ ε. Having a finite element mesh, we would like to construct a

new mesh, with the minimal number of nodes, such that
∑

K eK meets the
target error. This is actually a constrained nonlinear optimization problem.
To facilitate its solution, we can introduce an iteration over successively finer
grids. First, we need to estimate or bound the true error. The error bound
in such estimates normally have the form E =

√∑
K E2

K , where E2
K is the

contribution from element K. The estimates are only valid as the sum, but
it is common to use the local components E2

K of the sum as indicators for
the refinement of individual elements. That means that we locally employ
estimates of the form e2K ≤ E2

K . Of course, EK should be a computationally
attractive formula.

We let T j be the mesh in iteration j, that is, after j refinements of the
initial mesh. Furthermore, let m(T j) be the number of elements in T j . We
can then apply the values of EK in the current mesh T j to select the elements
to be refined. Applying a mesh refinement algorithm yields a new mesh T j+1.
The selection of elements to be refined is often based on the principle that
the error should be uniformly distributed throughout the mesh. Thus, we
aim at having E2

K ≤ ε2/mopt, where mopt is the number of elements in the
final (optimal) mesh. A natural consequence is that an element K is marked
for refinement if E2

K > ε2/m(T j). The iteration is stopped when the total
estimated error E is less than the target error ε, or when the number of

2.10. Analysis of the Finite Element Method 255

elements in the current mesh, m(T j), exceeds a prescribed maximum value
mmax. For practical computations we often choose ε = η||uh||a, where η
is a given tolerance for the relative error in the global energy norm, if the
energy norm is used for the estimate; otherwise we use alternative quantities
to make ε dimensionless. Another popular refinement strategy is to refine a
given percentage of the elements with the highest EK values. Algorithm 2.2
lists the basic steps in adaptive finite element computations.

Algorithm 2.2.

Adaptive finite element computation.

choose initial mesh T 0

for j = 0, 1, 2, . . . until E ≤ η||uh||a or m(T j) ≤ mmax

compute uh using current mesh T j

compute estimator EK in each element

if the total error E =
√∑

K E2
K > η||uh||a then

refine the elements K for which EK > η||uh||a/
√
m(T j)

Sophisticated local mesh refinement algorithms are needed to carry out
the subdivision of elements into new elements and construct a new finite
element grid. The plain application of such algorithms can be quite user-
friendly as we demonstrate in Chapter 3.7.

The algorithm above involves refinement only. If EK is less than the target
value in the element, one could instead coarsen the element, that is, merge it
with some of its neighbors. Especially in time-dependent problems this can
be an economical strategy.

A Priori Error Estimates and Adaptive Mesh Refinement. An error estimate
like (2.204),

|u− uh|H1(Ω) = ||∇u−∇uh|| ≤ Ch|u|H2(Ω)

might act as a starting point for defining E as Ch|u|H2(Ω). The estimated
error in element K could then be taken as EK = Ch|u|H2(K). Notice that
this formula involves the unknown global solution u. To get an approximation
of this quantity, we can attempt to numerically integrate the second-order
derivatives of uh over the element. This requires numerical approximation of
the second-order derivatives based on∇uh in a patch of neighboring elements.
However, it would be better to work with an estimate EK that involves the
approximation uh and only its derivatives in element K. Certain a posteriori
error estimates meet these demands.

An A Posteriori Error Estimate Based on the Residual. We consider the
Dirichlet problem

−∇2u = f in Ω, with u = 0 on ∂Ω . (2.210)

256 2. Introduction to Finite Element Discretization

From Example 2.12 we know that a(u, v) =
∫

Ω
∇u ·∇v dΩ, L(v) =

∫
Ω
fvdΩ,

the relevant space V is H1
0 (Ω), and properties 1-6 are fulfilled. Moreover, we

have a priori error estimates from Theorems 2.18 and 2.19.

Theorem 2.20. A posteriori error estimate in energy norm. The numerical
error e = u− uh in the finite element solution of the problem (2.210) fulfills

||e||a ≤ E ,

where the error estimator E is defined by

E2 =
∑

K

(
α

∫

K

h2R(uh)2dΩ + β

∫

∂K

hS [n · ∇uh]2dΓ

)
.

Here, K is an element, R(uh) = |f + ∇2uh| is the residual in an element,
the notation [g] denotes the jump of a quantity g over a side, h is the size of
the element, hS is the size of a side, n is the outward unit normal of a side
of the element, and α and β are interpolation constants that depend on the
element type. The integral over ∂K is omitted on boundaries with Dirichlet
values (u prescribed and e = 0).

Proof. We start with

||e||2a = a(e, e) = a(u, e)− a(uh, e) = L(e)− a(uh, e) .

We can add a(uh, v)− L(v) (=0) for any v ∈ Vh and obtain

||e||2a = L(e− v)− a(uh, e− v) .

The purpose now is to integrate the bilinear term by parts:

a(uh, e− v) =

∫

Ω

∇uh · ∇(e− v)dΩ

= −
∑

K

∫

K

(e− v)∇2uh dΩ +
∑

K

∫

∂K

(e− v)∂uh

∂n
dΓ,

where K denotes an element. The normal derivative of the solution, ∂u/∂n,
is continuous over the element boundaries, but ∂uh/∂n is in general not
continuous across elements; with linear triangles we know that the derivatives
of uh are constant in each element and thus discontinuous over the element
boundaries. For each common boundary S between two elements we can
introduce the jump in ∂uh/∂n by the notation [n ·∇uh]. Assuming that e−v
is continuous across S, we can write

∑

K

∫

∂K

(e− v)∂uh

∂n
dΓ =

∑

S

∫

S

[n · ∇uh](e− v)dΓ .

2.10. Analysis of the Finite Element Method 257

In the computation of these quantities it is convenient to have the S-integral
along each side of an element. This can be accomplished by distributing the
jump [n · ∇uh] equally between the two side integrals in the two elements
that share side S:

∑

S

∫

S

[n · ∇uh](e− v)dΓ =
∑

K

∫

∂K

1

2
[n · ∇uh](e− v)dΓ .

We can then summarize,

||e||2a =
∑

K

∫

K

(f +∇2uh)(e− v)dΩ +
∑

K

∫

∂K

1

2
[n · ∇uh](e− v)dΓ .

The next step is to estimate the size of the integrals. The standard procedure
is to choose v = Ihe, because e − v = e − Ihe can then be estimated using
interpolation results. Notice that Ihe is continuous across element boundaries,
so that e − v = e − Ihe is also continuous, which was a requirement when
forming the jump expression above. Let

IK = |
∑

K

∫

K

(f +∇2uh)(e− Ihe)dΩ| .

A slight rewrite gives

IK = |
∑

K

∫

K

(
h(f +∇2uh)

) (
h−1(e− Ihe)

)
dΩ| .

Introducing the residual R(uh) = f + ∇2uh on a triangle K, applying the
Cauchy-Schwarz inequality, then using the estimate (2.203), we can bound
IK :

IK ≤
(
∑

K

||hR(uh)||2L2(K)

) 1
2

||h−1(e− Ihe)||L2(Ω)

≤ C
(
∑

K

||hR(uh)||2L2(K)

) 1
2

||∇e||L2(Ω) .

The side integrals of the jumps can be estimated in a similar fashion [36,37],
but the steps are more technical (involving trace inequalities). The final result
takes the form

||e||2a ≤
∑

K

(
α

∫

K

h2R(uh)2dΩ + β

∫

∂K

hS [n · ∇uh]2dΓ

)
.

ut

258 2. Introduction to Finite Element Discretization

Theorem 2.20 is valid in any number of space dimensions and higher-order
elements. A possible choice of h is ∆1/d, where ∆ =

∫
K dΩ and d is the

number of space dimensions. Examples on calibrated values for α and β are
α = 0.1 and β = 0.15 (in the case of linear elements).

Considering a PDE −∇· [λ∇u] = f with u = 0 on the boundary and with
a variable coefficient λ(x), possibly with large discontinuities (located at the
element boundaries), the error estimator E can be generalized to

E2 =
∑

K

(
α

∫

K

λ−1h2R(uh)2dΩ + β

∫

∂K

hS(λ− + λ+)−1[λn · ∇uh]2dΓ

)
.

(2.211)
Now, R(uh) = |f + ∇ · (λ∇uh)|. Furthermore, λ+ and λ− are the limiting
values of λ at the common side in two neighboring elements.

The ZZ Estimator. The ZZ (Zienkiewicz-Zhu) estimator [154,155] has be-
come a popular error indicator for lower-order elements. Suppose the model
equation is −∇ · (λ∇u) = f . The energy norm is then

||v||2a = a(v, v) =

∫

Ω

λ∇v · ∇v dΩ = ||p||2L2(Ω),λ−1 , p = −λ∇v .

Here,

||p||2L2(Ω),k ≡
∫

Ω

kp · p dΩ

is a weighted L2-norm of the vector p. The original idea was to postulate
that

||e||2a ≤ C
∑

K

∫

K

||q∗ − qh||2L2(K),λ−1 , (2.212)

where C is a global constant, qh = −λ∇uh is the computed flux in an element,
and q∗ is a more accurate flux. The corresponding error indicator becomes
E2

K = ||q∗ − qh||2L2(K),λ−1 . The concept of a flux is not limited to the ∇ · λ∇
operator. For example, in elasticity q is typically the stress (σ in the notation
of Chapter 5.1.3).

A very simple choice of q∗ is the smoothed version of qh, using the
Galerkin, least-squares, or L2 projection methods in Chapter 2.8.1. A better
estimator arises when q∗ is based on the so-called super convergent patch
recovery procedure [8,156]. This method consists basically of fitting a local
polynomial approximation of q∗ to a set of discrete qh values in a patch of
elements. The ZZ estimator is related to certain residual estimators, see the
references in [8], but its attractive feature is the potential applicability to
widely different PDE problems. Unfortunately, the quality of the ZZ estima-
tor for measuring the true error can vary greatly, see [8] and [135].

2.10. Analysis of the Finite Element Method 259

Remarks. For wide application of adaptive finite elements based on a posteri-
ori error estimation one will need estimates in several norms, because different
applications demand monitoring the error in different norms. The residual-
based error estimators above can be generalized to other norms, for example,
the L∞ norm [36]. However, with the present lack of precise a posteriori er-
ror estimates in most challenging physical applications, one is often left with
more intuitive approaches to adaptive computations, like refining the grid
where the gradients are large or where one knows from physical insight that
the mesh should be dense (e.g. close to a singularity or a moving front). In the
case EK measures the error, which means that we have estimated numerical
values for the interpolation constants in the expressions for EK , the adaptive
procedure gives the possibility for error control; that is, the solution uh is
computed with a measureable accuracy E . When we lack precise estimates of
the interpolation constants or when we lack the precise form of the error es-
timator itself in a given problem, we can still use the structure of an existing
error estimator as a candidate formula for EK . This time EK does not reflect
the true level of accuracy in the element, but we may use the relative sizes
of the EK values for marking the elements to be refined. Quite simple, but
physically reasonable principles, can be used to define working EK formulas.
For example, EK can be the local mesh Peclet or Reynolds number. The ra-
tionale for this is to obtain a mesh where the local mesh Peclet or Reynolds
number is uniformly distributed, cf. Chapter 2.9. Other alternatives consist
in letting EK be the inverse distance to a singularity or to a steep front in
uh.

There are basically four categories of refinement methods:

1. h-refinement, consisting of subdividing elements,

2. p-refinement, where one locally increases the polynomial order p of the
basis functions Nj in uh =

∑
j ujNj ,

3. r-refinement, where the nodal positions are moved,

4. hp-refinement, which is a combination of h- and p-refinement.

Our present exposition has been restricted to h-refinement.
Some recommended literature for further introduction to a posteriori error

estimators and adaptive finite element algorithms is Eriksson et al. [36,37] and
Verfürth [145]. Babuska et al. [8] and Strouboulis and Haque [134,135] provide
an overview and evaluation of a wide range of error estimators for the Poisson
equation (and to a less extent also the equations of linear elasticity), with
comprehensive references to the specialized literature. These references focus
mainly on h-refinement methods. Szabo and Babuska [137] treat p-refinement
in detail, whereas an overview of theoretical and implementational issues of
hp-refinement methods is provided in papers from Oden’s group [34,106].

Chapter 3

Programming of Finite Element

Solvers

The present chapter explains the usage of Diffpack’s finite element toolbox.
The model problems are kept quite simple in order to concentrate on pro-
gramming details. In Chapters 3.1–3.8 we deal with the Poisson equation. A
trivial extension to the convection-diffusion equation is exemplified in Chap-
ter 3.9. Chapters 3.10–3.13 demonstrate that only minor extensions of the
Poisson equation solvers are needed to handle time-dependent problems, in
this case the heat equation. Finally, Chapter 3.15 brings in some new tools
for particularly efficient solution of PDEs with time-independent coefficients.
The required background for working with this chapter is knowledge of the
finite element method (at least the material corresponding to Chapters 2.1–
2.7) and basic concepts in C++ and Diffpack (at least Chapters 1.1–1.4,
1.6.1–1.6.3, and 1.6.5; Chapter 1.7 is also useful).

Only linear problems are treated in the present chapter. Finite element
solvers for nonlinear PDEs constitute the topic of Chapter 4.2, where we
reuse the tools from linear problems and basically only add some functionality
for administering an outer iteration loop. The application of these tools to
problems in fluid and solid mechanics is the subject of Chapters 5–7. When
you encounter the more advanced physical applications later in this book,
you will see that the Diffpack implementation is quite easy to understand
and develop further as soon as you are familiar with how to apply Diffpack
to Poisson- and heat/diffusion-type problems, i.e., Chapter 3.

The present chapter is comprehensive, and if the aim is to quickly get an
overview of how Diffpack can handle applications involving nonlinear time-
dependent problems, it is suggested to read Chapters 3.1, 3.2, 3.5.11, and 3.10,
before moving on to Chapter 4.2. The mentioned background material from
the present chapter is sufficient for reading Chapters 3.6 and 3.13, which are
step-by-step explanations of how one works with Diffpack to develop solvers
for a real physical (heat transfer) applications.

We recommend to view the introductory solvers Poisson0 and Poisson1 in
Chapters 3.1 and 3.2 as pedagogical steps towards a finite element program,
the Poisson2 solver in Chapter 3.5, that has sufficient flexibility for use in
research. A similar refinement of the solvers appear in the time-dependent
examples as well; Heat2 is the suggested solver to reuse.

262 3. Programming of Finite Element Solvers

3.1 A Simple Program for the Poisson Equation

We shall first deal with a scalar stationary PDE:

−∇ · [k(x)∇u(x)] = f(x), x ∈ Ω ⊂ IRd, (3.1)

u(x) = g(x), x ∈ ∂ΩE , (3.2)

where f(x), g(x), and k(x) are given functions, u(x) is the primary unknown,
and ∂ΩE is the complete boundary1 of the domain Ω. Our aim is to create
a short program, utilizing Diffpack’s finite element toolbox, to solve this
problem numerically.

3.1.1 Discretization

We assume that the reader is capable of formulating a finite element method
for the boundary-value problem (3.1)–(3.2). Therefore, we here simply state
the element matrix and vector contributions in local coordinates, denoted by

Ã
(e)
i,j and b̃

(e)
i , respectively:

Ã
(e)
i,j =

∫

Ω̃

k∇Ni · ∇Nj det J dξ1 · · · dξd, (3.3)

b̃
(e)
i =

∫

Ω̃

fNi det J dξ1 · · · dξd . (3.4)

Here, Ω̃ is a reference element in local coordinates ξ = (ξ1, . . . ξd), Ni denotes
a finite element basis function, and J is the Jacobian matrix of the mapping
between the coordinates in the reference and physical domains. The integrals
are usually computed by numerical integration, resulting in expressions like

Ã
(e)
i,j ≈

nI∑

k=1

Ii,j(ξk)wk , (3.5)

b̃
(e)
i ≈

nI∑

k=1

Ki(ξk)wk . (3.6)

The symbol Ii,j(ξk) represents the integrand in (3.3), evaluated at the nu-
merical integration point ξk, with a corresponding interpretation of Ki(ξk).
Moreover, wk is the weight at the kth integration point. When solving a prob-
lem by means of Diffpack, it is only necessary to implement the expressions
Ii,j(ξk)wk and Ki(ξk)wk :

Ii,j(ξk)wk = [k∇Ni · ∇Nj det J]ξ=ξ
k

wk , (3.7)

Ki(ξk)wk = [fNi det J]ξ=ξ
k

wk . (3.8)

1 As in Chapter 2, we use the subscript E to indicate essential boundary conditions.

3.1. A Simple Program for the Poisson Equation 263

The notation []ξ=ξ
k

means that the expression inside the brackets is to be

evaluated at integration point no. k in the reference element.
The implementation of (3.7) and (3.8) is performed in a routine

void integrands (ElmMatVec& elmat, const FiniteElement& fe);

The object fe contains Ni, ∇Ni, det J · wk and other useful quantities, such
as the global coordinates x of the current integration point. The user must
provide functions for f(x) and k(x). The purpose of integrands is then to
add the contributions Ii,jwk and Kiwk to the element matrix, represented
by the Mat(real) structure elmat.A, and the element vector, represented by
the Vec(real) structure elmat.b. In case of a 2D problem, x = (x, y) and

∇Ni · ∇Nj =
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y
,

the “heart” of a Diffpack program for solving (3.1)–(3.2) is typically coded
like this in the integrands routine:

elmat.A(i,j) += k(x,y)*(fe.dN(i,1)*fe.dN(j,1)

+ fe.dN(i,2)*fe.dN(j,2))*fe.detJxW();

elmat.b(i) += f(x,y)*fe.N(i)*fe.detJxW();

This outline of integrands demonstrates the close connection between the
Diffpack C++ code and the numerical expressions.

3.1.2 Basic Parts of a Simulator Class

In order to solve the boundary-value problem numerically by the finite el-
ement method, the user must supply a problem-dependent class containing
information about the PDE, the boundary conditions, the discretization, data
structures for grids and fields, etc. This class is often referred to as the solver
class or the simulator class. We have previously introduced this concept in
Chapter 1.7, but then in the context of finite difference methods.

The simulator class must be a subclass of FEM when we use the finite
element method for the spatial discretization. The predefined library class
FEM contains data and default versions of algorithms that are frequently used
in finite element programs. At the moment it is enough to know that the finite
element “engine” is administered by class FEM and that some of the functions
in class FEM need to have information about the boundary-value problem to
be solved. This information is provided by functions in the simulator class.

Let the name of the simulator class be Poisson0. The class should provide
the following main functions.

– A routine scan which reads information about the finite element partition
of the computational domain. For simplicity, we restrict the shape of

264 3. Programming of Finite Element Solvers

the domain to be the unit square, Ω = (0, 1) × (0, 1). A preprocessor
(grid generator) is used to generate the finite element mesh. In the scan

function we also dynamically allocate some large objects (fields and linear
systems/solvers) whose sizes depend on the grid.

– A routine fillEssBC which sets the essential boundary condition u = g
on ∂ΩE .

– A routine integrands which samples the integrands in the element matrix
and vector at a numerical integration point. In other words, the Ii,jwk

andKiwk expressions (3.7)–(3.8) are evaluated as briefly described above.
The assembly process and the numerical integration are administered
automatically by a function makeSystem in class FEM.

– A main routine solveProblem which calls the routines scan, fillEssBC,
makeSystem (in FEM) and LinEqAdmFE::solve (a function for solving linear
systems).

– A routine resultReport for automated reporting of selected results, e.g.,
the differences between the numerical and the analytical solution in a test
case.

The data members in class Poisson0 will typically be

– a finite element grid object of type GridFE,

– a finite element field object of type FieldFE for representing the scalar
field u over the grid,

– an object of type LinEqAdmFE containing the linear system in the current
problem and various solvers for linear systems,

– a degree of freedom handler object of type DegFreeFE that transforms the
field values of u into a vector of unknowns in the linear system2.

The definition of class Poisson0 is placed in a header file Poisson0.h, which
is listed below3.

// Simple FEM solver for the 2D Poisson equation

#ifndef Poisson0_h_IS_INCLUDED

#define Poisson0_h_IS_INCLUDED

#include <FEM.h> // FEM algorithms, class FieldFE, GridFE

#include <DegFreeFE.h> // degree of freedom book-keeping

#include <LinEqAdmFE.h> // linear systems: storage and solution

class Poisson0 : public FEM

2 This transformation is simply the identity mapping in the present example. How-
ever, when solving systems of PDEs the transformation might be complicated.

3 The Handle(X) construction can be read as a pointer declaration X* and is ex-
plained right after the class definition.

3.1. A Simple Program for the Poisson Equation 265

{

protected:

// general data:

Handle(GridFE) grid; // pointer to a finite element grid

Handle(DegFreeFE) dof; // trivial book-keeping for a scalar PDE

Handle(FieldFE) u; // finite element field, primary unknown

Vec(real) linsol; // solution of the linear system

Handle(LinEqAdmFE) lineq; // linear system: storage and solution

void fillEssBC (); // set boundary conditions u=g

virtual void integrands // evaluate weak form in the FEM-equations

(ElmMatVec& elmat, const FiniteElement& fe);

public:

Poisson0 ();

~Poisson0 () {}

void scan (); // read and initialize data

void solveProblem (); // main driver routine

void resultReport (); // write comparison with analytical sol.

real f (real x, real y); // source term in the PDE

real kf(real x, real y); // coefficient in the PDE

real g (real x, real y); // essential boundary conditions

};

#endif

Let us for convenience explain most of the details of this header file, despite
the fact that many of the topics are dealt with in Chapter 1. The #include

lines have the effect of making the classes FEM (and implicitly FieldFE and
GridFE), DegFreeFE, and LinEqAdmFE available.

In Diffpack we try to avoid primitive C/C++ pointers. Instead we use a
Diffpack tool called handle. Actually, a handle is a normal C++ pointer with
a few additional “intelligent” features. The main reason for using handles
is that they make the management of dynamic memory simple and reliable.
Handles were introduced in Chapter 1.7, but we briefly repeat some of the
most important syntax here for immediate reference. Statements of the type

Handle(X) x;

declare a handle x to an object of class X. This handle is initially empty, which
actually means that it is a null pointer. To let a handle point to an object of
class X, we use the rebind function:

x.rebind (new X(...));

where the dots indicate possible arguments to the X constructor. When using
handles, the programmer can create objects where desired and forget about

266 3. Programming of Finite Element Solvers

deallocation: The handle will automatically delete the objects when they are
no longer in use. Having a Handle(X) x, *x or x() denotes the X object itself
(one can also write x.getRef() as an alternative). The *x (or x()) construction
must be used in calls to functions requiring an X& argument.

We now turn to the contents of the functions in class Poisson0. The func-
tions are written for a 2D problem, but the Diffpack tools for finite element
programming make it easy to develop code that can run unaltered in 1D, 2D,
and 3D (and even in higher dimensions). The statements that must be altered
to obtain one code that runs both in 1D, 2D, and 3D, are marked with the
comment 2D specific. We will modify these statements in a more advanced
version of class Poisson0 in order to obtain “dimension-independent” code.

The algorithms of the various functions are presented first. Thereafter we
show the corresponding Diffpack code.

The scan function:
1. Read information about the number of nodes in the x- and

y directions.
2. Read information about the element type.
3. Construct input strings to the box preprocessor, specifying the

domain, the partition, and the element type.
4. Call the box preprocessor to generate the grid.
5. Set u to point to a new finite element field over the grid.
6. Set dof to point to a new DegFreeFE object.
7. Set lineq to point to a new LinEqAdmFE object.
8. Redimension the unknown vector in the linear system and

attach it to lineq.

The code might look like this:

void Poisson0:: scan ()

{

// extract input from the command line:

int nx, ny; // number of nodes in x- and y-direction

initFromCommandLineArg ("-nx", nx, 6); // read nx, default: nx=6

initFromCommandLineArg ("-ny", ny, 6);

String elm_tp;

initFromCommandLineArg ("-elm", elm_tp, "ElmB4n2D");

// the box preprocessor requires input on the form (example):

// geometry: d=2 [0,1]x[0,1]

// partition: d=2 elm= ElmB4n2D div=[4,4] grading=[1,1]

String geometry = "d=2 [0,1]x[0,1]"; // 2D specific

String partition = aform("d=2 elm=%s div:[%d,%d] grading:[1,1]",

elm_tp.c_str(),nx-1,ny-1); // 2D specific

grid.rebind (new GridFE()); // make an empty grid

3.1. A Simple Program for the Poisson Equation 267

PreproBox p; // preprocessor for box-shaped domains

p.geometryBox() .scan (geometry); // initialize the geometry

p.partitionBox().scan (partition); // initialize the partition

p.generateMesh (*grid); // run the preprocessor

u.rebind (new FieldFE (*grid,"u")); // allocate, set name="u"

dof.rebind (new DegFreeFE (*grid, 1)); // 1 unknown per node

lineq.rebind (new LinEqAdmFE()); // Ax=b system and solvers

linsol.redim (grid->getNoNodes()); // redimension linsol

lineq->attach (linsol); // use linsol as x in Ax=b

// banded Gaussian elimination is the default solver in lineq

}

A significant portion of this function concerns string manipulation. The state-
ments should be self-explanatory and demonstrate how one can flexibly con-
struct strings in Diffpack. Functions like aform and initFromCommandLineArg

are covered in Chapters 1.3 and 1.7. More information on grid generation and
variations of the input to the box preprocessor is given in the report [77], but
the syntax used in the geometry and partition strings in scan is explained in
detail on page 278.

The fillEssBC function:
1. Initialize assignment of essential boundary conditions.
2. for i = 1 to the number of nodes in the grid:

3. if this node is on the boundary
4. set the essential boundary condition.

void Poisson0:: fillEssBC ()

{

dof->initEssBC (); // init for assignment below

const int nno = grid->getNoNodes(); // no of nodes

Ptv(real) x; // a nodal point

for (int i = 1; i <= nno; i++) {

// is node i subjected to any boundary indicator?

if (grid->boNode (i)) {

x = grid->getCoor (i); // extract coor. of node i

dof->fillEssBC (i, g(x(1),x(2))); // u=g at boundary nodes

}

}

dof->printEssBC (s_o, 2); // debug output

}

The Ptv(real) class is in principle a vector like ArrayGen and Vec (or rather
VecSimple), but the Ptv type is optimized for vectors of length 1, 2, and 3,
representing spatial points. The syntax of basic operations coincides with that

268 3. Programming of Finite Element Solvers

of other vector classes in Diffpack. See Chapter 1.6.3 for more information
about Diffpack arrays.

The implementation of other types of boundary conditions, e.g., different
Dirichlet conditions or prescribed flux −k∂u/∂n, is treated in Chapters 3.5.1
and 3.5.2.

The integrands function:
1. Evaluate the Jacobian determinant times the integration weight.
2. Find the global coordinates of the current integration point.
3. Evaluate the f and k functions at this global point.
4. for i = 1 to the number of basis functions (element nodes)

5. for j = 1 to the number of basis functions
6. Add the appropriate value to the element matrix.

7. Add the appropriate value to the element vector.

void Poisson0::integrands (ElmMatVec& elmat,const FiniteElement& fe)

{

const real detJxW = fe.detJxW(); // Jacobian * intgr. weight

// find the global coord. xy of the current integration point:

Ptv(real) xy = fe.getGlobalEvalPt();

const real x = xy(1); const real y = xy(2); // 2D specific

const real f_value = f(x,y); // 2D specific

const real k_value = kf(x,y); // 2D specific

int i,j;

const int nbf = fe.getNoBasisFunc(); // = no of nodes in element

for (i = 1; i <= nbf; i++) {

for (j = 1; j <= nbf; j++)

elmat.A(i,j) += k_value*(fe.dN(i,1)*fe.dN(j,1) // 2D specific

+ fe.dN(i,2)*fe.dN(j,2))*detJxW;

elmat.b(i) += fe.N(i)*f_value*detJxW;

}

}

We use declarations like const int nbf to indicate that nbf is a constant,
i.e., it gets its value in the declaration statement and will not be changed
later. Looking at the argument list to integrands, we see that fe is const and
therefore an input parameter, whereas elmat is an output parameter since it
is not const and can hence be changed by the routine. Comprehensive use of
const is an important aspect of documenting C++ codes. See Chapter 1.6.2
for a quick introduction to the const concept.

Looking at the integrands function, we see that it is not coded in an
optimal way. Symmetry of the element matrix should be exploited, and we
should move invariant arithmetic expressions outside the loops. Nevertheless,
since we want a close relationship between the integrands expressions and

3.1. A Simple Program for the Poisson Equation 269

the numerical formulas, and easy extension to PDEs leading to nonsymmetric
matrices, we shall present compact and quite general integrands functions
throughout this book. The reader should know that after a finite element
solver has been thoroughly verified, the programmer can use the techniques
from Appendix B.7 to improve the computational performance.

The solveProblem function:
1. Call fillEssBC to assign boundary conditions.
2. Call makeSystem (inherited from FEM) to generate the linear system.
3. Initialize the values of linsol.
4. Call lineq->solve to solve the linear system of equations.
5. Load the solution (linsol) into the field u.

Point 3 deserves perhaps a comment. Normally, iterative solution methods
are used for the linear systems (see Appendices C and D). The current con-
tents of the solution vector we attached to lineq (i.e. linsol) constitute the
initial guess for the iterative solver. Therefore, it is crucial to initialize linsol

prior to calling lineq->solve. Here we shall just set all the values of linsol

to zero. In the present case, where we use a direct solver, banded Gaussian
elimination, and there is no use for the start vector, performing the initial-
ization is a good habit and makes the program ready for efficient iterative
solution methods.

270 3. Programming of Finite Element Solvers

void Poisson0:: solveProblem () // main routine of class Poisson0

{

fillEssBC (); // set essential boundary conditions

makeSystem (*dof, *lineq); // assembly algorithm from class FEM

linsol.fill (0.0); // init start vector (good habit)

lineq->solve(); // solve linear system

dof->vec2field (linsol, *u); // load solution (linsol) into u

}

Since we view u as the basic quantity we want to compute, we should load the
solution of the linear system into u. In the present simple problem, the linsol

vector and the nodal-values vector are identical and we could have written4

u->values()=linsol. However, in more complicated problems, the loading of
the linear system solution into a field representation may involve nontrivial
bookkeeping and data shuffling. It is the responsibility of the DegFreeFE object
dof to control the mapping between the field representation of the unknown
functions and the vector of degrees of freedom in the linear system. The call
to dof->vec2field will always work and is introduced here as yet another
good habit.

The resultReport function is so simple that no further details are neces-
sary at this stage.

Remark. In general, it is convenient to store the nodal values and the linear
system unknowns in separate vectors as we have outlined (u->values() and
linsol). However, for the present stationary scalar PDE, we could save the
memory associated with linsol by letting the linear system operate directly
on the nodal-values vector. That is, we could remove the linsol vector and
associated statemements, attach u->values() to the lineq object, and ini-
tialize u->values() prior to calling the linear solver. It is a good exercise for
novice C++ and Diffpack programmers to perform this modification to the
Poisson0 code and check that the numerical results remain unaltered.

The reader who is interested in what is going on inside Diffpack’s finite
element engine, and especially in the makeSystem function, can consult Ap-
pendix B.6.1.

As a specific example for testing the program, we choose

f(x, y) = −2x(x− 1)− 2y(y − 1), g(x, y) = 0, k(x, y) = 1 .

It is then easy to verify that u(x, y) = x(x − 1)y(y − 1) is the analytical
solution of (3.1)–(3.2). The f, g, and k functions take the simple forms

4 The basic principles, content, syntax of class FieldFE is similar to those of class
FieldLattice (see Chapter 1.6.5). For example, FieldFE objects have a function
values for returning access to Vec(real) object containing the nodal point values
of the field.

3.1. A Simple Program for the Poisson Equation 271

real Poisson0:: f (real x, real y) // 2D specific

{ return -2*x*(x-1)-2*y*(y-1); }

real Poisson0:: g (real /*x*/, real /*y*/) // 2D specific

{ return 0; }

real Poisson0:: kf (real /*x*/, real /*y*/) // 2D specific

{ return 1; }

The arguments in the g and k function might look strange. Since neither x

nor y is used in g and k, compilers will flag these arguments as “not used”
and issue a warning if we do not omit the argument names or enclose them
in C-style comments /* */. Notice that there are two types of comments in
C++: // for comment on the rest of the current line and /* */ for arbitrary
comments. We recommend applying // because this allows later use of /* */

to leave out large code sections even if they contain // comments.
Some readers may find it more appropriate to implement f , g, and k

in (3.1) as global functions instead of member functions in Poisson0. Nev-
ertheless, we claim that it is advantageous that problem-dependent explicit
functions are made member functions of the problem class. The main reason
is that these functions may need access to problem-dependent parameters
that are data items in the class. With a separate global function, these pa-
rameters must be transferred as additional arguments or as global variables5.
In the present example, the f , g, and k functions are so simple that we do
not need the flexibility of having them as class members; we do it just to
conform to a common Diffpack programming standard.

Finally, we list the small main program for the present model problem:

#include <Poisson0.h>

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

Poisson0 simulator; // make a simulator object

simulator.scan (); // read and initialize data

simulator.solveProblem (); // main routine: compute the solution

simulator.resultReport (); // compare with exact solution

return 0;

}

The complete code for the Poisson0 solver is found in src/fem/Poisson0. Copy
that directory to your local directory tree and compile the application (see
Appendix B.2 for details). Run the program without giving any command-
line arguments. This results in the default mesh with 5 × 5 bilinear ele-

5 One can alternatively use the functor concept for f , g, and k, as explained in
Chapter 1.7.2.

272 3. Programming of Finite Element Solvers

ments and 6×6 nodes. The output of the program should conform to the file
Verify/test1.r.

We do not recommend using the present program to solve similar prob-
lems, because there are too many restrictions in the code, which will soon
require significant additional programming when attacking more complicated
stationary PDEs. The program given in the next section is a much better
starting point.

Exercise 3.1. .
Modify class Poisson0 to solve

vx
∂u

∂x
= ∇2u+ c

with u = 0 on the boundary. The parameters vx and c are constants to be
given on the command line.

Plot solution, using Plotmtv, for partial verification of the implementa-
tion:

#include <SimRes2mtv.h> # convert field to plotmtv format

#include <OpSysUtil.h> # operating system interface

...

// at the end of solveProblem():

SimRes2mtv::plotScalar (*u, "u.mtv");

OpSysUtil::execute ("plotmtv -3d u.mtv");

Determine if the solution is qualitatively correct.
Matlab can alternatively be used for plotting:

#include <SimRes2matlab.h>

...

// at the end of solveProblem():

SimRes2matlab::plotScalar (*u, "u.mlb", "FILE=mscript.m");

Invoke Matlab and type mscript. �

3.2 Increasing the Flexibility

One of the strengths of Diffpack is that a few minor changes of the simple
program like the one in the previous section, can increase the flexibility of the
program dramatically. The gain is a simulator that makes you more produc-
tive when exploring mathematical models through numerical experiments.
Another advantage of increasing the flexibility is that the code becomes eas-
ier to reuse in related problems. Our idea of this tutorial on finite element
software tools is to introduce more general classes and concepts than what is
strictly needed to solve the particular PDE at hand. In this way we develop

3.2. Increasing the Flexibility 273

a working habit of generalizing the problem formulations and its solution
methods such that the implementation techniques as well as the code itself
can be reused in a wide range of problems. You will experience that the sta-
tionary template solver Poisson1 presented in this section, and in particular
the extended solver Poisson2 to be presented in Chapter 3.5, can be applied
with very small adjustments in many problems involving scalar stationary
PDEs. Although you might see alternative ways of programming a particular
feature, we encourage you to stick to our suggested source code constructions,
because these are carefully chosen to enable easy transition from simple Pois-
son equation solvers to simulators for complicated mathematical models.

In the Poisson1 solver we have focused on the following extensions of class
Poisson0:

– making the simulator valid for 1D, 2D, and 3D problems,

– using a menu system for convenient assignment of input parameters,

– storing the solution and other fields for later visualization,

– enabling access to some simple grid generation tools,

– allowing automatic execution of several combinations of input parame-
ters, e.g., for studying parameter sensitivity or convergence,

– computing the error field and various associated norms.

The source code for the Poisson1 solver is found in src/fem/Poisson1. You
should have the source code at hand before continuing with the forthcoming
material.

3.2.1 A Generalized Model Problem

We extend our test problem from the last section to d space dimensions,
where d is a parameter that can be chosen at run time. The program can be
debugged for d = 1, and in principle a 2D, 3D, and even higher-dimensional
solver is thereafter available.

Let us choose f(x), g(x), and k(x) in the boundary-value problem (3.1)–
(3.2) such that

u(x1, . . . , xd) =

d∑

j=1

Aj sin(jπxj) .

Then we can take g(x) as u(x), set k = 1, and let the right-hand side be given

by f(x) =
∑d

j=1 j
2π2Aj sin(jπxj). The parameters A1, . . . , Ad are arbitrary

and can be specified by the user of the program.
By using Ptv(real) and Ptv(int) vectors for spatial points and indices,

respectively, it is easy to write code that can work in any number of space
dimensions. Typically, a point x = (x1, . . . , xd) or a set of parameters like
A1, . . . , Ad are represented by Ptv(real) objects. Recall that the statements
originally restricted to the two-dimensional problem of Chapter 3.1 were

274 3. Programming of Finite Element Solvers

marked with special comments in the source code of class Poisson0. Gen-
eralizing these statements is a matter of introducing Ptv objects.

3.2.2 Using the Menu System

In Diffpack we usually apply a menu system for feeding data into the program.
This saves considerable coding effort and offers enhanced flexibility.

Running an Application with the Menu System. Suppose you are in the
Poisson1 directory and have the executable app available. Writing just ./app

on the command line leads to a prompt, and the program waits for input
data to the menu system. Commands to the menu system may be conve-
niently placed in a file. The file test1.i in the Verify subdirectory is an
example on a very simple set of menu commands6:

set gridfile = P=PreproBox| d=2 [0,1]x[0,1]| d=2 e=ElmB4n2D [5,5] [1,1]

set A parameters = 2 1

ok

To run the Poisson1 solver with test1.i as input, simply write

./app --casename g5x5 < Verify/test1.i

The results that are printed on the screen can be compared with reference
results in Verify/test1.r. In the present example, the casename g5x5 reflects
a simulation with a 5 × 5 grid (cf. the gridfile item in test1.i). All files
generated by the Diffpack libraries during the execution will have the stem
g5x5 in their names such that they are easy to locate, move, or delete.

The forthcoming paragraphs explain how to program with the menu sys-
tem and access various types of user interfaces.

Overview of Programming with the Menu System. We need to perform the
following modifications of class Poisson0 in order to utilize the Diffpack menu
system:

– The various menu items must be defined in a function

void Poisson1::define (MenuSystem& menu, int level = MAIN);

– The menu answers must be read from the menu system and loaded into
the local data structures in the simulator using the function

void Poisson1::scan ()

6 The syntax of the answer to the gridfile item is explained in Chapter 3.2.3.

3.2. Increasing the Flexibility 275

– The function

void Poisson1::adm (MenuSystem& menu)

administers the calls to define and scan in addition to prompting the
user for input data.

– The main program must initialize the global menu object right after hav-
ing called initDiffpack:

global_menu.init ("Flexible Poisson simulator","Poisson1");

– The execution of the solver can in main be performed by

global_menu.multipleLoop (simulator);

where simulator is a Poisson1 object. The multipleLoop function in the
menu system administers the call to adm for setting up the menu and
initializing the simulator, the call to solveProblem for computing a nu-
merical solution, and the call to resultReport for reporting key results
from the simulation.

Details of Menu System Programming. Here is an example of typical state-
ments in the define and scan functions.

void Poisson1:: define (MenuSystem& menu, int level)

{

menu.addItem (level, // menu level: level+1 is a submenu

"gridfile", // menu command/name

"file or preprocessor command", // help/description

"mygrid.grid"); // default answer

menu.addItem (level, // menu level: level+1 is a submenu

"A parameters", // menu command/name

"A_1 A_2 ... in f expression", // help/description

"3 2 1"); // default answer

// submenus:

LinEqAdmFE::defineStatic (menu, level+1); // linear solver

FEM::defineStatic (menu, level+1); // num. integr. rule etc

SaveSimRes::defineStatic (menu, level+1); // storage of fields

}

A fundamental feature of programming with the menu system can here be
seen; we add menu items related to problem-dependent data in detail, whereas
menus regarding modules in the Diffpack libraries are automatically gener-
ated by the defineStatic (or define) function of library classes. By specifying

276 3. Programming of Finite Element Solvers

the argument level+1, we force the menus for linear solver storage and so-
lution, numerical integration rules, and storage of fields on file to appear as
submenus.

The reading of menu items is performed in the scan function.

void Poisson1:: scan ()

{

MenuSystem& menu = SimCase::getMenuSystem();

String gridfile = menu.get ("gridfile");

...

A.scan (menu.get ("A parameters")); // A is a Ptv(real)

lineq->scan (menu); // LinEqAdmFE reads the menu

}

The first statement provides access to the menu system data base7. The
menu.get call returns a String object. Sometimes this is sufficient; one either
expects a string like gridfile or one can pass the menu answer string to an
object’s scan function8. In other occasions one needs to read an int or a real

from the menu. This is exemplified as follows:

int n = menu.get ("number of nodes").getInt();

real r = menu.get ("diffusion parameter").getReal();

bool b = menu.get ("plot solution").getBool();

There are only two menu commands in the test1.i file. The menu items
that are requested in scan functions, but not specified in the input file, will
get their default values as answers. For example, all parameters related to
linear system storage and solution remain at their default values when using
test1.i as input.

User Interfaces to the Menu System. The menu system can be operated
in several ways. You can put command statements in a file, you can use
command-line options, or you can use a graphical user interface. A particular
menu item is recognized by its command name, so when you are using files,
you will typically write instructions like

set A parameters = 1.0 2.3 ! A_1 and A_2 in a 2D problem

7 We do not need to write the prefix SimCase:: – this is done to explicitly state
where the function is defined, since class SimCase is a base class of FEM and
therefore does not explicitly appear in the class definition of finite element solvers
like Poisson1 See also Figure B.5 on page 759.

8 In the A.scan call, the String object returned from menu.get is automatically
converted to an Is object that can be used for reading in Ptv(real)::scan(Is),
see Appendix B.4.3.

3.2. Increasing the Flexibility 277

When you use the instruction set A parameters =, the rest of the line is
treated as the answer. The first = sign always divides the line into the com-
mand name part (before) and the answer part (after). All text after the
exclamation mark ! is treated as comments.

The graphical menu interface offers in the present case a label A parameters

and a text field where you can fill in the answer. Alternatively, you can assign
input data through command-line arguments; writing --A parameters ’1.0

2.3’ on the command line initializes A to (1.0, 2.3). Sufficient information
on how to interact with the menu system through the graphical interface or
command-line options appears in Chapter 3.4.1.

Static Define Functions. A part of the Diffpack programming standard is
that each class defines its own menu items. In other words, most library
classes that require input data, have define and scan functions that work
with a MenuSystem object. Sometimes the programmer wants to define the
menu items of an object that is not yet created. This is the case in class
Poisson1; when define is executed, the lineq handle is empty and there is no
LinEqAdmFE object. The defineStatic function is always a static version [10,
Ch. 6.9] of define that can be called without having created an object of that
class. The define function in class Poisson1 demonstrates a call statement to
the defineStatic function in class LinEqAdmFE. In C++, one can call a static
function f() in a class X by saying X::f(). This means that you do not need
an instance x of X to perform the call (i.e. x.f()). The FEM::defineStatic call
could equally well be FEM::define, since FEM is a base class of Poisson1 and
the object is fully created when issuing the call9. Most library classes have a
static function defineStatic in addition to define.

Unfortunately, there is not yet any support for automatic detection of
incompatible parameter settings. The menu system is therefore aimed at users
who have a certain knowledge of Diffpack, the mathematical and numerical
methods that are applied, and the particular application program. However,
the flexibility of the menu system allows you to build your own user interface
on top of Diffpack, e.g., with the aid of scripting languages like Perl, Python,
or Tcl/Tk. An example on an interface is provided in Chapter 3.12.9. With
such interfaces tailored to a particular application, you can build in intelligent
choices of default values and check for compatibility of the input parameters.
You can also integrate grid generation and visualization tools and create a
special-purpose problem solving environment.

With the test1.i input file listed previously, we rely on default values for
most of the menu items. Some basic questions immediately arise:

1. How can we provide our own set of default values?

9 Notice that writing only define implies a call to Poisson1::define (i.e. the
define function of the current object). The prefix FEM:: is therefore required to
access a function with the same name in the base class.

278 3. Programming of Finite Element Solvers

2. How can we obtain documentation of the actual default values employed
for all the menu answers that we do not explicitly set in the input file? For
example, what type of matrix storage and linear system solver is actually
implied by the default values? (You should not be surprised if Gaussian
elimination on banded matrices is the answer!)

3. How can one construct a more comprehensive set of menu commands
than what is exemplified in the test1.i file above?

4. How can we operate the graphical interface to the menu system, where
we more easily can see the available menu commands?

All these questions are covered in Chapter 3.4.1, but to get started with the
menu system, the self-explanatory examples provided in the present section
are sufficient.

3.2.3 Creating the Grid Object

The gridfile item on the menu enables reading a ready-made grid on file10

or running a preprocessor for generating a new grid. Having extracted the
menu answer and stored it in the string gridfile, the grid object is initialized
by calling readOrMakeGrid:

readOrMakeGrid (*grid, gridfile);

If gridfile contains a string of the form

P=pre | geometry-string | partition-string

the preprocessor pre, usually a class in the Diffpack libraries, will be called to
generate the mesh, based on information about the geometry of the domain
and the partition. Strings not following the syntax above are assumed to
contain the name of a grid file, which is then read by the readOrMakeGrid

function (using GridFE::scan).

The Box Preprocessor. The simplest preprocessor is class PreproBox, which
generates box-shaped grids (interval in 1D, rectangle in 2D, and box in 3D).
For example,

P=PreproBox | d=2 [0,1]x[0,1] | d=2 e=ElmB4n2D div=[6,8] g=[1,1]

generates a 2D grid (d=2) over the unit square [0, 1] × [0, 1], with bilinear
elements (ElmB4n2D), and 6×8 intervals between nodes in the x and y direction.
The last command, g=[1,1], indicates a grading or stretch factor. A unit value
leads to a uniform mesh. The “variable names” d, e, div, and g given in the
string above can be arbitrary; they are only meant to enhance the readability.

10 The format must correspond to that produced by the GridFE::print function.
There are filters from other grid formats to Diffpack’s format.

3.2. Increasing the Flexibility 279

The grading is mathematically performed as follows. First, the box pre-
processors generates a uniform mesh on the hypercube

[µ−
1 , µ

+
1]× · · · × [µ−

x , µ
+
d] .

Then each node with coordinates (z1, . . . , zd) in this mesh is mapped onto a
new point (x1, . . . , xd) in the same domain according to a formula

xj = G(zj ;αj , µ
−
j , µ

+
j), j = 1, . . . , d .

The parameters α1, . . . , αd are the grading parameters in the grid specification
string. For example, if α1 = −0.8 and α2 = 1.6 in a 2D problem, we could
write g=[-0.8,1.6] in the grid specification. The value αi = 1 corresponds to
the identity mapping. When αi > 0 we use the mapping function

G(z;α, a, c) =
1

2
sign{2z− (c+a)}(c−a)

∣∣∣∣
2z − (a+ c)

c− a

∣∣∣∣
1/α

+
1

2
(c+a) . (3.9)

This results in a grading towards the mid point (0 < α < 1) or the end points
(α > 1) of the interval [a, c]. Grading towards only one side of an interval is
offered by setting αi < 0, which implies the mapping function

G(z;α, a, c) =

(
z − a
c− a

)1/|α|

(c− a) + a . (3.10)

Here is a guide to the choice of α1 for grading the nodal coordinates when
x1 ∈ [a, c]:

1. α1 > 1 gives symmetric refinements towards the ends of the interval,
x1 = a and x1 = c,

2. 0 < α1 < 1 gives symmetric refinements towards the center of the interval,
x1 = (a+ c)/2,

3. −1 < α1 < 0 gives refinements towards the left boundary, x1 = a,

4. α1 < −1 gives refinements towards the right boundary, x1 = c.

Changing the Element Type. Up to now we have used bilinear basis functions
defined on quadrilateral elements. This is just one of many possible choices of
elements and basis functions in Diffpack. The names of the elements reflect
the element type in terms of the geometrical shape, the number of nodes,
and the number of space dimensions: ElmB2n1D (linear 2-node 1D element),
ElmB3n1D (quadratic 3-node 1D element), ElmT3n2D (linear 3-node 2D trian-
gle), ElmT6n2D (quadratic 6-node 2D triangle), ElmB8n2D (quadratic 8-node
2D brick element), ElmB9n2D (biquadratic 9-node 2D brick element), ElmB8n3D
(trilinear 8-node brick element), ElmB20n3D (quadratic 20-node 3D brick ele-
ment), ElmB27n3D (triquadratic 27-node brick element), ElmBT6n3D (3D 6-node

280 3. Programming of Finite Element Solvers

prism element), plus more specialized elements. The letter B indicates box-
shaped elements, whereas T denotes triangles or tetrahedra.

To change the element type, simply edit the partition part of the gridfile

answer on the input menu. Recall that the partition information is given
in terms of intervals between nodes in each space direction. Therefore, the
string [6,6] means 7 × 7 nodes regardless of whether the element type is
ElmB4n2D (36 elements), ElmB9n2D (9 elements), ElmT3n2D (72 elements), or
ElmT6n2D (18 elements). In this way it is trivial to keep the partition constant
and experiment with different types of elements. Notice that for quadratic
elements, the number of intervals between nodes must be even since there
are always two intervals between nodes along each side of the element.

Playing Around with the Box Preprocessor. A Diffpack preprocessor can ei-
ther be run as a result of the gridfile argument to the readOrMakeGrid func-
tion or we can run a stand-alone Diffpack program called makegrid. The ini-
tialization string to the readOrMakeGrid function and the makegrid program
are quite similar. The particular example on usage of the box preprocessor
above has the following syntax if we use makegrid instead of readOrMakeGrid.

makegrid --batch -m PreproBox -g ’d=2 [0,1]x[0,1]’

-p ’d=2 e=ElmB4n2D div=[6,8] g=[1,1]’ --casename t1

The grid is now stored in the file t1.grid in the GridFE file format. We can
plot the grid using the Plotmtv program and the Diffpack script plotmtvgrid:

plotmtvgrid t1

The effect of various choices of the grading parameters is illustrated by run-
ning the Python script gradingdemo.py. It displays a GUI where you can fill
in α1 and α2 as well as the partition and view the resulting grid.

Generation of grids over more complicated geometries is addressed in
Chapter 3.5.3.

3.3 Some Visualization Tools

The Poisson1 simulator has functionality for storing computed fields on file,
using the SaveSimRes class. The storage format of the fields is specific to
Diffpack and referred to as the simres format. Some information about this
format is given in Appendix B.5.2. To invoke a plotting program, we need
to export the simres field format to a file format required by the plotting
program. This is accomplished by using a filter. Filters exist for many pop-
ular plotting systems, e.g., Vtk, Matlab, AVS, IRIS Explorer, Plotmtv, and
Gnuplot. Below we explain some visualization processes for stationary scalar
and vector fields. Time-dependent fields are covered in Chapter 3.10.

3.3. Some Visualization Tools 281

3.3.1 Storing Fields for Later Visualization

To implement the SaveSimRes tool in a simulator class, one typically includes
a data member database of type Handle(SaveSimRes) in the class. This data
member is allocated and initialized in the scan function. To dump a field
(represented by a handle u) to the database, one simply writes

database->dump(*u);

The database member can be used for storing complete fields of several types,
including FieldFE and FieldLattice objects, fields along lines through the
domain, and time series of fields at some selected spatial points.

3.3.2 Filtering Simres Data

Let us assume that you have run a simulation with casename mycase, using
the Poisson1 code. The simulation has resulted in the computation of three
fields, u, error, and flux, which are stored in a simres database with name
mycase. The field u is the solution of the PDE, error is the numerical error
in u, and flux is the vector field −k∇u.

After a simulation is run, you can get a list of all the fields that are
stored on file in the simres format by looking at the file .mycase.simres.
One will usually consult this file, either directly or through a nice browser,
for an overview of the database prior to running specific filters and invoking
visualization systems. Each scalar field, including components of vector fields,
in a simres database is associated with a field number. One can either specify
the name of a field or the field number when extracting the field from the
simres database. This will be exemplified in the forthcoming text.

Invoking Filters from the Command Line. To export the u field to some spe-
cific visualization program format, one must first run a filter. The filters have
names like simres2xxx, where xxx reflects the visualization program. For ex-
ample, simres2matlab filters simres data to a format suitable for visualization
in Matlab, the simres2mtv filter produces Plotmtv files, and simres2vtk gen-
erates Vtk files. In the following we shall use simres2xxx as a generic name
for all the filters. This makes sense, because the filters have the same user
interface.

Extracting the u field from the simres database mycase is performed with
the command

simres2xxx -f mycase -s -n u -a

The options have the following meaning: -f mycase specifies the name of the
simres dataset, which is usually the casename of the run of current interest,
-s denotes filtering of a scalar field, -n u informs the filter to search for a
field with name u, and -a indicates ASCII format of the resulting plotting

282 3. Programming of Finite Element Solvers

program-specific file. Most plotting programs can also handle a binary file
format, which is then produced by the -b option to simres2xxx. The filter
writes the name of the plotting program-specific file on the screen. For many
filters this name equals mycase.u.xxx. The file can be directly loaded into the
visualization tool.

There is also a -t option for giving a set of time points at which the field u

is to be extracted (see page 423), but in stationary problems we simply omit
this option. Running simres2xxx without any options gives a description of
the usage, including examples.

Vector fields are filtered in the same way as scalar fields, the only difference
being a flag -v instead of -s to the simres2xxx filter:

simres2xxx -f mycase -v -n flux -a

Instead of specifying the name of a field, we can give the field number.
Suppose it is of interest to plot the second component of a vector field and
the field number of this component is 3. The field identification is then set
by the -r 3 option:

simres2xxx -f mycase -r 3 -s -a

In fact, the argument to -r can be a general Diffpack set (SetOfNo::scan
syntax, see page 92): -r ’3 5 8 9;’ results in four data files, one for each of
the fields with numbers 3, 5, 8, and 9.

Windows Remark 3.1: When running a Diffpack application which utilizes the

graphical user interface on Win32 platforms, there is no need to run the simres2xxx

filters as stand-alone applications. This GUI incorporates a browser for simulation re-

sults capable of immediate rendering of the data (actually using the same code as

simres2vtk). From the visualization options available in this GUI the user can output

the computed results in different formats, such as the Vtk or VRML formats as well as

the UCD format supported in AVS and IRIS Explorer. See Appendix B.2.2 for further

details. The material in Chapters 3.3.3–3.3.8 is therefore of less interest to users on

Win32 platforms. �

Flipping the Domain around Symmetry Lines. Identifying symmetry lines
(or planes) in the domain is an essential part of the problem specification.
Utilizing symmetry reduces the size of the domain and thereby the number of
elements required to achieve a specific level of accuracy. Sometimes we want
to visualize the solution in the complete domain, not just the part used in the
computations. This can be achieved by flipping the grid around a symmetry
line and plotting the solution over the original and the flipped grid. Say x = 2
is a symmetry line. The -flip x 2 option to the simres2xxx filters generates
data for a domain flipped around x = 2. The files produced by the filters
have names containing flip x=2.

3.3. Some Visualization Tools 283

Suppose we solve a problem on the unit square, and the lines x = 1/2
and y = 1/2 are symmetry lines. It is then sufficient to solve the PDE on a
quarter of the original domain, e.g., in [0, 1/2]× [0, 1/2]. To plot the solution
on the complete domain, we flip around x = 1/2, y = 1/2, and both x = 1/2
and y = 1/2:

simres2xxx -f SIMULATION -n u -a -s

simres2xxx -f SIMULATION -n u -a -s -flip_x 0.5

simres2xxx -f SIMULATION -n u -a -s -flip_y 0.5

simres2xxx -f SIMULATION -n u -a -s -flip_x 0.5 -flip_y 0.5

Each of these simres2xxx commands leads to visualization of the computed
field in one quarter of the original domain. All visualizations must of course
be showed simultaneously. The present example is realized in the script
src/fem/Poisson2/Verify/test7.sh.

A Graphical User Interface. The simres filters simres2xxx are often embedded
in scripts to ease coupled simulation and visualization when solving a specific
problem. In such cases the command-line driven interfaces shown previously
are a requirement. However, for novice users it might be more comfortable
to invoke a graphical user interface. Typing

simresgui mycase

starts a simple GUI with a list of the available fields for visualization in the
mycase dataset and a multiple-choice button for the visualization program
that is requested. One can simply click on the fields to be visualized and
then click Export the chosen fields to run the filter corresponding to the chosen
visualization program. The name of the resulting files to be loaded into the
visualization tool is written in the message window.

Test Problem. The forthcoming sections illustrate various visualization pro-
grams and refer to a simulation case g10x10 for exemplifying the techniques.
This particular data set is generated by the Poisson1 simulator and an input
file testplot2D.i. Go to the src/fem/Poisson1/Verify directory and run

../app --casename g10x10 < testplot2D.i

You are then ready to explore different visualization tools.

284 3. Programming of Finite Element Solvers

3.3.3 Visualizing Diffpack Data in Plotmtv

The Plotmtv visualization program is free and easy to use, but not as sophis-
ticated as Vtk, IRIS Explorer, or AVS. For 2D finite element fields, however,
Plotmtv can do a pretty good job.

Windows Remark 3.2: The Plotmtv program is based on X-Windows and is thus

available only on Unix platforms. However, the Win32 version of Diffpack is capable of

generating Plotmtv data files for later transfer to a Unix machine. �
Typing

simres2mtv -f g10x10 -s -n u -a

gives the output

scalar "u" (stationary) in dataset "g10x10" found -> g10x10.u.mtv

which means that the search for a scalar (-s) field with name u (-n u) in
the dataset with casename g10x10 (-f g10x10) was successful. The field is
available in ASCII format (-a) on the file g10x10.u.mtv. You can now invoke
Plotmtv with this file,

plotmtv g10x10.u.mtv

to obtain a visualization of u(x, y) as in Figure 3.1a. Click on the 2D Plot

button in the plot window to get a 3D view of the surface z = u(x, y), see
Figure 3.1b. With Left, Right, Up, and Down you can view the 3D surface from
various positions. To store the plot in PostScript format on a file, click on
Save PS. By default the name of the PostScript file is dataplot.ps.

If you want a PostScript plot with color and without the date, you can
invoke Plotmtv with some additional command-line options:

plotmtv -nodate -colorps g10x10.u.mtv

The Diffpack script plotmtvps runs Plotmtv in the background and pro-
duces a PostScript plot without any user interaction. Try

plotmtvps g10x10.u.ps -3D g10x10.u.mtv

The -3D Plotmtv option has the same effect as toggling the 2D Plot button.
Vector fields are filtered and plotted in the same way as scalar fields. The

Poisson1 simulator computes −k∇u and stores the vector field in the simres
database under the name flux (the name is evident from the .g10x10.simres

file or the source code). Write

simres2mtv -f g10x10 -v -n flux -a

to filter −k∇u to Plotmtv format. Invoke Plotmtv with the g10x10.flux.mtv

file to see an arrow plot of the vector field.
All the plotting commands above, and the next ones to be presented, are

available in a demo script src/fem/Poisson1/plot.py.

3.3. Some Visualization Tools 285

−0.25 0 1 1.25
0

1

1.2

u

−3.81

−2.93

−2.05

−1.17

−0.287

0.594

1.47

2.36

3.24

4.12

5

−0.25 0 1 1.25
0

1

1.2

(a)

u

−3.81

−2.93

−2.05

−1.17

−0.287

0.594

1.47

2.36

3.24

4.12

5

X
Y

Z

−3.811

−3

−2

−1

0

1

2

3

4

4.998

0

1
1.2

−0.25
0

1
1.25

(b)

Fig. 3.1. Plot of u(x, y) (computed by the Poisson1 solver with the
testplot2D.i input file) using Plotmtv. (a) 2D filled contours; (b) 3D ele-
vated filled contours.

286 3. Programming of Finite Element Solvers

Setting Specific Plotting Options. When using Plotmtv, specifications regard-
ing the plot must normally be placed in the datafile. The reader is encouraged
to invoke an editor with the file g10x10.u.mtv. At the top of the file you will
see several lines starting with %, indicating that these lines contain Plotmtv
commands. Everything after # is considered as a comment. The simres2mtv

filter writes several such comments to indicate alternative useful Plotmtv
commands. For example, changing the value of contstyle from 2 to 1 results
in a contour-line plot. The parameter nsteps controls the number of contour
lines (or the number of colors when contstyle=2). Figure 3.2 shows the result-
ing plot with 15 contour lines. A wireframe plot is enabled by contstyle=3.
From the comment lines in the datafile it should be clear how to change the
title, the plot comment, and the labels in the plot. For further information
about possible commands in the datafile, we refer to the manual that comes
with the Plotmtv source code.

−0.25 0 1 1.25
0

1

1.2

u
−2.64

−2
.6

4

−2
.6

4

−2.64

−
1.46

−
1.46

−1
.4

6

−
1.46

−0.287

−0
.2

87

−
0.

28
7

−
0.

28
7

0.887

0.
88

7

0.
88

7

0.887

2.06

2.
06

2.
06

2.06

3.24

3.24

3.24

3.24

3.
24

4.
41

4.
41

4.41

−0.25 0 1 1.25
0

1

1.2

Fig. 3.2. Plot of u(x, y) (computed by the Poisson1 solver with the
testplot2D.i input file) using Plotmtv with contstyle=1 and nsteps=15.

Command-Line Customization of the Plot. Setting Plotmtv commands by
editing the datafile is often inconvenient. The commands can alternatively
be inserted by an extra option (-o) to the simres2mtv filter. For example,

simres2mtv -f g10x10 -s -n error

-o ’%contstyle=1 nsteps=20 subtitle="10x10 mesh"’

yields a plot with 20 contour lines of the error field. When you perform a large
number of computer experiments, it is important to write scripts that auto-

3.3. Some Visualization Tools 287

mate the process of running the simulator and producing plots. Customized
simres2mtv commands, using the -o option, are then very useful11.

Adjusting the Length of Vector Arrows. When plotting vector fields with
Plotmtv one often wants to adjust the size of the arrows. This is accom-
plished by the vscale option in the Plotmtv datafile. The default vector scale
factor, as computed by Plotmtv, is displayed in the terminal window where
Plotmtv is started. With the g10x10 data for flux, the factor is approximately
0.0025. Larger arrows are obtained by increasing this value, for example by
the command

% vscale = 0.008

in the g10x10.flux.mtv datafile or by the -o option to the simres2mtv filter:

simres2mtv -f g10x10 -v -n flux -a -o ’%vscale=0.008’

The reader is encouraged to try this modification and see the effects on the
plot.

Field Plot with Grid Overlay. Occasionally you want to plot the grid as well
as the field. This is easily accomplished by adding the option -G 0 to the
simres2mtv program12. Here is an example of some relevant Unix commands:

simres2mtv -f g10x10 -s -n error -a -G 0

plotmtv g10x10.error.mtv &

plotmtv -plotall g10x10.error.mtv &

The first Plotmtv command results in two plots, one for the field and one for
the grid. With the -plotall option the field and the grid are visualized in the
same plot. The option -G starts the drawgrid program inside simres2mtv. The
value 0 indicates plotting of the grid (values greater than zero imply plotting
boundary indicators). The string proceeding -G is actually any valid option
to drawgrid. Just start drawgrid without arguments to get a brief description
of what that program can do. Plotting the boundaries, but not the grid, is
enabled by -G 99. Try this in combination with vector field plot of −k∇u, and
zoom out to really see the boundary. The correct statements can be found at
the end of the plot.py script.

11 Diffpack also offers tools for automatic generation of reports, containing plots,
from a set of computer experiments, see Chapter 3.5.6.

12 -G 0 is a special simres2mtv option; other visualization systems may have built-
in support for plotting the grid.

288 3. Programming of Finite Element Solvers

Plotting of 1D and 3D Fields. The Plotmtv program has limited capabilities
of visualizing 3D scalar and vector fields. The only visualization technique
available for 3D scalar fields is colored contours at the visible sides of the
domain, provided the domain is a 3D box. Three-dimensional vector fields
can be plotted for an arbitrary domain in terms of 3D arrows at the nodal
points. However, such arrow plots are only useful if the number of arrows is
small. Run the Poisson1 simulator with the input file Verify/testplot3D.i

to produce some 3D scalar and vector field data. Suppose the casename of
this run is g3D. The following four Unix commands exemplify the 3D plotting
capabilities in Plotmtv:

simres2mtv -f g3D -s -n u -a

plotmtv -3D g3D.u.mtv

simres2mtv -f g3D -v -n flux # can add -o ’%vscale=0.002’

plotmtv -3D g3D.flux.mtv

During execution of the simulator, the SaveSimRes class issues a warning; the
amount of field data is quite large so one should switch to binary storage
format in the simres database. This is enabled by the menu commands

sub SaveSimRes

set field storage format = BINARY ! store fields in binary format

set grid storage format = BINARY ! store grid in binary format

ok

One-dimensional fields can also be handled by Plotmtv and the simres2mtv

filter. Run the simulator with the file Verify/testplot1D.i as input and g1D

as casename. Then execute

simres2mtv -f g1D -s -n u -a

plotmtv g1D.u.mtv

3.3.4 Visualizing Diffpack Data in Gnuplot

Although Gnuplot is primarily aimed at plotting curves, y = f(x), it has some
capabilities of visualizing two-dimensional scalar fields defined on uniform
grids. You can try the following interactive plotting session:

unix> simres2gnuplot -f g10x10 -s -n u -a

unix> gnuplot

gnuplot> set hidden3d; set parametric

gnuplot> splot "g10x10.u.gnu" with lines

gnuplot> exit

Gnuplot supports surface and primitive contour-line plots, with possible out-
put in PostScript format. The plotting session can be run in the background
by putting the commands in a file. We refer to the manual that comes with
the Gnuplot source code for documentation of the available commands.

3.3. Some Visualization Tools 289

3.3.5 Visualizing Diffpack Data in Matlab

To use Matlab for visualizing the results from a Diffpack application, we must
first filter the simres data to Matlab format by executing the simres2matlab

filter. For example,

simres2matlab -f g10x10 -s -n u -a

This results in a file g10x10.u.mlb with the grid and field data, plus a file dpd.m

containing a Matlab script for plotting the Diffpack data in g10x10.u.mlb.
Start Matlab and run the script dpd.m:

>> dpd

The Diffpack data are now loaded into Matlab variables. Thus, you have
now all Matlab commands and a GUI available at your disposal for further
development of the plot. Making a hardcopy is easy, e.g.,

>> print -depsc ’myplot.eps’;

Take a look at the dpd.m file and see the names of the Matlab variables
holding the grid and field data. You can adjust axis, the title of the plot, the
colormap, the viewing angle, etc. either through the GUI, by direct Matlab
commands in the terminal window, or by editing the script dpd.m.

Changing the Plot Type. In the present example, the underlying grid is a
lattice and the default Matlab plot type is mesh. The field values are stored
in the Matlab variable v1. We can easily change the plot type, try for instance
the commands

>> surf(v1);

>> contour(v1);

The selection of plot types is more limited when the finite element grid is not
a lattice, but Matlab is capable of visualizing fields over any 2D geometry.
We refer to the Matlab documentation for further information about the
graphical capabilities. Writing just simres2matlab lists some extra options to
the filter.

Diffpack can open a run-time communication with Matlab that can be
used for computation or visualization in Matlab. See page 431 for information
about this feature.

3.3.6 Visualizing Diffpack Data in Vtk

The Vtk (Visualization Toolkit) system is a comprehensive C++ library for
sophisticated visualization of scientific data. The software is available in the
public domain. The theory of visualization techniques in Vtk, along with

290 3. Programming of Finite Element Solvers

introductory instructions on how to utilize the software, is available in a
book [125].

Since Vtk is basically a library, one needs to write some sort of user
interface to the library in order to visualize a specific set of data. For this
purpose we have developed a general interface that allows you to explore
many of the methods in Vtk for visualizing scalar and vector fields. Simply
type vtkviz to start the interface (you need to have Vtk properly installed
on your system). Moreover, the Diffpack libraries must be compiled with the
particular make option VTK GRAPHICS=on. This option can be permanently set
for all applications in the $NOR/dp/src/MakeFlags file, or alternatively, in a
particular application’s .cmake1 file. You can look in the $NOR/bin/vtkviz

file to see the name of the underlying script where the graphical Vtk user
interface is implemented. This script can be tailored to your own needs, if
desired.

Let us exemplify the features of vtkviz using the g10x10 data. As usual,
the simres data must first be filtered to an appropriate Vtk-readable format:

simres2vtk -f g10x10 -s -n u -a

This results in a file g10x10.u.vtk. Start vtkviz and choose Input Vtk Data

from the File menu. Specify the file g10x10.u.vtk either by typing the name or
clicking on the list of files. Type ’r’ (reset) to scale the plot properly. Another
plot, with colored grid lines, is enabled by typing ’w’ on the keyboard. Type
’s’ to get filled colors back again. Elevated surfaces can be obtained by tilting
the plot with the left mouse button and setting the Z scale on the front panel
to a suitable value, say 0.1 for the present data.

To save the plot to a PostScript file, choose Save PostScript from the File

menu and fill in the filename g10x10.u.vtk.ps. Move the file dialog window
such that it does not hide parts of the plot. Press Save and use a PostScript
previewer, e.g. ghostview, to examine the file g10x10.u.vtk.ps. The default
background color is black, but a white background is more suitable for fig-
ures that are to be included in documents. Choose Background Color from the
Options menu and adjust the red, green, and blue colors to their maximum
value of 255 (implying a white background). Press Apply, save the plot in
PostScript format again, and check the result.

You can play around with the View options to see various plotting ca-
pabilities. First, try Grid Outline On, which adds the edges of a grid box.
With the right mouse button you can zoom in and out, whereas the button
in the middle displaces the plot. Contour lines are enabled by the Contour

Lines/Isosurfaces option. A second window pops up where you can fill in the
number of contours and the maximum and minimum values. Setting the Z

scale to zero and clicking on View from above xy-plane, results in a traditional
contour plot.

We can also plot the vector field −k∇u in Vtk. Start with filtering the
data, i.e.,

3.3. Some Visualization Tools 291

simres2vtk -f g10x10 -n flux -v -a

to get the file g10x10.flux.vtk. Then load this file into the graphical Vtk
interface. The length of the arrows are adjusted on the front panel, whereas
the view options work as in the scalar case. Choosing contour lines results in
a plot of the magnitude of the vectors.

Vtk is well suited for visualization of three-dimensional data. Some sample
data can be generated by running the Poisson1 simulator with the input file
Verify/testplot3D.i. Filter the simres data for u and flux to Vtk format,
load the resulting files into the vtkviz interface, and try some of the viewing
options.

There is a help menu in the graphical interface to Vtk, and we refer to
the items on this menu for additional information on the options that are
currently available.

The strong side of Vtk is that it is a programmable system. Together with
our Tcl/Tk script you can quite easily build a visualization environment to
meet your own specific needs. You can also call Vtk directly from C++
in the simulator and thereby create an intimate coupling of simulation and
visualization.

We remark that a very promising Python-based graphical interface to
Vtk, called MayaVi, is available in the public domain [98]. You can easily
apply this interface as an alternative to vtkviz. Just run simres2vtk and load
the Vtk files into MayaVi. Work is in progress to extend the MayaVi interface
with features for both browsing simres data and visualizing them with Vtk.
The name of this script is mayavidp.

Windows Remark 3.3: As pointed out in Remark 3.1 on page 282, Vtk is used for

the visualization part of Diffpack’s graphical user interface on Win32 platforms. For

instructions on how to operate this visualization resource, see Appendix B.2.2. �

3.3.7 Visualizing Diffpack Data in IRIS Explorer

The visualization system IRIS Explorer is normally operated through a user-
friendly graphical interface. The flow of data, from files through visualization
algorithms to render windows, is programmed in terms of visual symbols,
making up a map. To help novice IRIS Explorer users, we have made six
maps for visualizing Diffpack fields. As usual, the simres files must be filtered
to the appropriate format:

simres2explorer -f g10x10 -s -n u -a

This command generates a file g10x10.u.exp. Start IRIS Explorer by typing
explorer and load the map view.2Dlat.map. This and other maps are found in
the directory $NOR/dp/etc/graphics/explorer. The map automatically opens
up a dialog box and makes a list of all the *.exp files in the current directory.
Double-click on g10x10.u.exp and the render window is filled with a colored

292 3. Programming of Finite Element Solvers

contour surface plot. The graphical interface allows you to change between
discrete points, wire frames, and solid surfaces as visualization techniques.
To get an elevated surface, simply adjust the scale field on the interface. The
help button in the upper right corner of the main window lists information
about the various parts of the user interface.

The map view.2Dlat.map is tailored to 2D fields over uniform grids con-
sisting of bilinear or linear elements, i.e., lattice grids. Fields over 3D lat-
tice grids can be visualized using the map view.3Dlat.map. Unstructured
grids demand the maps view.2Ducd.map and view.3Ducd.map (ucd stands for
unstructured cell data). Moreover, visualization of vector fields is offered
by the maps view.veclat.map for 2D/3D vector fields over lattice grids and
view.vecucd.map for 2D/3D vector fields over arbitrary unstructured grids.
It makes sense to distinguish between lattice grids and unstructured grids,
because the former class of grids allows a wider collection of visualization
techniques.

Experienced IRIS Explorer users should note that the collected user in-
terface in our maps can be ungrouped back into individual IRIS Explorer
modules. User customization, such as reconnecting modules or including new
modules, is then easily accomplished. It is also easy to visualize Diffpack
fields simultaneously with other forms of data. For instance, when a user
is interested in visualizing a Diffpack 2D FieldLattice together with a ge-
ometry object stored in an Inventor data file, the user should first use the
map view.2Dlat.map to visualize the FieldLattice data. Then a ”ReadGeom”
module, which reads the Inventor data file, can be included in the map. Fi-
nally, connecting the output from ”ReadGeom” to the ”Input” port of the
collected user interface ”View2Dlat” will produce the desired visualization.
These examples show that the supplied maps may serve as a starting point
for creating an IRIX Explorer environment according to your own needs.

3.3.8 Plotting Fields along Lines

Although you can certainly hardcode some simple plotting statements inside
class Poisson1 tailored to your favorite visualization tool, we strongly recom-
mend using the SaveSimRes class and the dump function. There are numerous
useful options automatically offered by class SaveSimRes: plot of fields along
lines through the domain, time series plot at specified spatial points, and
binary storage of data. And most important, when the simulation is finished,
you are free to choose among many visualization programs.

Let us demonstrate how you can create a curve plot of a field along a
line. Looking at the Verify/testplot2D.i input file, you can see the following
lines:

sub SaveSimRes

set line1: start = (-0.25,0) ! plot u along a line from start to stop

set line1: stop = (1.25,1.2)

ok

3.4. Some Useful Diffpack Features 293

These commands define a plot of u along a straight line from the start to the
stop point as assigned on the menu. In the simulator, the plotting of u along
lines is activated by the call database->lineCurves(*u). At present, you can
define a maximum of three such lines through the grid.

The curve plots of fields along lines are added to a curve plot database
and can be visualized using Diffpack tools like curveplotgui or curveplot.
We refer to Chapter 1.4.3 for a short introduction and to Appendix B.5.1 for
more information about curve plot databases and associated tools. Here we
just give some alternative Unix commands for visualizing the curve plot of u:

curveplot plotmtv -f .g10x10.curve.map -r ’.’ ’u’ ’line1’

curveplot xmgr -f .g10x10.curve.map -r ’.’ ’u’ ’line1’

curveplot gnuplot -f .g10x10.curve.map -r ’.’ ’u’ ’line1’

curveplot gnuplot -f .g10x10.curve.map -r ’.’ ’u’ ’line1’ -ps ul.ps

The x axis in the plot always reflects one of the x, y, or z coordinates of the
points along the line. The reader is encouraged to define a line2 in the input
file and visualize u along this line as well.

3.4 Some Useful Diffpack Features

3.4.1 The Menu System

A Graphical User Interface. Instead of feeding the program from an input
file, we can use the Tcl/Tk-based graphical user interface to Diffpack’s menu
system. To see this facility in action, the reader may try to run the program
with the following command-line options13

./app --GUI --Default Verify/test1.i

where the option --Default (or just -D) is used to set default values of selected
menu items based on standard menu commands in a file. In this case we use
the file Verify/test1.i for providing default answers. You can of course omit
the --Default option; in that case the graphical menu will contain the default
values as they are hard-coded in the Poisson1::define function and in the
define functions of the classes in the Diffpack libraries. The --GUI option tells
Diffpack to create a graphical window with the menu, see Figure 3.3 for an
example14. Just point in the relevant window and write or select the menu
answer. When all menu items are set as desired, click on Run to continue with
the numerical simulation.
13 To activate the GUI, it may be necessary to compile the application using Make

MODE=opt GUIMENU=tcl. The GUIMENU option might be turned on automatically
for all applications in the file $NOR/bt/src/MakeFlags. If the application does
not link successfully, the Diffpack library bt2 must be compiled with the make
option GUIMENU=tcl.

14 The graphical interface to the menu system is programmed in C++ bindings to
the Tcl, Tk, and Tix tools, a fact that makes it easy to customize the interface
(e.g. include buttons for visualization).

294 3. Programming of Finite Element Solvers
 ��

Fig. 3.3. Example on the Tcl/Tk graphical interface to the menu system.
Shown here is a submenu for preconditioning techniques (see Appendix C.3).

Windows Remark 3.4: When using Diffpack on a Win32 platform, the menu system

is embedded in a flexible graphical user interface that can easily be put on top of any

Diffpack simulator. This GUI also provides a browser for computational results and

integrated visualization, see Appendix B.2.2 for further details. �

Menu Answers on the Command Line. There is also a command-line mode
of the menu system, indicated by the option --batch. In this mode, the ap-
plication does not prompt the user for input data, but scans the command
line for options regarding the menu. For example,

./app --batch --Default Verify/test1.i --A_parameters ’1.2 -4.6’

In this case, all menu items are given default values according to the file
test1.i, and we override the A1, . . . , Ad parameters by an explicit command-
line option. Notice that the command-line option has a prefix -- and a name
equal to the menu command, but with blanks replaced by underscores. Also
note that the answer 1.0 2.3 must be enclosed in quotes; the menu system
assumes that the answer is a single string.

We also mention that there are overloaded versions of MenuSystem::addItem
where you are allowed to specify your own name for the command-line op-
tions as well as giving a description of valid answers (see page 344). You can
also couple a menu item to callback functionality (see the man page for class
MenuSystem).

3.4. Some Useful Diffpack Features 295

Example on More Comprehensive Input Files. Increasing the number of nodes
beyond a few thousand results in such large linear systems that the default
solver, which is Gaussian elimination on banded matrices, becomes too slow.
More efficient iterative solvers should then be invoked. Useful theoretical
background for iterative solvers is provided in Appendix C, while Appen-
dices D.3–D.6 give information on the Diffpack tools for iterative solvers that
the user can play with through the menu system in a finite element simula-
tor. The input file Verify/testsolvers.i exemplifies the necessary commands
for specifying a useful all-round solver for the present model problem (hav-
ing symmetric positive definite coefficient matrix): the Conjugate Gradient
method with relaxed incomplete LU factorization as preconditioner and a
sparse matrix storage scheme.

set gridfile =P=PreproBox|d=2 [0,1]x[0,1]|d=2 e=ElmB4n2D [20,20] [1,1]

set A parameters = 2 1

sub LinEqAdmFE ! submenu for linear systems/solvers

sub Matrix_prm ! submenu for matrix storage formats

set matrix type = MatSparse ! matrix storage format = sparse matrix

!set matrix type = MatBand ! banded matrix

ok ! quit the submenu

sub LinEqSolver_prm ! submenu for linear solvers

set basic method = ConjGrad ! Conjugate Gradient iterative method

!set basic method = GaussElim ! Gaussian elimination

ok ! quit the LinEqSolver_prm menu

sub Precond_prm ! invoke preconditioner submenu

set preconditioning type = PrecRILU ! choose RILU preconditioning

set RILU relaxation parameter = 0.0 ! 0 gives ILU, 1 gives MILU

ok ! quit Precond_prm submenu

ok ! quit LinEqAdmFE submenu

ok ! quit main menu and continue execution

From the comments one can see how to edit the file in order to explicitly
specify Gaussian elimination on a banded matrix as equation solver.

296 3. Programming of Finite Element Solvers

Exercise 3.2. .
Set up a series of numerical experiments for the Poisson1 solver where

you investigate the relative efficiency of banded Gaussian elimination versus
the preconditioned Conjugate Gradient method as a function of the number
of nodes. Find the break-even point for each grid. Remember to compile the
application in optimized mode. To measure the CPU time, you can either
(i) apply the command-line option --verbose 1, (ii) use an operating system
functionality (like the time command on Unix systems), (iii) examine the
end of the casename.dp file, or (iv) employ Diffpack’s CPUclock class inside
the code (cf. the man page for CPUclock). The latter approach, or the op-
tion --verbose 1, allows you to monitor the CPU time consumption in the
lineq->solve() operation only. The results from this exercise should motivate
you for studying Appendix C! �

Automatic Documentation of All Menu System Items. It is easy to get lost
in a menu system with lots of commands. Fortunately, the Diffpack menu
system dumps its data to a file (.menutree), which can be interpreted by a
script DpMenu and provide you with some useful services. For example, you
can with DpMenu easily generate a nicely formatted report describing all menu
items, you can get a table with menu commands and answers from the last
execution of the simulator, or DpMenu can make an input file containing all
menu items.

After a successful execution of the program, the command

DpMenu --HTML

writes an input manual for your application in HTML format. The resulting
file, tmp.manual.html, can be loaded into any Web browser. If you prefer a
manual in the LATEX format, just replace the --HTML option by --LaTeX. Plain
text format is obtained by the option --text. A table of menu commands and
answers, in HTML format, results when providing the option --table. The
reader is highly encouraged to run the simulator and play around with the
DpMenu script.

Automatic Generation of an Input File. The DpMenu script offers automatic
generation of an input file to the menu system if you run it with the option
--input. The input file is written to standard output so you will normally
redirect the output to a file, e.g.,

DpMenu --input > mytest1.i

The answers in mytest.i reflect the answers in the most recent run of the
application. All menu items that are available in the application appear in
this file, but you can usually rely on the automatically generated values for
all items that you do not understand. Explanations of the different com-
mands can be inserted in the input file if you provide the additional option
--description:

3.4. Some Useful Diffpack Features 297

DpMenu --input --description > mytest1.i

Especially when you have just developed an application, or if you are new to
an existing application, it may be convenient to run the simulator and rely on
default values (to as large extent as possible) and then use DpMenu --input to
generate an input file and DpMenu --HTML to get an explanation of the menu
items. You can load the input file into an editor and remove parts that you
find disturbing or that you do not understand.

3.4.2 Multiple Loops

The menu system enables the user to assign multiple values to the menu
items and run the program repeatedly for all combinations of these answers.
The feature is most easily explained through an example:

set gridfile = P=PreproBox| d=1 [0,1]| d=1 elm={ ElmB2n1D & ElmB3n1D }

div={ [4] & [8] & [16] & [32] } grading=[1]

set A parameters = { 2 1 & 10 1 }

The strings separated by & inside braces {} are interpreted as multiple values.
In this example, we give two element types, four divisions, and two sets of
(A1, A2) parameters, which results in 2×4×2 = 16 combinations of the input
data. If we use MenuSystem::multipleLoop to manage the execution of the
solver, this function will automatically set up a loop over the 16 combinations
and call scan, solveProblem, and resultReport inside the loop. In the first
pass of the loop, the solver’s adm function is called, for defining (define)
and reading (scan) the menu. Each time the scan function is called, a new
combination of the menu answers are made available in the menu system.

We will refer to the automatically computed loop over multiple sets of
input data as a multiple loop. Examples on input files that result in multiple
loops can be found in the Verify directory. One-dimensional simulations are
provided by the input file test1Delms.i, 2D cases are found in test2Delms.i,
and test3Delms.i contains 3D cases.

Inside the multiple loop, the casename will automatically be modified to
casename mX, where X is the value of the iteration counter in the loop. Suppose
the original casename15 in the current example is gb. After the simulation is
finished, you will see several files, including

gb.dp gb.files gb_m01.ml gb_m02.ml ... gb_m16.ml

The gb.files file contains a list over all files generated by the Diffpack li-
braries in this simulation. For example, the gb m02.ml file contains the partic-
ular values of the multiple assigned menu answers in run no. 2 of the multiple
loop. Looking at the files starting with a dot in the name, we see, e.g.,

15 The original casename is always available in the global string casename orig,
while the modified casename is stored in the global string casename.

298 3. Programming of Finite Element Solvers

.gb_m01.field .gb_m02.fieldgb_m16.field

These files contain the fields that were dumped in the various runs. To plot
the results from run no. 9, one can execute a filter simres2xxx with the option
-f gb m09 for specifying the name of the simres dataset.

The execution time might be substantial when running multiple loops, so
it is important to compile the program in optimized mode (MODE=opt) and to
carefully count the number of multiple answers.

In Chapter 3.5.6 we equip the simulator with a nice report for presenting
the results. Such automatic generation of result reports in combination with
multiple loops are very useful tools in experimental scientific computing.

3.4.3 Computing Numerical Errors

Numerical studies often involve estimation of discretization errors and how
they, hopefully, decrease with decreasing element size. To simplify such stud-
ies, a special class ErrorNorms has been made. The ErrorNorms class contains
some static functions for computing the L1, L2, and L∞ norms of the error
e = u− û, that is, the difference between the analytical (u) and the numerical
(û) solution over a grid. See page 251 for precise definitions of these norms.
The appropriate call for calculating the L1, L2, and L∞ norms of the error
is

ErrorNorms:: Lnorm (uanal, *u, DUMMY, L1_err, L2_err, Linf_err,

GAUSS_POINTS);

The variable uanal represents a functor implementing the analytical solution
(see Chapter 3.4.4), and L1 err, L2 err, Linf err are real variables contain-
ing estimated norms at the return of the Lnorm function. The Lnorm function
is static, which means that we do not need an object to call the member
function, but you must prefix the call by ErrorNorms::. The argument DUMMY

is just a dummy constant for the point of time when the uanal functor is
to be evaluated. Since we have a stationary problem, this argument is of no
interest16.

The computation of the error norms is performed by numerical integration
over each element. The final argument to Lnorm, GAUSS POINTS, reflects that
Gauss-Legendre quadrature is to be used in the integration. The argument
GAUSS POINTS can be replaced by NODAL POINTS which means that the nodes are
used as integration points. The error norm Linf error will then coincide with
the L∞- or max-norm of the nodal values vector. Occasionally one experiences
super-convergence of the solution at the nodal points, and error norms based
solely on nodal points can then be somewhat misleading.

Besides the norms of the error, it can be of interest to examine the error
field itself. This is easily accomplished by declaring a Handle(FieldFE) error

16 See page 416 for how to deal with this argument in time-dependent problems.

3.4. Some Useful Diffpack Features 299

data member in the header file and create the field as we create u. When the
solution is computed and available in u, we can compute the error field by
the call

ErrorNorms::errorField (uanal, *u, DUMMY, *error);

Again, the DUMMY constant refers to the point of time used to evaluate the
analytical solution uanal. We can store the error field for later visualization
by simply calling database->dump(*error).

Remark. Class ErrorNorms can also compare a field to a reference field, made
in another simulation, for instance, with a much finer mesh. There are also
other norms available, such as the H1 and (user-defined) energy norms that
appear frequently in theoretical finite element error estimates. See Chap-
ter 2.10.6 for an example on various error-norm computations.

3.4.4 Functors

The ErrorNorms::Lnorm routine, which is supposed to work with a function
reflecting the analytical solutions of a problem, must be implemented with
a variable for this function. This requires that all analytical solution func-
tions have the same signature, i.e., the same arguments and return values.
Class ErrorNorms assumes that the analytical solution function takes a spatial
point (Ptv(real)) and a time parameter (real) as arguments and returns a
real variable. In C and C++ we can easily introduce a function pointer [10,
Ch. 17.1] to represent such a function in the argument list of other functions:

typedef real (*analsol)(const Ptv(real)& x, real time);

Now, analsol is a name for all such functions, and one can, inside a function
that takes an analsol argument, say analsol(x,t) when it is desired to eval-
uate the analytical solution. If we try to implement a function in accordance
with analsol for our present analytical solution, we run into a problem. The
analytical solution needs the A1, . . . , Ad parameters as well as the space-time
point. This is of course a common situation in C and Fortran as well, and the
standard solution is to introduce global variables that represent A1, . . . , Ad.
However, this is not good programming practice. In C++ we can devise an
elegant solution to the problem.

Instead of using a pure function, we create a class that contains user-
specific data and a virtual function with a fixed signature. This implemen-
tation of a function is called a functor17 and we touched this idea in Chap-
ter 1.7.2. The function pointer is then replaced by a base class pointer to

17 The Standard Template Library (STL) in C++, as well as the book by Barton
and Nackman, use the term function objects instead of functors and let the cor-
responding function in the function object have the name operator(), see [103,
p. 78] and [10, Ch. 17.3]. However, Diffpack functors are used beyond the scope
of function objects and therefore follow other naming conventions.

300 3. Programming of Finite Element Solvers

a hierarchy of such functors. The ErrorNorms functions can then take the
base class pointer as argument and thereafter access the analytical solution
through the base class pointer and an associated virtual function.

Functors representing functions of space and time are derived from class
FieldFunc in Diffpack. In the present example, the data members of the func-
tor are either copies of A1, . . . , Ad from the simulator or a pointer to the
simulator class, such that we can access A1, . . . , Ad. A pointer to the simu-
lator class is safest and most flexible; with only one pointer we can access
all problem dependent parameters. The virtual function in class FieldFunc

that evaluates the function of space and time is called valuePt. Inside class
ErrorNorms one typically says f.valuePt(x), where f is a FieldFunc reference
and x a spatial point. Here is an example on how our analytical solution
function can be implemented as a functor:

class El1AnalSol : public FieldFunc

{

Poisson1* data; // access to simulator

public:

El1AnalSol (Poisson1* data_) { data = data_; }

virtual real valuePt (const Ptv(real)& x, real /*t*/ = DUMMY);

};

real El1AnalSol:: valuePt (const Ptv(real)& x, real /*t*/)

{

const int nsd = x.size();

real sum = 0;

for (int j = 1; j <= nsd; j++)

sum += data->A(j)*sin(j*M_PI*x(j)); // M_PI=3.14...see cmath

return sum;

}

Observe that the code is short and that much more complicated analytical
expressions, involving perhaps dozens of physical parameters from the simu-
lator class, can be trivially implemented in the same framework. Hopefully,
we have illustrated that every time you need a function as argument to a
function, you should use a functor.

Alternatively, we can often make a quicker implementation of the ana-
lytical solution functor by letting the valuePt function be a member func-
tion of class Poisson1. This means that Poisson1 must also be derived from
FieldFunc. Then there is no need for communication between the functor
and the simulator, because the functor is the simulator. This approach will
be demonstrated in the Poisson2 solver (see class Poisson2anal and its sub-
classes). In general, a separate functor class gives the clearest code – letting
the simulator itself be the functor has more the flavor of a quick hack.

3.4. Some Useful Diffpack Features 301

3.4.5 Computing Derivatives of Finite Element Fields

The derivatives of a finite element field û =
∑n

j=1 ujNj(x) are directly cal-
culated as

∂û

∂xk
=

n∑

j=1

uj
∂Nj

∂xk
, k = 1, . . . , d .

The corresponding software tools in Diffpack work in terms of a FieldFE

object, containing the uj values, the grid, and the basis function information,
and a FiniteElement object, containing the values of Nj and its derivatives at
a point inside an element. The field value is computed by u->valueFEM(fe), if
u is a FieldFE handle and fe is a FiniteElement object. The fe object must be
initialized, that is, evaluated at a point in an element. This is automatically
done by many of the library routines, which means that in functions like
integrands and derivedQuantitiesAtItgPt (described later) the fe object is
ready to use. Manual initialization of a FiniteElement object at a point is
explained in the man page for that class.

The values of the derivatives of a field handle Handle(FieldFE) u are com-
puted by u->derivativeFEM(gr,fe), where gr is of type Ptv(real), represent-
ing the gradient of u as a vector in IRd. The valueFEM and derivativeFEM

functions are frequently used in integrands functions, which is exemplified in
Chapters 3.10 and 4.2.

If you do not know the element number and the local element coordi-
nates of the point where the derivatives are to be evaluated, you can simply
call u->derivativePt(x), which returns a Ptv(real) containing the gradient
at the arbitrary spatial point x. This function is dramatically slower than
FieldFE::derivativeFEM.

An inconvenient fact is that the derivatives of standard finite elements
are continuous inside an element, but discontinuous on the boundary be-
tween the elements. Hence, the derivatives become multiple valued at a node
that is shared among several elements. This calls for some smoothing proce-
dure and a continuous finite element field representation of the derivatives,
especially if the derivatives are to be visualized. Smoothing of derivatives
of finite element fields is briefly covered in Chapter 2.8. A popular smooth-
ing method for a possibly discontinuous field q is based on a least-squares
or Galerkin formulation, or equivalently an L2 projection, of the equation
w = q, where w is a smooth finite element approximation to q. This leads to
a linear system with the mass matrix

∫
Ω NiNjdΩ as coefficient matrix and a

right-hand side ∫

Ω

qNidΩ . (3.11)

The mass matrix is usually lumped to simplify and speed up the computa-
tions. Diffpack tools for smoothing derivatives are described next.

302 3. Programming of Finite Element Solvers

Flux Computation. The simplest way of computing a smooth flux field −k∇u
is to call FEM::makeFlux like this:

FEM::makeFlux (*flux, *u);

where the scalar field u is a Handle(FieldFE) object and the vector field flux

is a Handle(FieldsFE) object. The makeFlux function needs information about
the coefficient k in the PDE and assumes that the solver, being a subclass of
FEM, implements a virtual function

real k (const FiniteElement& fe, real time = DUMMY);

representing the k function. Notice that the first argument to k is not a
spatial point, which could be expected, but a FiniteElement object. This
gives greater flexibility and efficiency in more complicated problem settings.
The time parameter is of course only relevant in time-dependent problems
and is set to a dummy value if it is redundant.

Sometimes the coefficient k in the PDE is represented as a finite element
field kf. One can then skip the implementation of the k function and instead
call an overloaded makeFlux function that makes use of the kf field directly:

FEM::makeFlux (*flux, *u, kf);

This call is valid for other field representations of k as well, e.g., kf can be
a constant field or a functor. In Chapter 3.15.4 we provide more information
about the general field concept and related tools in Diffpack.

The flux field −k∇u is computed by the following algorithm. First, the
derivatives are computed at the optimal sampling points in each element.
Recall that the optimal sampling points for ∂Nj/∂xk coincide with the re-
duced Gauss-Legendre integration points. For example, when working with
bilinear elements we normally employ a 2× 2 Gauss-Legendre rule, and the
reduced rule has one integration point (the centroid). The flux computa-
tion proceeds with multiplying the gradient by k at each sampling point,
which yields a set of discrete values of −k∇u. We then compute the in-
tegral in (3.11) using a reduced Gauss-Legendre rule that samples discrete
values of q = −k∂u/∂xr, r = 1, . . . , d. Multiplying the right-hand side vector
(3.11) by the inverse lumped mass matrix yields a smooth representation of
−k∂u/∂xr. The d components of the flux are represented by a handle flux to
a FieldsFE object. Class FieldsFE is just an array of handles to FieldFE objects
so that vector fields in Diffpack can reuse all functionality for scalar fields.
We might evaluate, for instance, the second component of the flux vector at
node l using the syntax flux()(2).values()(l). The syntax flux() is equiv-
alent to *flux, see page 106, and we could have written (*flux)(2) instead of
flux()(2). Evaluation at a non-nodal point is enabled by flux()(2).valueFEM

or flux()(2).valuePt.

3.4. Some Useful Diffpack Features 303

At this point we make a digression and comment on the C++ technicali-
ties of the statement flux()(2).values()(l). This is actually a quite compli-
cated compound C++ statement: flux() calls Handle(FieldsFE)::operator()
and returns a FieldsFE& reference, which is used to call the subscripting op-
erator FieldsFE::operator(int), returning access to a FieldFE object (second
component in the vector field), which is used to call FieldFE::values(), re-
turning access to a Vec(real) object containing the nodal values, which is
finally indexed by the Vec(real)::operator(int) function (or more precisely,
this is an inherited function from the base class VecSimplest(real)). Such
compound statements demonstrate the flexibility and compactness of the
C++ language and the Diffpack library design. Unfortunately, few compilers
are able to optimize such compound statements. If you have computationally
intensive loops containing this type of statements, it is wise to extract a refer-
ence to the Vec(real) object before the loop starts and then index this vector
directly. In fact, optimal efficiency could be guaranteed by extracting the un-
derlying C array in Vec(real): real* v = flux()(2).values().getPtr1(). (A
loop over v would now be as efficient as pure low-level C code can be.)

Smoothing of a General Field. Class FEM contains several ready-made func-
tions, having the name smoothField, for smoothing a possibly discontinuous
scalar field. The field can be any subclass of Field (see Chapter 3.15.4) or a
functor representing the integrand qNi in (3.11) (see Appendix B.6.2). Some
versions of the smoothFields function can smooth possibly discontinuous vec-
tor fields of type FieldsPiWisConst (fields that are constant over each element)
or FieldsFEatItgPt (fields consisting of discrete values at integration points
in each element).

Suppose you want to smooth some expression containing derivatives (flux,
stress, strain, etc.) of finite element fields. We first compute the expression at
discrete points, e.g., the reduced Gauss-Legendre points, and save the values
in a FieldsFEatItgPt object. Thereafter we can smooth the computed values
by calling a suitable function in class FEM. Here is an example:

// Aim: compute Handle(FieldsFE) smooth_vec

FieldsFEatItgPt vec;

vec.derivedQuantitiesAtItgPt (*this, *grid, nfields, GAUSS_POINTS, -1);

FEM::smoothFields (*smooth_vec, vec);

The nfields parameter reflects the number of components in the vector field
vec. The final argument -1 indicates reduced integration, using a Gauss-
Legendre rule (indicated by GAUSS POINTS). Putting the last two arguments
equal to NODAL POINTS and 0 results in evaluating the vector field at the nodes
in each element. The vec.derivedQuantitiesAtItgPt function assumes the ex-
istence of a subclass of FEM with a virtual function derivedQuantitiesAtItgPt

for evaluating the vector field at an integration point in an element. Such a

304 3. Programming of Finite Element Solvers

function must therefore be implemented in the solver class18. We refer to the
Elasticity1 solver in Chapter 5.1 for an example on the implementation of
the derivedQuantitiesAtItgPt function.

Moving Least-Squares Smoothing. When using the makeFlux function or the
FieldsFEatItgPt class, one can choose between the simple global Galerkin (or
least-squares or L2 projection) smoothing method and a method known as
moving least-squares smoothing [138]. The latter approach consists in fitting
a linear or quadratic polynomial to the discrete values in a patch of elements
and then interpolating the polynomial for finding nodal point values of a finite
element field. We use a variant of the moving least-squares method where we
fit a polynomial to the derivatives. The derivatives at the reduced integration
points are computed from a standard finite element formula. Class MovingLS

supports the moving least-squares method in Diffpack.
There is an enum type in class FEM for distinguishing between different

smoothing methods. The global Galerkin-based smoothing method has the
name FEM::GLOBAL LS, whereas the moving least-squares method bears the
name FEM::MOVING LS. The enum values enter the final argument to makeFlux

(which is FEM::GLOBAL LS by default). Hence, to apply moving least-square
smoothing of the flux, one can just call

makeFlux (*flux, *u, FEM::MOVING_LS);

The Poi2flux class, which is a part of the Poisson2 solver, contains a test
problem where both the global least-squares and the moving least-squares
smoothing methods are compared (see Chapter 2.8.2).

3.4.6 Specializing Code in Subclass Solvers

Suppose you want to solve the Poisson equation, but with slightly different
boundary values and right-hand side. As an example, consider the classical
torsion problem [61]: ∇2u = −2 in a 2D domain Ω, with u = 0 on the
boundary. The most straightforward way to develop a solver for this problem
is to take a copy of the class Poisson1 files and edit the f and g functions.
The disadvantage with such an approach is that you get two almost identical
versions of the source code. In case you later improve the efficiency of the
original Poisson1 class, the optimizations will not be available to the torsion
problem solver. Fortunately, using inheritance and virtual functions in C++,
the torsion problem solver can be implemented in a subclass Poisson1T of
Poisson1 such that the Poisson1 files are reused without any physical editing,
but the Poisson1T subclass must provide new definitions of the functions f

and g. In other words, the subclass reimplements only the parts of the base
class that cannot be completely reused.

18 derivedQuantitiesAtItgPt is a virtual function specified by class FEM, similar
to integrands and k.

3.4. Some Useful Diffpack Features 305

Creating a Subclass Solver. The Poisson1T torsion solver can use everything
in class Poisson1, except the f and g functions and the error computation in
Poisson1::resultReport19 . A fundamental quantity in the torsion problem is
||∇u||, which reflects the size of the stress vector (u is in fact only a “stress
potential” and not of physical significance). We therefore need to compute
||∇u||, a quantity not provided by class Poisson1. The solveProblem would
normally be a natural place to perform the ||∇u|| computation.

Letting Poisson1T be a subclass of Poisson1 means that it inherits all func-
tionality in class Poisson1. The special features of Poisson1T is that it needs to
reimplement are the f, g, resultReport, and solveProblem functions. The tor-
sion problem demands new expressions in f and g, resultReport can be empty,
and solveProblem should carry out the steps in Poisson1::solveProblem and
in addition compute the magnitude of the flux field ∇u. Because the reim-
plemented functions are virtual, the fillEssBC and integrands functions in
Poisson1 will automatically call the version of f and g in class Poisson1T.
This is in fact the central idea of object-oriented programming. In a similar
manner, MenuSystem::multipleLoop will also automatically call the modified
solveProblem and resultReport functions. The magic behind this behavior of
C++ is explained in more detail on page 339.

Class Poisson1T can now be declared as follows20:

class Poisson1T : public Poisson1

{

public:

virtual void resultReport () {}

virtual void solveProblem ();

virtual real f(const FiniteElement& /*x*/) { return -2; }

virtual real g(const Ptv(real)& /*x*/) { return 0; }

};

The only function not provided in the header file is solveProblem, which can
be implemented like this:

void Poisson1T:: solveProblem ()

{

// we need everything that Poisson1::solveProblem does:

Poisson1::solveProblem ();

Handle(FieldFE) stress = new FieldFE (*grid, "stress");

19 Except for very simple geometries, the analytical solution of the torsion problem
is not available.

20 Some C++ standards warn against defining virtual functions as inline, that
is, including the function body in the header file, because C++ does not know
at compile time which virtual function that will be called and inlining becomes
impossible. Nevertheless, including the function body in the header file saves
some typing and contributes to quick documentation of the class.

306 3. Programming of Finite Element Solvers

flux->magnitude (*stress);

database->dump (*stress); // enable plotting of stress

}

We also need a new main function, similar to that used for the Poisson1

simulator, but with the name Poisson1 substituted by Poisson1T. As we see,
the code in class Poisson1T is very short.

Applications with Source Code in Two Directories. The Poisson1T simulator
needs to have its own main function and therefore needs to be located in its
own directory, but we also need the Poisson1 files when compiling Poisson1T.
There are two ways to solve this problem without copying the Poisson1 files:
(i) we can make links to the Poisson1 files in the Poisson1T application di-
rectory, or (ii) we can instruct the make program to also compile files in
the Poisson1 directory when compiling the Poisson1T solver. The latter tech-
nique is the easiest and safest. By default, the Make command copies and
links all C++ files that it can find in the current directory. If we run the
Diffpack script AddMakeSrc with dir as argument, Make will also compile all
the C++ files in the dir directory, except for the file main.cpp, and link the
corresponding object files to the current application. In the present case we
have installed the Poisson1T in the subdirectory torsion of the Poisson1 ap-
plication directory and issued the command AddMakeSrc .. to extend the set
of files that Make pays attention to (recall that .. denotes the parent direc-
tory, here Poisson1). Instead of giving a relative path (in this case the parent
directory ..), we can just write the complete path:

AddMakeSrc $NOR/doc/Book/src/fem/Poisson1

The AddMakeSrc program will detect if the path is in the Diffpack installation
and parameterize the part of the path by $NOR, if possible. This implies that
you can safely move the new directory Poisson1T around and also to other
machines where Diffpack is installed; it will always use $NOR variable and add
the rest of the path, /doc/Book/src/fem/Poisson1, to locate the files of the
Poisson1 solver.

For the reader with knowledge of makefiles, we remark that the AddMakeSrc

command adds some instructions to the makefile. It is a basic principle in Diff-
pack that one should never edit the Makefile file, but perform customization
of makefiles in the .cmake2 and .cmake1 files that are found in every Diffpack
application directory. AddMakeSrc therefore appends make commands at the
end of .cmake2.

Windows Remark 3.5: When using Visual C++, the way to handle multiple source

code directories is to interactively add the files to the project definition. �
The source code of the torsion simulator is found in the subdirectory

torsion of src/fem/Poisson1. Run the application and plot the solution, for
example, by the following set of commands:

3.5. Introducing More Flexibility 307

./app --batch --gridfile ’P=PreproBox | d=2 [-0.25,1.25]x[0,1.2] |

d=2 e=ElmB4n2D [10,10] [1,1]’

simres2mtv -f SIMULATION -s -n u -a

simres2mtv -f SIMULATION -s -n stress -a

plotmtv SIMULATION.u.mtv SIMULATION.stress.mtv

There are contents of class Poisson1, e.g. the A parameters and their asso-
ciated menu item, that are not relevant for the torsion problem. Having one
class aimed at a general Poisson problem, one subclass for the original test
problem, and another subclass for the torsion problem, is a better design of
the code. That is, we put problem-dependent data and functions like A, f, g,
and k in the subclasses. Such a design is realized in the Poisson2 class and
explained in detail in Chapter 3.5.7.

Exercise 3.3. .
Modify class Poisson1 to solve the same boundary value problem as in

Exercise 3.1. Specify the parameters vx and c in the menu system. Visualize
u and determine if the solution seems reasonable. (Suggestions: adjust g and
remove the now irrelevant error computation in class Poisson1.) �

3.5 Introducing More Flexibility

The purpose of this section is to add more flexibility to our Poisson equation
solver and thereby demonstrate the usage of many general and useful Diffpack
tools. As a slight redesign of class Poisson1 is advantageous, we replace class
Poisson1 by a new class Poisson2 with several specialized subclasses. The
extensions in class Poisson2 cover

– inclusion of a boundary term (line/surface integral) in the weighted resid-
ual statement for incorporating Neumann and Robin conditions,

– flexible setting of boundary conditions,

– a report module for automatic report generation in ASCII, LATEX2ε, and
HTML format,

– a simulator hierarchy where closely related problems can share as much
common code as possible, and where subclasses can specialize more gen-
eral base class solvers,

– permanent debug output that can be turned on and off at compile time,

– empirical estimation of convergence rates.

We shall also discuss general Diffpack tools for setting boundary conditions
and generating finite element grids. As mentioned previously in this chap-
ter, class Poisson2 is the recommended Diffpack template program for scalar
stationary problems. Users who want even more flexibility can consult the
CdBase hierarchy of convection-diffusion solvers in Chapter 6.1.

308 3. Programming of Finite Element Solvers

At this stage, some readers experienced with the details of finite element
programming in general might appreciate having a brief overview of the more
primitive objects that are used by the high-level FEM, FieldFE, and LinEqAdmFE

classes. This is provided in Appendix B.6.4.
The target boundary-value problem in Poisson2 is quite general:

−∇ · [k(x)∇u(x)] + βu = f(x), x ∈ Ω ⊂ IRd, (3.12)

u = D1, x ∈ ∂ΩE1 , (3.13)

u = D2, x ∈ ∂ΩE2 , (3.14)

u(x) = g(x), x ∈ ∂ΩE3 , (3.15)

−k ∂u
∂n

= 0, x ∈ ∂ΩN , (3.16)

−k ∂u
∂n

= αu− U0, x ∈ ∂ΩR . (3.17)

Here, D1, D2, α, β, and U0 are constants, while f , k, and g are prescribed
functions. Moreover,

∂Ω = ∂ΩE1 ∪ ∂ΩE2 ∪ ∂ΩE3 ∪ ∂ΩN ∪ ∂ΩR,

with ∂ΩE1 , ∂ΩE2 , ∂ΩE3 , ∂ΩN , ∂ΩR being non-overlapping, but some of these
boundary parts can be empty.

We recommend to have a source code listing of the files in the directory
src/fem/Poisson2 available while reading the forthcoming sections.

3.5.1 Setting Boundary Condition Information in the Grid

The Poisson0 and Poisson1 solvers employ the same boundary condition over
the whole boundary. Frequently, different conditions are assigned at different
parts of the boundary. The present section explains Diffpack tools for flexible
assignment of various boundary conditions.

Boundary conditions in a finite element simulator are of two types, ei-
ther natural or essential conditions. The former type of conditions involve
integrals along (parts of) the boundary, whereas essential conditions involve
manipulation of linear systems and specification of nodal values. Implemen-
tation of the boundary conditions requires knowledge of (i) the sides of an
element that are subjected to a certain type of natural conditions, and (ii)
the nodes in the mesh that are subjected to a particular type of essential
condition.

The Concept of Boundary Indicators. Boundary information is in Diffpack
represented by a concept called boundary indicators. A set of q binary-valued
boundary indicators is introduced, their values being on or off. The q bound-
ary indicators are defined at all the nodes in the mesh, with values that can
vary among the nodes. For example, at one node, boundary indicators 1, 2,

3.5. Introducing More Flexibility 309

and q can be on, the others being off, whereas at another node, only indica-
tors 1 and q − 1 can be on. If boundary indicator i is on at a node, we say
that the node is marked with indicator i.

Usually, a boundary indicator is associated with a particular boundary
condition. As an example, indicator 1 can be used to mark nodes subjected
to a homogeneous Dirichlet condition u = 0. To find the nodes at which we
should implement u = 0, we simply run through all nodes and check if a
node is marked with boundary indicator 1. If so, special actions for assigning
an essential condition must be taken. Any GridFE object has a function bool

boNode(n,i) to check if node n is marked with boundary indicator i.
The boundary indicators make it very simple to implement essential bound-

ary conditions. When it comes to natural conditions, we need to check if a
side in an element has a boundary indicator. We define a side in an element
as marked with a certain boundary indicator if all nodes on that sides are
marked with the particular indicator. The function bool boSide(s,i) in class
FiniteElement is used to check if side s in an element is marked with boundary
indicator i.

The boundary indicators are given logical names. These names have no
direct use in the libraries, but in some circumstances they might help to make
the output from a program more readable.

Default Boundary Indicators. The box preprocessor (PreproBox) produces
grids that have the shape of a box in IRd. As a default set of boundary
indicators for the box domain, it is natural to mark each of the 2d sides
of the box with an indicator. The side-numbering convention is that side
i = 1, . . . , d has its normal vector directed along the xi axis, whereas the side
i = d+ 1, . . . , 2d is recognized by having its normal pointing in the negative
direction of the xi−d axis. For example, in a 2D rectangle-shaped domain
Ω = (a1, a2) × (b1, b2), side 1 corresponds to x = a2 and is marked with
boundary indicator 1. Side 2 is given by y = b2 and marked with indicator
2. Indicator 3 marks side 3, x = a1, while the final indicator 4 marks side
4, y = b1

21. The mesh generation tools introduced in Chapter 3.5.3 produce
other default settings of boundary indicators, simply because the domain
shapes may differ from a box.

The default boundary indicators might be appropriate even if they do
not correspond directly to the set of boundary conditions. For example, in
the Poisson0 and Poisson1 solvers we had the condition u = 0 on the whole
boundary. A single boundary indicator marking all nodes on the boundary
would be a natural choice in this case, but the 2D grid was generated by
the box preprocessor, with default boundary indicators for each of the four
sides. Nevertheless, checking if a node is subject to u = 0, that is, if a node
is on the boundary, is straightforwardly accomplished by checking if any

21 The same side numbering convention also applies to the sides in box-shaped finite
elements, see the FAQ [71].

310 3. Programming of Finite Element Solvers

boundary indicator is turned on at a node. This is exactly what the func-
tion GridFE::boNode(i) does, whereas GridFE::boNode(i,j) checks if node i

is subjected to the specific indicator j.

Redefining Boundary Indicators. Because the default boundary indicators are
seldom appropriate, Diffpack supports a mapping from one set of indicators
to another. Suppose we have a 2D grid over the unit square, with four default
boundary indicators, marking each of the sides. On x = 0, 1, we have u = 0,
while ∂u/∂n = 0 on the two other sides. We can then either use one indicator
in total, marking the essential condition u = 0 only, or we can use two
indicators, one for each condition, although the natural Neumann condition
does not require any actions in the code. It is recommended to have all points
on the boundary marked with at least one boundary indicator, because these
indicators are often used for more than just assigning boundary conditions;
they are also convenient for visualizing the domain. We therefore introduce
two indicators in this problem. The indicators can be assigned logical names,
which are here chosen as u=0 (indicator 1) and Neumann0 (indicator 2). We
assume that the grid is generated by the PreproBox tool, leading to four
default indicators. The new indicator 1 is made up of the old indicators 1
(side 1, x = 1) and 3 (side 3, x = 0), whereas the new indicator 2 is the union
of the old indicators 2 (y = 1) and 4 (y = 0). The mapping onto our new set
of indicators is accomplished by the statement

grid->redefineBoInds ("n=2 names= u=0 Neumann0 1=(1 3) 2=(2 4)");

Two new indicators are here introduced (n=2), their names being u=0 and
Neumann0. The new indicator 1 consists of the old indicators 1 and 3, and the
new indicator 2 is made up of the old indicators 2 and 4.

The boundary indicator mapping string is conveniently given on the menu
and thereafter fed into the redefineBoInds function. The Poisson2 class offers
this functionality.

We also mention that the makegrid utility met on page 280 enables redef-
inition of boundary indicators, as well as extending boundary indicators and
adding material definitions, according to the forthcoming descriptions, on a
menu. Generation and manipulation of grids are in this case performed with
makegrid outside the simulator, which then only needs to load the grid file.

As an example on how to change boundary indicators with makegrid, we
can generate a unit square [0, 1] × [0, 1] and set boundary indicators 1 on
x1 = 1, 2 on x1 = 0, and 4 on x2 = 0 and x2 = 1. An overview of the menu
items in the makegrid application can be obtained by just running makegrid

without any input and then running DpMenu, e.g.,

makegrid --batch

DpMenu --HTML

To see the documentation of the menu items, just load tmp.manual.html into
a Web browser. From this documentation, we see that makegrid has a menu

3.5. Introducing More Flexibility 311

item redefine boundary indicators, which may be used to change the default
boundary indicators in a rectangular square grid produced by the PreproBox

preprocessor. The appropriate grid generation command becomes

makegrid --batch -m PreproBox -g ’d=2 [0,1]x[0,1]’ \

-p ’d=2 e=ElmB4n2D [4,4] [1,1]’ \

--redefine_boundary_indicators ’n=5 names= \

u=0 u=1 dummy1 du/dn=0 dummy2 \

1=(1) 2=(3) 3=() 4=(2 4) 5=()’ \

--casename test1

Of course, we could prepare an input file instead. The relations between
command-line arguments and file commands are given in the generated man-
ual for the menu (for example, the -m, -g, and -p options must in the file be
represented by the commands preprocessor method, Box geometry, and Box

partition, respectively). We can easily plot the generated grid and check
that the boundary indicators are correct:

plotmtvgrid test1

plotmtvboinds test1

In the plot made by the latter command, click on Zoom Out such that the
x2 = 0, 1 lines do not coincide with the plot frame. As soon as the makegrid

command works, you should copy it into a small script, and perhaps add
some visualization steps, such that it is trivial to repeat or change the grid
generation later.

Extending Boundary Indicators. Sometimes the mapping of default boundary
indicators onto a new set does not give enough flexibility in defining suitable
indicators in a problem. The GridFE::addBoIndNodes functions makes it possi-
ble to mark new nodes with one of the existing boundary indicators. Suppose
we solve an equation on the unit square and want to mark the boundary
segments y = 0, for x > 1/2, and x = 1 with indicator 1 and the rest of the
boundary with indicator 2. If the grid is generated by a box preprocessor, we
first map the four default indicators onto two new indicators, with indicator
1 preserved and indicator 2 equal to the old indicators 2, 3, and 4. There-
after we extend indicator 1 to also cover nodes on y = 0 for x > 1/2. These
statements perform the tasks:

grid->redefineBoInds ("n=2 names= bo1 bo2 1=(1) 2=(2 3 4)");

grid->addBoIndNodes ("n=1 b1=[0.5,1]x[0,0]");

The last statement has the following interpretation. We want to extend one
boundary indicator (n=1) with new nodes, and that is boundary indicator
1 (the number following b in b1, here 1, specifies the boundary indicator in
question). All nodes inside the prescribed domain [0.5, 1]× [0, 0], which is an

312 3. Programming of Finite Element Solvers

interval in this case, will be marked with indicator 1. The observant reader
will now claim that the nodes on y = 0, x > 1/2, have two indicators, 1 and
2, turned on. This calls for very careful coding of the fillEssBC function since
the DegFreeFE object can only hold a single essential boundary condition at
each node. A safe strategy is therefore to remove indicator 2 from y = 0,
x > 1/2, enabled by calling the addBoIndNodes function again, but this time
with a third argument that equals false or OFF for removing nodes or true/ON
for adding nodes (default):

grid->addBoIndNodes ("n=1 b2=[0.5,1]x[0,0]", OFF);

Again, it can be convenient to read the string argument to addBoIndNodes

from the menu, as we do in the Poisson2 class22.
When addBoIndNodes determines which nodes that lie inside the given

domain, it uses a tolerance. The numerical value of the tolerance is 10−6 by
default, but it can be changed to, e.g., 10−4 by the option

--tolerance 1.0e-4

on the command line when executing the program. This means that when we
specify a domain with extent [0, 0] in the x2 direction, the code will actually
work with an interval [−10−4, 10−4]. The tolerance is used for many other
purposes as well, e.g., in comparison operators, see page 734.

Sometimes one wants to mark nodes with a new indicator, but restrict the
attention to nodes that are already at the boundary (i.e. marked). This is en-
abled by putting an optional capital B in front of the hypercube specifications
in the string argument to addBoIndNodes:

grid->addBoIndNodes("n=2 b1=B[0.5,1]x[0,0] b3=B[0.1,0.2]x[0.5,1]");

The B option is useful when marking new nodes on curved boundaries, see
Chapter 5.1.5 for an example.

Boundary Indicator Convention in a Simulator. The boundary-value problem
(3.12)–(3.17) operates with five parts of the boundary. It is therefore natural
to introduce a convention for the numbering of boundary indicators in the
Poisson2 solver. We have that boundary indicator 1 represents ∂ΩE1 , indi-
cator 2 represents ∂ΩE2 , indicator 3 represents ∂ΩE3 , indicator 4 represents
∂ΩN , whereas indicator 5 represents ∂ΩR. The following code, taken from
Poisson2::fillEssBC, demonstrates how the boundary indicator numbering
convention directly affects the values of u at the boundary:

dof->initEssBC (); // init for assignment below

const int nno = grid->getNoNodes() ; // no of nodes

22 We use two menu items, one for adding indicators and one for removing indica-
tors.

3.5. Introducing More Flexibility 313

Ptv(real) x; // a nodal point

for (int i = 1; i <= nno; i++) {

// is node i subjected to any Dirichlet value boundary indicator?

if (grid->boNode (i, 1))

dof->fillEssBC (i, dirichlet_val1);

if (grid->boNode (i, 2))

dof->fillEssBC (i, dirichlet_val2);

if (grid->boNode (i, 3)) {

x = grid->getCoor (i); // extract coord. of node i

dof->fillEssBC (i, g(x));

}

}

In a particular problem we then need to map the default indicators, set by the
preprocessor, to the appropriate set of five indicators used by the Poisson2

functions. If we fail to map the default boundary indicators, we might actually
end up using other boundary conditions than we intend to in a simulation.
However, when generating the grid by more flexible preprocessors than what
we normally apply in this text, the correct boundary indicators are set during
the grid generation [77].

Other Applications of Indicators. Boundary indicators are in Diffpack im-
plemented using class Indicators. This class is quite general and allows the
programmer to work with an arbitrary number of indicators. Class GridFE

has an instance of Indicators for marking elements, besides the Indicators

object used for the boundary indicators. This enables easy specification of
overlapping subdomains of the grid as required in certain domain decomposi-
tion methods (the elements marked with a particular indicator make up one
subdomain).

Class GridFE allows the user to have several Indicators objects for various
sets of boundary indicators. To use a particular set, one just attaches the
relevant Indicators object to the grid object. See the man page for class
GridFE and Chapter 7.2 (in particular page 654) for more information about
this feature.

The Material Concept. Many applications involve a PDE defined over a do-
main containing different materials with different physical properties. To han-
dle such cases, we must be able to partition the domain into a non-overlapping
set of “materials”. Some grid generation tools [77] allow flexible definition of
materials, but one can also define box-shaped material subdomains, even on
a one-material grid, through the function GridFE::addMaterial. Here is an
example:

grid->addMaterial ("mat=2 [0,0.2]x[0.5,1]");

314 3. Programming of Finite Element Solvers

All elements whose centroids are inside the subdomain [0, 0.2]× [0.5, 1] will be
marked with material number 2 (mat=2). Full flexibility in defining materials
is offered by the setMaterialType function in class GridFE, which takes the
element number and its corresponding material number as parameters. By
default, all elements have material number 1. Checking the material number
of an element is done by the function

int GridFE::getMaterialType (int element) const;

It is now easy to extend our Poisson equation solvers Poisson1 or Poisson2 to
cover a two-material domain with two corresponding values of k(x). Simply
define a second material and implement a k function of the form

real Poisson1::k (const FiniteElement& fe, real t)

{

if (grid->getMaterialType (fe.getElmNo()) == 1)

return k_val1;

else

return k_val2;

}

We remark that a function k(Ptv(real)& x) would be inconvenient now, since
this would require locating the element containing the point x, which is a
time-consuming process. In general we find it more flexible to let functions
like k and f take a FiniteElement argument instead of a spatial point.

A plot of the partitioning of the domain into material regions is enabled
by calling database->dumpMaterials(*grid) and then filtering the simres field
materials to an appropriate plotting program format.

3.5.2 Line and Surface Integrals

Consider a Poisson equation −∇ · [k∇u] = f with a Neumann boundary
condition,

−k ∂u
∂n

= p,

or a Robin condition like in (3.17),

−k ∂u
∂n

= αu− U0,

where k, p, U0, and α are prescribed quantities.
In a typical Galerkin finite element formulation of this problem, the Neu-

mann or Robin condition is incorporated through a boundary integral term:

∫

∂ΩN

Ni p ds or

∫

∂ΩR

Ni

α

∑

j

Njuj − U0

 ds,

3.5. Introducing More Flexibility 315

over the part ∂ΩN or ∂ΩR of the boundary where the condition applies. This
boundary term is a surface integral in 3D, a line integral in 2D, or just two
point evaluations in 1D. We notice that the Neumann condition is a special
case of the Robin condition with α = 0. It is therefore sufficient to show
how one implements the Robin condition. Since the unknown parameters uj

enter the Robin condition, we get contributions to both the element matrix
(pαNiNj) and to the right-hand side (NipU0). The Neumann condition gives
no contribution to the element matrix. From an implementational point of
view, integration over sides is very similar to integration over the element’s
interior. This means that we implement the boundary terms in an integrands-
like function in the simulator. The details of such an implementation are
explained next.

In the previous program examples we have silently applied many functions
provided by class FEM. The virtual calcElmMatVec function for calculating
the element matrix and vector is an example on a function whose default
implementation in class FEM often suffices23

void FEM::calcElmMatVec

(int elm_no, ElmMatVec& elmat, FiniteElement& fe)

{

fe.refill (elm_no, this); // init for this element

fe.setLocalEvalPts (itg_rules); // init num.itg. points

numItgOverElm (elmat, fe); // call integrands for each pt

}

However, to incorporate the Robin condition, we must extend calcElmMatVec

with an integration loop over the relevant sides. We do this by redefining
calcElmMatVec in our solver class:

void Poisson2::calcElmMatVec

(int elm_no, ElmMatVec& elmat, FiniteElement& fe)

{

FEM::calcElmMatVec (elm_no, elmat, fe); // volume integral

int nsides = fe.getNoSides();

for (int s = 1; s <= nsides; s++) {

if (fe.boSide (s, 5)) // Robin condition (ind. 5) on side s?

numItgOverSide (s, 5, elmat, fe); // surface integral

}

}

According to the numbering convention of boundary indicators adopted in
class Poisson2, indicator 5 marks the boundary where the Robin condition

23 The itg rules variable in calcElmMatVec is of type ElmItgRules and is a data
member of class FEM. The itg rules object contains numerical integration rules
for finite elements in the reference coordinate system.

316 3. Programming of Finite Element Solvers

applies. The function numItgOverSide is similar to numItgOverElm and is in-
herited from class FEM. The nice thing about C++ and object-oriented pro-
gramming is that if you find these inherited functions inappropriate, you are
free to rewrite them in your problem class. Hence, you can inherit general
algorithms and use them for quickly establishing a prototype solver. Later,
you can in a step-wise manner rewrite these general algorithms and adapt
them to the special features of your problem.

The numItgOverSide function runs through a loop over the integration
points on the current side. For each point the function calls integrands4side,
which is similar to integrands, but used for computing surface or line inte-
grals. The implementation also works for the boundary terms in 1D problems.
Here is a suitable implementation of integrands4side (the parameters α and
U0 are named robin u and robin U0 in the Poisson2 code):

void Poisson2:: integrands4side

(int /*side*/, int boind, ElmMatVec& elmat, const FiniteElement& fe)

{

const int nbf = fe.getNoBasisFunc();

real detSideJxW = fe.detSideJxW();

if (axisymmetric) detSideJxW *= fe.getGlobalEvalPt()(1);

int i,j;

if (boind == 5) {

for (i = 1; i <= nbf; i++) {

elmat.b(i) += fe.N(i)*robin_U0*detSideJxW;

for (j = 1; j <= nbf; j++)

elmat.A(i,j) += robin_u*fe.N(i)*fe.N(j)*detSideJxW;

}

}

}

If we have several different integrals over this element side, e.g. arising
from different values of U0 on different sides, one can insert if-else clauses
in integrands4side that test for the side number, the boundary indicator
number, or other parameters managed by the simulator class.

To summarize, surface integral terms are straightforwardly implemented
by the following two steps.

1. Rewrite the calcElmMatVec function in the problem class by first per-
forming the standard integration over the interior of the element and
then check each of the sides whether it involves an integral over that
side.

2. Implement the integrands of the side integrals in the function
integrands4side in the problem class.

A subclass Poi2Robin of Poisson2 implements a special test case for verifying
the implementation of the Robin condition (see also page 337).

3.5. Introducing More Flexibility 317

3.5.3 Simple Mesh Generation Tools

In Chapter 3.2.3 we explained the box preprocessor for generating grids over
box-shaped domains in an arbitrary number of space dimensions. Diffpack
also has somewhat more advanced mesh generation tools, or offers interfaces
to external grid generation packages, as described in the report [77]. Since
one often encounters domains with fairly simple geometry (box, triangle,
disk) in academic and educational work, Diffpack has an easy-to-use interface
to grid generation for some common domain shapes. This interface is itself
a preprocessor in Diffpack, called PreproStdGeom (preprocessor for standard
geometries). We shall explain the usage of this facility next. The reader is
encouraged to try the examples on the Poisson1 or Poi2sinesum simulators24.

Box-Shaped Domains in 1D, 2D, and 3D. To generate a grid over a box-
shaped domain in 1D, 2D, 3D, or higher dimensions, we send a string with
the following syntax as argument to the readOrMakeGrid function:

P=PreproStdGeom | BOX geometry | partition

The geometry and partition strings are the same as for the PreproBox pre-
processor. For example,

P=PreproStdGeom | BOX d=2 [0,2]x[1,3]|d=2 e=ElmB4n2D [10,28] [1,1.8]

generates a 2D grid over [0, 2] × [1, 3], using bilinear elements (ElmB4n2D),
with 10 elements in the x1 direction and 28 elements in the x2 direction. The
gradings are set to 1 for the x1 direction (uniform partition) and 1.8 for the
x2 direction (stretching towards x2 = 1, 3). A uniform 3D grid on the unit
box is generated by the following command:

P=PreproStdGeom | BOX d=3 [0,1]x[0,1]x[0,1] |

d=3 e=ElmB27n3D [4,4,4] [1,1,1]

Here, we have 2× 2× 2 elements since the division 4 in each space direction
reflects the number of intervals between nodes. (Recall that with second-order
elements, like ElmB27n3D, there are three nodes, i.e. two intervals between
nodes, per element in each space direction.)

Rectangle with Triangulation. For some academic test purposes it can be
convenient to apply a triangulation algorithm to generate the mesh over a
rectangle. The command

P=PreproStdGeom | BOXT d=2 [0,1]x[-1,-0.7] | e=ElmT3n2D nel=200

24 The geometries BOXT, TRIANGLE, or DISK require the Geompack software [64] or
the Triangle software [127] to be installed properly with Diffpack.

318 3. Programming of Finite Element Solvers

generates an unstructured triangular mesh on [0, 1] × [−1,−0.7]. The man
page for class PreproStdGeom gives information on the default preprocessor
that the current Diffpack version applies for generating the mesh. The re-
quested preprocessor type can be enclosed in parenthesis after the keyword
BOXT, e.g., BOXT(Geompack) for using the Geompack software by Joe [64] or
BOXT(Triangle) for specifying the Triangle package by Shewchuk [127]. Fig-
ure 3.4 depicts a possible mesh. The nel variable specifies the desired number
of elements in the triangulation. The names d, e, and nel are (as usual) not
significant; only the = signs proceeding the names are really used when inter-
preting the string. The boundary indicators associated with the BOXT domain
shape are the same as those produced by default by the PreproBox prepro-
cessor.

The other keyword indicators for geometry, like TRIANGLE, can also be
equipped with a specification of the preprocessor to be used. However, some
geometries are linked to special preprocessors (for example, we try to use
PreproBox wherever possible).

0 1
−1

−0.9

−0.8

−0.7

0 1
−1

−0.9

−0.8

−0.7

Fig. 3.4. Grid generated by the PreproStdGeom preprocessor, using the in-
struction BOXT d=2 [0,1]x[-1,-0.7] | e=ElmT3n2D nel=200.

Triangular domain. The following command generates a domain with the
shape of a triangle:

P=PreproStdGeom | TRIANGLE (0,0) (3,0) (0,1) | e=ElmT3n2D nel=50

The vertices of the triangle become (0, 0), (3, 0), and (0, 1), the element type
is restricted to ElmT3n2D, and the meaning of the nel parameter is the same
as for the BOXT domain shape. Three boundary indicators are set by default,
one for each side. Indicator no. 1 marks side 1, which is defined as the side
between vertex 1 and 2 (here: (0, 0) and (1, 0)). Indicator no. 2 and 3 mark
side 2 (vertex 2 and 3) and 3 (vertex 3 and 1). The particular command given
here results in the mesh in Figure 3.5.

3.5. Introducing More Flexibility 319

0 1 2 3
0

1

0 1 2 3
0

1

Fig. 3.5. Grid generated by the PreproStdGeom preprocessor, using the in-
struction TRIANGLE (0,0) (3,0) (0,1) | e=ElmT3n2D nel=50.

Disk. A grid over a circular disk with radius 2.5 can be generated by

P=PreproStdGeom | DISK r=0.8 degrees=360 |

e=ElmT3n2D nel=1000 resol=100

Here, nel is as usual the expected number of elements, degrees is explained
below, and resol is the number of vertices used for specifying the outer
boundary polygon of the disk. Only triangular elements of ElmT3n2D type are
allowed. Increasing the value of resol reduces the error in approximating a
circle with a polygon, but more elements are then required in the interior to
avoid undesired element shapes. A warning is issued if the mismatch between
nel and resol is large. The suggested number of elements can roughly be
computed by

2πr2
D

360

(
2πrD

360(n− 1)

)−2

,

where D is the degrees parameter, n is the resol parameter, and r is the
radius of the disk. An example is presented in Figure 3.6a.

Mesh generation in a fraction of a disk is enabled by the degrees param-
eter. Setting e.g. degrees=90 gives a quarter of a disk. Note that degrees is
given in degrees (0 to 360). When degrees is less than 360, there are two
boundary indicators. The first one marks the outer boundary, while the sec-
ond one marks the cut. In case of a complete disk (degrees equals 360), there
is of course only one boundary indicator by default.

Disk with Hole. A finite element mesh in a disk of radius b, with an inner
hole of radius a, can be generated by the command

P=PreproStdGeom | DISK_WITH_HOLE a=0.5 b=0.8 degrees=120 |

d=2 e=ElmB9n2D [10,20] [1,1]

The opening of the disk is here 120 degrees, and the mesh consists of 5× 10
second-order elements with (10 + 1) × (20 + 1) = 231 nodes. The syntax of

320 3. Programming of Finite Element Solvers

−0.8 0 0.8
−0.8

0

0.8

−0.8 0 0.8
−0.8

0

0.8

(a)

−0.8 0 0.8
−0.8

0

0.8

−0.8 0 0.8
−0.8

0

0.8

(b)

Fig. 3.6. Grid generated by the PreproStdGeom preprocessor, using (a) the in-
struction DISK r=0.8 degrees=360 | e=ElmT3n2D nel=1000 resol=100 and (b)
the same instruction, but with degrees=340.

the partition part is identical to that of the box preprocessor. The boundary
indicators are also the same, one for each side. Figure 3.7 depicts an example
of the grid.

In polar coordinates (r, θ) the hollow disk domain is (a, b)× (0, θ0), where
θ0 is the degrees parameter. Boundary indicator 1 marks the side r = b,
indicator 2 marks θ = θ0, indicator 3 marks r = a, and indicator 4 marks
θ = 0. The mesh is easily generated from a rectangular mesh on the unit
square, mapped by the transformation

x = % cos ηθ0, y = % sin ηθ0, % = ξ(b− a) + a,

where (ξ, η) ∈ [0, 1]× [0, 1]. We remark that only a fraction of a disk can be
generated, i.e., degrees=360 is not legal (two of the boundaries in the original
square would then coincide).

Box with Box-Shaped Hole. The command

P=PreproStdGeom | BOX_WITH_BOX_HOLE

d=2 [0,1]x[0,0.4]-[0,0.4]x[0,0.2] | d=2 e=ElmB4n2D [20,20] [1,1]

specifies a rectangle (0, 1) × (0, 0.4), where a rectangular region (0, 0.4) ×
(0, 0.2) is removed. The syntax of the partition string is the same as for the
box preprocessor. The boundary indicators for the original domain (0, 1) ×
(0, 0.4) are as for the box preprocessor, and the new boundary due to removal

3.5. Introducing More Flexibility 321

−0.4 0 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

−0.4 0 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3.7. Grid generated by the PreproStdGeom preprocessor, using
the instruction DISK WITH HOLE a=0.5 b=0.8 degrees=120 | d=2 e=ElmB9n2D

[10,20] [1,1].

of a rectangle is marked by an additional indicator, which is then indicator
no. 5 in the present 2D example. An example is presented in Figure 3.8. The
syntax for three-dimensional problems should be evident.

0 1
0

0.1

0.2

0.3

0.4

0 1
0

0.1

0.2

0.3

0.4

Fig. 3.8. Grid generated by the PreproStdGeom preprocessor, using
the instruction BOX WITH BOX HOLE d=2 [0,1]x[0,0.4] - [0,0.4]x[0,0.2] |

d=2 e=ElmB4n2D [20,20] [1,1].

Box with Elliptic Hole. The command

P=PreproStdGeom | BOX_WITH_ELLIPTIC_HOLE(box)

a=2 b=1 c=3 d=3.5 deg=90 | d=2 e=ElmB4n2D [14,20] [-0.7,1]

specifies a quarter of a rectangle (−a − c, a + c) × (−b − d, b + d), with an
elliptic hole (x/a)2 + (y/b)2 = 1, see Figure 3.9a. The syntax of the partition
string is the same as for the box preprocessor. A deg parameter less than 90
(the value is arbitrary) specifies that 1/8 of the total enclosing rectangle is to
be meshed, deg=90 specifies 1/4 of the total rectangle, while deg=180 means

322 3. Programming of Finite Element Solvers

half of the total rectangle with a semi-ellipse as hole. The numbering of the
boundary indicators depend on the deg parameter, see Figure 3.9b.

0 1 2 3 4 5
0

1

2

3

4

4.5

0 1 2 3 4 5
0

1

2

3

4

4.5

b

d

a c

(a)

1

2

1

3

5

4 4

1
3

2

2

5

3

4 4

(b)

Fig. 3.9. (a) Grid generated by the PreproStdGeom preprocessor, us-
ing the instruction BOX WITH ELLIPTIC HOLE a=2 b=1 c=3 d=3.5 deg=90 | d=2

e=ElmB4n2D [14,20] [-0.7,1]; (b) numbering of boundary indicators for
deg<90 (top left), deg=90 (top right), and deg=180 (bottom).

Sphere with Hole. The command

P=PreproStdGeom | SPHERE_WITH_HOLE a=2.5 b=6 theta=45 phi=45 |

d=3 e=ElmB8n3D [8,6,6] [1,1,1]

is similar to the command for creating a mesh in a hollow disk, but generates
a grid in a part of a hollow sphere (a complete sphere or semi-sphere with
a hole is not possible). The inner and outer radius of the hollow sphere are
a and b, while phi and theta denote the opening of the meshed part of the
sphere, expressed in the angular spherical coordinates (φ, θ), where φ is the
angle between the radius vector and the z axis, and θ is the angle between
the x axis and the projection of the radius vector onto the xy plane. The
mesh is realized by transforming a grid over the unit cube onto the hollow
sphere, as we described in detail for the DISK WITH HOLE feature. The boundary
indicators are as follows: 1 marks the outer boundary r = b, 2 marks θ = θ0,
3 marks φ = 0, 4 marks the inner boundary r = a, 5 marks θ = 0, and 6
marks φ = φ0.

3.5. Introducing More Flexibility 323

On page 622 we exemplify a geometry BOX WITH BELL. Class PreproStdGeom
is occasionally equipped with new geometries – check the man page for the
last updates.

More Flexible Tools for Grid Generation. Nontrivial geometries require the
use of more advanced grid generation software, e.g., or packages like Geom-
pack [64], Triangle [127], or GRUMMP [50]. The former two can be accessed
from Diffpack, either directly in a simulator or through the makegrid utility.
Suppose you have used the Triangle preprocessor to generate a finite element
grid stored in the files mygrid.node and mygrid.ele. The filter triangle2dp

mygrid can then transform this grid to Diffpack’s grid format, resulting in
the file mygrid.grid, which can be loaded into, e.g., a Poisson1 or Poisson2

simulator. Alternatively, the makegrid command

makegrid --batch -m PreproTriangle -g ’file=tg’ -p ’options=-pIq’

--casename mygrid --plot ON

feeds Triangle with the options -pqI and a description of the boundary poly-
gon in the file tg.poly (written according to Triangle’s file format). This
results is a Diffpack grid file mygrid.grid and a series of Plotmtv plots of
the mesh and the boundary indicators. Similar functionality exists for the
Geompack preprocessor. We refer to the report [77] for further information.

If your favorite grid generation software is not directly supported by Diff-
pack it is normally a few hours job to write a filter that transforms a grid file
format to Diffpack’s GridFE format.

In many cases, at least in 2D, the super element preprocessor explained
in the next section might be sufficient for gridding non-trivial geometries.
Especially if you have several materials in the domain and/or you want to
have detailed control of the partition of different parts of the domain, the
super element preprocessor is advantageous. The input to this preprocessor
is stored in a script, which allows you to change the partition and the size of
different parts of the domain by a few keystrokes (in this regard it is much
more efficient than a graphical drawing interface).

3.5.4 Grid Generation by Super Elements

A quite flexible way of creating finite element grids is to divide the domain
into very coarse elements, called super elements, and then divide each super
element into the finite elements one wants for the computation. Super element
are normally specified as higher-order elements with curved sides. Second-
order elements are widely used for this purpose. Figure 3.10 displays 8-node
and 20-node box-shaped elements with their numbering convention of local
nodes and sides25 in Diffpack. We shall make use of these elements as super
elements.
25 There are no internal nodes in these elements, i.e., all nodes are on the element

boundary.

324 3. Programming of Finite Element Solvers

ξ

ξ

2

1

1 2

3 4

side 4

side 3 side 1

side 2

7

5

6

8

(a)

ξ1

ξ

ξ

2

3

6

8

4

7

5

1 2

3

side 6

side 2

side 1

side 3

side 4

side 5

9

19

11

1614

12

20

1513

10
17 18

(b)

Fig. 3.10. Nodal locations and numbers as well as side numbers for (a) 2D
quadrilateral element with 8 nodes, (b) 3D box element with 20 nodes.

Example of a Domain and Super Elements. The super element technique is
easiest explained through an example. Consider the domain in Figure 3.11a.
This is the symmetric part of the real physical domain, the left boundary be-
ing a symmetry line. The domain is divided into two super elements, denoted
by super element 1 and 2, respectively. Super element 1 is the unit square,
whereas super element 2 has a shape parameterized by a, b, c, and d. The
information about the super element we need to provide consists of

3.5. Introducing More Flexibility 325

a

b

c

1

d

2

(a)

0 1 1.5
0

1

1.9

0 1 1.5
0

1

1.9

(b)

Fig. 3.11. (a) Sketch of a computational domain divided into two super ele-
ments; (b) a finite element grid over the domain.

326 3. Programming of Finite Element Solvers

– the coordinates of the corner nodes,

– the coordinates of the mid-side nodes if curved sides are wanted,

– the sides of the element where boundary indicators are set,

– the super element type,

– the desired type of element in the resulting finite element grid,

– the material number of the elements resulting form this super element,

– the division and grading in each of the super element’s space directions
(using division and grading notation as for the PreproBox preprocessor).

In the present example, super element 1 typically have (0, 0), (1, 0), (0, 1),
and (1, 1) as nodes 1, 2, 3, and 4, respectively. The coordinates of the nodes
in super element 2 can be expressed in terms of a, b, c, and d: (0, 1) (node
1), (1, 1) (node 2), (0, 1 + b+ c) (node 3), (1 + a, 1 + b) (node 4), and ((1 +
a)/2, 1+b+c) (node 6). With this numbering of the nodes, each super element
has the sides 1, 2, 3, and 4 corresponding to the right, upper, left, and lower
sides. We introduce four boundary indicators: symmetry for the symmetry line
x = 0, right for the right boundary, lower for the lower boundary (x = 0),
and upper for the upper (curved) boundary. In super element 1, boundary
indicator 1 is on at side 3, indicator 2 is on at side 1, indicator 4 is on at side
4, and side 2 has no indicators since this is an internal side. In super element
2, boundary indicator 1 is on at side 3, indicator 2 is on at side 1, indicator
4 is on at side 2, and side 4 has no indicators.

Defining Super Elements in a Python Script. The purpose now is to trans-
late the super element information to a format that can be understood by
the computer. There are different ways of doing this, as explained in the
report about Diffpack’s grid generation tools [77]. The easiest way is to
write a small Python script [68] for specifying the super element informa-
tion, generating the grid, and viewing the results. Diffpack’s Python library
dplib contains a class PreproSupElDef, which offers all the functionality we
need for specifying super element grids and dividing them into finite ele-
ments for computations. The script for the current example is found in the
file src/fem/Poisson1/Verify/supel.py. Hopefully, the high-level, simple, and
clean syntax of Python make the script close to self-explanatory, even if you
are new to Python.

#!/usr/bin/env python

from dplib import PreproSupElDef

p = PreproSupElDef(casename=’tmp1’, nsd=2,

boind_names=[’symmetry’, ’right’, ’upper’, ’lower’])

a = 0.5

b = 0.4

3.5. Introducing More Flexibility 327

c = 0.5

d = 0.4

parameterize the partition:

div_x = 14 # division in x direction

div_y_1 = div_x # division in y dir for supel 1

div_y_2 = (b+c)*div_x # division in y dir for supel 2

p.supel(material_no=1,

supel_type="ElmB8n2D",

nodes={ 1: (0,0), 2: (1,0), 3: (0,1), 4: (1,1)},

boinds={ 1: (3), 2: (1), 4: (4) },

element_type="ElmT3n2D",

divisions=(div_x,div_y_1),

grading=(-1.5,1))

p.supel(material_no=1,

supel_type="ElmB8n2D",

nodes={ 1: (0,1), 2: (1,1), 3: (0,1+b+c), 4: (1+a,1+b),

6: ((1+a)/2.0,1+b+d) },

boinds={ 1: (3), 2: (1), 3: (2) },

element_type="ElmB4n2D",

divisions=(div_x,div_y_2), grading=(-1.5,-1.5))

p.writefiles()

p.generate(view=1)

A key feature of this script, as we explain later, is that the geometry and
partition is parameterized by five variables. Changing the values of these five
variables enables you to change the partition and/or the geometry in a very
fast and consistent way. You should note that a graphical drawing interface
might appear more convenient and faster to use, but it is less convenient for
playing around with the grid generation in a consistent way.

Dissection of the Script. Let us explain the script in detail. After a standard
Python header, the script imports the definition of class PreproSupElDef. We
start with making an instance (object) of this class:

p = PreproSupElDef(casename=’tmp1’, nsd=2,

boind_names=[’symmetry’, ’right’, ’upper’, ’lower’])

The variable p represents the instance (it acts like a reference in C++). The
constructor in class PreproSupElDef takes three arguments, and the argu-
ments are named (casename, nsd, and boind names) such that it is easier to
understand what the constructor call means.

We introduce parameters for the geometry (a, b, etc.). Because of the
nature of the geometry, it makes sense to have the same division (div x)

328 3. Programming of Finite Element Solvers

in the x and y directions in super element 1. The division in x direction
in super element 2 must match that in super element 1. The division in
y direction in super element 2 can be taken as b+ c times the division in x
direction. Therefore, by setting one division parameter (div x) we can provide
a consistent division info in all super elements in this example.

We specify the super elements by the syntax

p.supel(material_no=1,

supel_type="ElmB8n2D",

nodes={ 1: (0,0), 2: (1,0), 3: (0,1), 4: (1,1)},

boinds={ 1: (3), 2: (1), 4: (4)},

element_type="ElmT3n2D",

divisions=(div_x,div_y_1),

grading=(-1.5,1))

Here too we use arguments with names;

– material no assigns a material number to the elements to be generated
from this super element,

– supel type specifies the type of super element,

– nodes is a list26 of the super element’s nodal coordinates, written with
the syntax node number: (coor1,coor2) for each local node in the super
element,

– boinds is a similar list with items boundary indicator: (side1,side2),

– element type assigns the element type of the finite elements to be gener-
ated inside the super element,

– divisions and grading are specified as for the PreproBox preprocessor (see
page 278).

The sequence of the arguments does not matter. The second super element
is described with a similar p.supel call. Thereafter we can call the function

p.writefiles()

to generate special files with the super element information. These files are
needed by the makegrid program for generating the grid. The call

p.generate(view=1)

generates the mesh, by running makegrid with appropriate parameters. The
true value (1) of view turns on the --plot ON option to makegrid such that
we can view the grid and the boundary indicators on the screen. With view=0

(default) no plot is shown.

26 In Python terminology, nodes is a dictionary of lists.

3.5. Introducing More Flexibility 329

Running the Script. The Python script is executed by typing

python supel.py

or (on Unix)

./supel.py

provided that the current working directory contains the supel.py file. The
resulting grid appears in Figure 3.11b. The reader should observe how easy it
is to change the geometry parameters a, b, c, d and/or the division parameter
div x and create new grids on the fly.

If you want to view the super element grid, call the p.writefiles function
with an argument supels only=1.

About More Complicated Examples. The current example should be suffi-
ciently general such that extensions to more complicated grids, built of nu-
merous super elements, are obvious. The extension to 3D is straightforward,
just replace ElmB8n2D by ElmB20n3D, and assign nodal coordinates by the syn-
tax node number: (coor1,coor2,coor3). Also remember to choose a valid 3D
finite element for the resulting computational grid.

In complicated grids we recommend to store the nodal points in special
variables such that you do not need to repeat the coordinates of a node shared
by many elements. This may reduce errors and simplify the specification of the
super element nodes. For example, we can in the previous example introduce

P1=(0,0); P2=(1,0); P3=(0,1); P4=(1,1);

P5=(0,1+b+c); P6=(1+a,1+b); P7=((1+a)/2.0,1+b+d)

and use these variables in the nodes list:

nodes = { 1: P1, 2: P2, 3: P3, 4: P4 } # supel 1

nodes = { 1: P3, 2: P4, 3: P5, 4: P6, 6: P7 } # supel 2

We employ this approach when constructing much more complicated grids in
Chapters 3.6.4 and 3.13.4.

The super element preprocessor gives you a high degree of control of the
resulting finite element grid, but for complicated geometries and material
patterns you might need many super elements. Chapters 3.6.4 and 3.13.4
provide some instructive examples. At present, the super element preproces-
sor can only work with box-shaped super elements. Triangular parts of the
domain must therefore be modeled by a union of quadrilateral elements (see
Chapter 3.13.4).

330 3. Programming of Finite Element Solvers

3.5.5 Debugging

The first versions of a Diffpack simulator will most likely halt or abort due to
error messages from Diffpack or from the operating system. Correcting such
errors is usually quite easy, at least if you use the right tools and know the
C++ language well. Computational errors are more difficult to correct and
require a thorough understanding of the mathematics and numerics of the
problem. Below we list some debugging hints that have proven to be valuable
when developing Diffpack applications. Additional information is provided in
the FAQ [71].

Array Indices Out of Bounds and Null Pointers. Before you even think about
debugging, make sure that you run the program in non-optimized mode. The
non-optimized mode forces checks on index bounds in arrays and on null
pointers in Handle objects – the sources of the most common errors among
programmers.

Handling Diffpack Error Messages. When a Diffpack error message is issued
it can be difficult to locate where the error actually occurred in the program.
Examining the sequence of function calls leading to the erroneous state is
often helpful for finding the origin of the error. To this end, C++ exceptions
must be caught inside the libraries, which is ensured by the --exceptions

0 command-line option to your program (this is the default behavior). If
you then also supply the option --verbose 1 when rerunning the program,
the execution will be terminated, and the program will dump a core file.
With the aid of a debugger this core file can recover the stack of function
calls, supplied with corresponding line numbers in source code files (if your
program was compiled in non-optimized mode). The output from the verbose
error message briefly describes how to invoke a debugger and issuing a suitable
command for displaying the call stack.

If the program terminates with a segmentation fault or a bus error, a core
file is usually dumped. The error is then easily located by invoking a debugger
and examining the call stack in the same way as we described for the error
messages.

Debug Output. It is often convenient to insert output statements in the pro-
gram for debugging, but include these in preprocessor directives such that
the statements can be activated or deactivated at compile time. Keeping the
output statements in the code allows for easy reactivation in future debugging
sessions. Here are four examples:

#ifdef DP_DEBUG

s_o << "Inside loop, i=" << i << " r=" << r << "\n";

#endif

// equivalent statement:

DBP0(oform("Inside loop, i=%d, r=%g",i,r));

3.5. Introducing More Flexibility 331

#if DP_DEBUG >= 2

s_o << "Inside loop, i=" << i << " r=" << r << "\n";

#endif

// equivalent statement:

DBP2(oform("Inside loop, i=%d, r=%g",i,r));

In the first example, DP DEBUG must be defined, but its value is not used.
The second example contains code that is activated only if DP DEBUG has an
integer value larger than or equal to 2. The DBP (DeBug Print) macros are
shorthand for the same output: DBP is always active, DBP0 requires DP DEBUG

to be defined, while DBPX is active if DP DEBUG equals the integer X. An advan-
tage of the DBP macros is that they write the filename and the line number
in addition to the string given as argument to the macros. The compiler
option -DDP DEBUG defines the preprocessor variable DP DEBUG on Unix sys-
tems, whereas -DDP DEBUG=2 assigns the value 2 (see page 720). Examples on
practical use of DP DEBUG are given in, e.g., the functions calcElmMatVec and
solveProblem in class Poisson2.

Manual Program Trace. The Diffpack macro DPTRACE(msg) is convenient for
tracing the program flow. The macro is typically inserted in the beginning of
central functions:

void MySimulator::fillEssBC ()

{

DPTRACE("MySimulator::fillEssBC");

...

}

When the program is compiled with the DP DEBUG preprocessor variable de-
fined, DPTRACE will print a message, containing the string argument to the
macro, at the beginning and at the end of that function. If DP DEBUG is not
defined, DPTRACE results in empty code so there is no overhead in having this
built-in trace of function calls.

Exercise 3.4. .
Compile the files in the Poisson2 application such that all the debug

output and the trace information is activated (DP DEBUG=2). Run a test case
using the Verify/test1.i file as input to see what the debug information
looks like. �

Invoking Debuggers. As an alternative to inserting output statements for
debugging in the code, you can invoke a debugger. This allows you to stop
at specified locations in the program and examine variables. The ability of
debuggers to examine C++ objects that are built of layers of other objects
vary greatly, and only the most sophisticated debuggers eliminate the need

332 3. Programming of Finite Element Solvers

for inserting your own output statements in the code. Here we shall briefly
mention the usage of the widely distributed GNU debugger, called gdb [89,
Ch. 6], on Unix systems. To apply such a debugger, you must compile the
program in non-optimized mode; the compiler will then also generate the
necessary debugging information. Thereafter you can invoke the debugger by
the command gdb app. The file .gdb.demo in the Poisson2 directory contains
a self-explanatory demonstration of a debug session with gdb. Readers who
are working in Unix environments are strongly encouraged to go through this
session and become familiar with the basic usage of gdb.

Windows Remark 3.6: Using Visual C++, fatal error situations are best handled by

using the debugger integrated in Visual Studio. This is a very powerful tool that gives

complete source code access and the possibility of setting breakpoints and examining

data interactively. �

Problems with the Menu System. Errors in operating the menu system can
often be found by inserting a help command before each ok command. This
will print the status of the current submenu, including the most recent an-
swers. In this way you can ensure that the right menu commands are issued.
Sometimes it might be necessary to give menu commands manually in an
interactive program session (cut and paste from the input file) to see exactly
how and where errors occur.

Using the Same Code for 1D, 2D, and 3D Problems. Parameterizing the
number of space dimensions, as demonstrate in the Poisson1 and Poisson2

classes, helps the debugging of 2D and 3D problems immensely; experience
shows that careful testing of the 1D case removes most of the errors in the
code.

Evaluating Intermediate Results. Verification of intermediate computational
results requires a thorough understanding of the mathematical problem and
the numerical method. Try to find a simplified test case, work through the
details of the numerical algorithm by hand, and compare hand-calculations
with intermediate output from the program. Class Poisson2 has debug out-
put statements for the essential boundary conditions, the element matrices
and vectors, the global linear system after assembly, and the solution. Our
emphasis on calculating the discrete (finite difference-like) equations in Chap-
ter 2 is mainly motivated by this debugging method. Using the methods of
Appendix A.4, one can also often find an exact analytical solution of the
discrete equations. In this way one can construct test cases with, e.g., two
elements and hand-calculated results for the element vectors and matrices as
well as the global linear system and its exact solution.

3.5. Introducing More Flexibility 333

3.5.6 Automatic Report Generation

Exploration of mathematical models through computer experiments requires
careful conduction of the experiments. We have already mentioned Diffpack’s
support for running all combinations of multiple-valued menu answers, the
so-called multiple loop functionality, in Chapter 3.4.2. Such extensive exper-
iments produce lots of results, and it is a nontrivial problem to extract the
most relevant results for scientific or engineering interpretation. When ex-
ploring a mathematical model using a Diffpack simulator, you can increase
your own efficiency significantly by having the simulator generate nicely for-
matted reports containing important input and output data together with
relevant visualization. Class MultipleReporter enables Diffpack programs to
write reports using statements similar to those of LATEX2ε. The final report
comes in three formats, ASCII, LATEX2ε, and HTML.

Instead of using Diffpack’s built-in report generation tools you might con-
sider building your own scripting interfaces (cf. Chapter 3.12.9 and 3.13.6,
and [68]) that generate reports “outside” Diffpack. Such an approach is more
flexible and keeps the simulator simpler. However, the advantage of gener-
ating reports within Diffpack is that one has direct access to a lot of data
structures in the problem. In a script, one must normally process result files
to get key data for the report, unless the script can call Diffpack directly [74].

The basic idea of report writing in Diffpack is that each class is respon-
sible for writing its part of a report, which means that many library classes
have functionality for writing information to a MultipleReporter object. The
simulator holds the MultipleReporter object and calls up various classes to
fill the report.

The size of reports containing numerous runs usually becomes inconve-
niently large. The MultipleReporter class can therefore also produce a sum-
mary report that enables a quick overview of the various runs in a multiple
loop. For each run, just a few selected key parameters are visible. If you want
more information about a particular run, you can look up the relevant part
of the full report. The HTML version of the summary report offers of course
a link to the detailed information, such that it is easy to jump back and forth
between the summary report and the full report.

Having a simulator like class Poisson2 (or Poisson1), it is trivial to gen-
erate code for automatic report generation. Just execute a Diffpack script:
MkReport -s Poisson2. The arguments tell that class Poisson2 is a simula-
tor for a stationary (-s) problem. Many newcomers to Diffpack and C++
find it convenient to collect the additional code for automatic report gener-
ation in a subclass of the simulator (that is not necessary; it is just a way
of separating the original simulator from the new report generation func-
tions). The MkReport scripts generates appropriate code and files for a sub-
class ReportPoisson2. Substituting Poisson2 by ReportPoisson2 in the main

file should make the simulator with report functionality ready for execution.

334 3. Programming of Finite Element Solvers

In problems where variable names deviate from that in class Poisson2 you
must be prepared to edit the report class. Fortunately, editing almost working
code is much easier than writing the statements from scratch. The MkReport

script assumes the existence of a Handle(FieldFE) u for the primary unknown,
a Handle(GridFE) grid for the grid, and a Handle(LinEqAdmFE) lineq for the
linear system tools. The application developer is encouraged to add new re-
port writing statements by looking at the existing code and consulting the
man page for class MultipleReporter. Class SimReport contains useful func-
tions for including graphics.

The ReportPoisson2 class contains more functions than what is strictly
necessary for our present Poisson2 solver. The splitting of operations into
several functions provides the necessary flexibility when combining different
simulator classes for solving systems of PDEs. Each PDE solver can then
easily generate its part of the report for the whole system.

The reader is encouraged to study the ReportPoisson2 class. The man page
for the base class FEM and its base class SimCase, together with the man page
for class SimReport, should provide the necessary information for customizing
the report generation code to suit your own needs.

The following command runs a possible test case27.

./app --class Poi2flux --casename arg1 < Verify/test4b.i

When the execution is finished, the program should have generated the files
arg1-summary.*, containing summary reports, and arg1-report-*, containing
full reports. The HTML format is the favorite of most users for browsing the
results. Enter Opera, Netscape, Galeon, or any other browser with the report
filename as “address”. On the Unix command line you can typically write

netscape arg1-summary.html &

Clicking on “run-2” leads you to the part of the full report where the infor-
mation about the second run in the multiple loop is provided.

The report writing functions are called by MenuSystem::multipleLoop. Be-
fore the loop starts, openReport is called. By default openReport is an empty
function, but if it is defined in the simulator, it will typically open the re-
port files and call writeHeadings for defining the row and column headings
of the tables in the summary report. Inside the multiple loop, the functions
scan, solveProblem, and resultReport are called in that order. After exit of
the multiple loop, the closeReport function is called. Hence, if you want
to postprocess data from several runs, you should do this in closeReport.
The resultReport function contains calls to writeResults for writing sum-
mary report items and writeExtendedResults for writing the full report in
the current run. Many Diffpack classes have their own writeResults and

27 Poi2flux is a subclass, implementing a special test problem, in the Poisson2

solver, see page 337 and Chapter 2.8.2.

3.5. Introducing More Flexibility 335

writeExtendedResults functions which can be called from the simulator’s
version of these functions. This is exemplified in the source code for class
ReportPoisson2.

Sometimes you want to run a quick test problem and not wait for the
time-consuming generation of plots in the report. The option --nographics

to app turns off the plotting, but makes the report. The graphics can be gen-
erated later as we shall explain. The option --noreport is even more efficient;
it avoids all calls to report generating functions and is very useful during
debugging for speeding up the executions.

If you encounter problems with the creation of graphics during run time,
this is usually due to missing programs. Error messages of the form “last
Unix command failed” are then common. If you encounter such problems,
rerun the case using the command-line options --nounix --nographics. This
will put all Unix and plotting commands in scripts that can be executed after
the simulation is finished. Of course, there will be no pictures in the reports
before these scripts are run successfully. As a post process you can run

SIMULATION.unix; SIMULATION.makegraphics

to generate the graphics. During the execution of these scripts one can more
easily detect and explain error messages from the operating system.

3.5.7 Specializing Code in Subclass Solvers

Motivation. A flexible Poisson equation solver, like the one in class Poisson1

or in Poisson2, can be reused in many problems. The most straightforward
way to adapt the solver to a new problem consists in copying and editing
the source code. We warned against this approach in Chapter 3.4.6 because
it leads to multiple versions of the program; improvements of the original
Poisson solver are not automatically available to all the derived versions of
the code.

Suppose you incorporate efficient multigrid methods for solving linear
systems in class Poisson2. If customization of the Poisson solver in various
problems are done along the lines of Chapter 3.4.6, i.e., customization takes
place in small subclasses, any improvements of the original solver are im-
mediately available to the subclass solvers after a recompilation. Ideally, all
common parts of Poisson equation simulators should be collected in one class.
The details that differ from problem to problem, like f , g, k, and the analyt-
ical solution (if it is available), should be implemented separately from the
general solver. Such a software design is typical for object-oriented program-
ming. We will now extend the ideas from Chapter 3.4.6 and create subclass
solvers, derived from class Poisson2, which deal with specialized problems.

Basic Principles of the Design. Looking at class Poisson1, we see that it
contains information about the details of a special test problem, namely the

336 3. Programming of Finite Element Solvers

Poisson2anal

ReportPoisson2

Poisson2

Poi2sinesum

Poi2disk

Poi2fluxFieldFunc

Fig. 3.12. The main parts of the Poisson2 hierarchy. Arrows denote inher-
itance. Class Poisson2 is the general solver for the problem (3.12)–(3.17),
ReportPoisson2 extends the solver with automatic report generation, the
Poisson2anal class is a base for specialized solvers where the analytical solu-
tion is known and the numerical errors can be computed. Examples on some
specialized solvers are the classes Poi2sinesum, Poi2disk, and Poi2flux.

A parameters and the analytical solution. In class Poisson2, we have moved
such problem-specific data and functionality out of the class, such that the
class is better suited for all types of Poisson equation problems. The particu-
lar test problem in class Poisson1, as well as other test cases with analytical
solutions, can be implemented in the Poisson2 framework by the following
procedure. We derive a subclass Poisson2anal from Poisson2, or rather from
ReportPoisson2, to inherit the report generation tools as well. The purpose of
class Poisson2anal is to adapt the general Poisson2 solver to Poisson equation
problems where the analytical solution is known. In such problems we want
to compute the error field, various norms of the error, and estimate the con-
vergence rate from a series of experiments. Moreover, the results about the
errors are to be included in the automatically generated reports. We therefore
need some extra functionality in class Poisson2anal, e.g., an ErrorRate object
as well as calls to Lnorm and errorField in the ErrorNorms class, as explained
in Chapters 3.4.3 and 3.5.9. This functionality is common to all problems
where the analytical solution is available. Class Poisson2anal can therefore
act as base class for subclass solvers that implement specific choices of the f,
g, k, and valuePt (the analytical solution) functions. A sketch of the Poisson2

class hierarchy is displayed in Figure 3.12.
Using class derivation, we can specialize the original Poisson2 solver with-

out touching the source code of the Poisson2 files. Moreover, we only program
the differences from the base class in a subclass, i.e., we add data members
and redefine some of the virtual functions. This leads to very short code
in the subclass solvers. Moreover, any bug corrections or computational im-
provements of class Poisson2 are automatically available to these subclass
solvers.

3.5. Introducing More Flexibility 337

A List of the Subclass Solvers. Several special cases of the boundary-value
problem (3.12)–(3.17) are implemented as subclasses of Poisson2anal:

– Class Poi2sinesum implements the test case from Chapter 3.2.1. Its sub-
class Poi2randgrid offers random displaced nodes for investigating the
impact of distorted elements on the accuracy of the solution.

– The Poi2disk solver deals with the Laplace equation in a hollow disk (2D)
or sphere (3D), with u = 0 on the inner boundary and u = 1 on the outer
boundary.

– Class Poi2flux implements −∇· [k∇u] = f0 on a grid [0, 1]× [a, b]× [c, d],
where f0 is constant, a, b, c, and d are arbitrary, k = 1 for x1 ∈ [0, γ] and
k = k0 for x1 ∈ (γ, 1], u = 1 at x1 = 0, u = 0 at x1 = 1, and ∂u/∂n = 0
at all other boundaries. The solution is then only varying with x1. The
purpose of this test case is to investigate the effect of jumps in k on u
and the flux −k∇u. Numerical experiments using this solver appear in
Chapter 2.8.2.

– Class Poi2Robin solves a two-point boundary-value problem u′′ = 0 on
(0, 1) with u(0) = 0 and −u′(1) = 2.5u(1)− 4, but the actual computa-
tional domain is the 2D unit square with ∂u/∂n = 0 on y = 0, 1. The
purpose is to verify the implementation of the line integrals associated
with Neumann and Robin conditions (Chapter 3.5.2).

– Class Poi2estimates solves the special test problem in Chapter 2.10.6.

Details of a Subclass Solver. Let us take a closer look at class Poi2sinesum,
which implements the test problem from class Poisson1, using the numer-
ics of class Poisson2, the reporter facilities from class ReportPoisson2, and
the generic error computations in class Poisson2anal. In addition to the in-
herited functionality from its base classes, class Poi2sinesum needs the data
member Ptv(real) A parameters for representing A1, . . . , Ad, it needs to read
A1, . . . , Ad from the menu, it needs to implement the analytical solution (u
and∇u), and it needs to compute the various measures of the error. The latter
task is automatically performed and reported in the base class Poisson2anal.
Our Poi2sinesum therefore becomes quite compact:

class Poi2sinesum : public Poisson2anal

{

protected:

Ptv(real) A; // parameters in the f function

public:

Poi2sinesum() {}

~Poi2sinesum();

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan ();

virtual real valuePt (const Ptv(real)& x, real t = DUMMY);

338 3. Programming of Finite Element Solvers

virtual Ptv(real) derivativePt (const Ptv(real)& x, real);

virtual real f (const FiniteElement& fe, real t = DUMMY);

};

The define function should define everything that the base classes define
on the menu, but in addition include a menu item for A1, . . . , Ad. This is
compactly accomplished by writing

void Poi2sinesum:: define (MenuSystem& menu, int level)

{

Poisson2anal::define (menu, level);

// add special menu item related to this test case:

menu.addItem (level, // menu level (submenu: level+1)

"A parameters", // menu item command/name

"A_1 A_2 ... in f expression", // help/description

"3 2 1"); // default answer

}

The following scan function relies on class Poisson2anal in the same way:

void Poi2sinesum:: scan ()

{

Poisson2anal::scan ();

A.redim (grid->getNoSpaceDim());

MenuSystem& menu = SimCase::getMenuSystem();

A.scan (menu.get ("A parameters"));

However, we should in the scan function also test that the data given to the
Poisson2 solver are correct. The present test problem can handle any domain
or grid, since we set u equal to the analytical solution at the boundary, but
boundary indicator 3 (user-specified variable Dirichlet condition) must be
marked at all boundary nodes. We can force this setting of required boundary
indicators by calling GridFE::redefineBoInds in the scan function; we simply
redefine boundary indicator 3 as the sum of all previous (default) boundary
indicators. The complete source code of Poi2sinesum::scan explains in detail
how this is done.

The analytical solution of the test problem in class Poi2sinesum is imple-
mented in terms of the valuePt function in the same spirit as we sketched for
class Poisson1 on page 300. Observe in Figure 3.12 that Poi2sinesum inherits
from FieldFunc and thus can be treated as a functor28. Our simulator class
can then be used in function calls where a FieldFunc functor is expected to
represent the analytical solution.

28 It is in fact the base class Poisson2anal of Poi2sinesum that is derived from
FieldFunc and that encourages the subclasses to be their own functors for im-
plementing the analytical solution.

3.5. Introducing More Flexibility 339

real Poi2sinesum:: valuePt (const Ptv(real)& x, real)

{

const int nsd = x.size(); real sum = 0;

for (int j = 1; j <= nsd; j++)

sum += A(j)*sin(j*M_PI*x(j)); // M_PI=3.14159...see math.h

return sum;

}

Ptv(real) Poi2sinesum:: derivativePt (const Ptv(real)& x, real)

{

const int nsd = x.size(); Ptv(real) g(nsd);

for (int j = 1; j <= nsd; j++)

g(j) = j*M_PI*A(j)*cos(j*M_PI*x(j));

return g;

}

The f function is identical to Poisson1::f, whereas g(x) simply returns the
analytical solution, i.e. valuePt(x) (this is the default implementation in class
Poisson2anal).

Object-Oriented Programming. The reader who has studied the complete
source code of class Poi2sinesum might wonder how the error computation
actually takes place. Looking at the base class Poisson2anal, we can see
a generic call to the Lnorm function in resultReport, using the solver class
(*this) as the functor that represents the analytical solution:

ErrorNorms::Lnorm (*this, *u, ...);

How such a generic call can work properly for all subclasses is now explained.
The resultReport function is virtual and called from the multipleLoop

function in the menu system, which is usually the administering routine of
all Diffpack simulators. The multipleLoop function takes a SimCase& argument
that represents the simulator. This means that the multipleLoop function can
only see our Poi2sinesum solver through the base class SimCase. All subclasses
of SimCase objects must implement or inherit a resultReport function. C++
keeps track of which version of resultReport in the subclasses that is to be
called. In the present example, this is Poi2sinesum::resultReport, and this
function is actually inherited from the base class Poisson2anal. To summarize,
multipleLoop calls a general virtual function resultReport, which is at run
time translated by C++ to a specific call to Poisson2anal::resultReport.

The Poisson2anal::resultReport code performs the error estimation based
on a functor (i.e. *this) for implementing the analytical solution. Notice that
*this refers to the present object of type Poi2sinesum in this example. The
*this argument is seen as a FieldFunc& argument by the Lnorm function in
class ErrorNorms (this works well since our solver has FieldFunc as base class).
All such FieldFunc objects have a valuePt function that evaluates the field.

340 3. Programming of Finite Element Solvers

When Lnorm calls this valuePt function, C++ knows that the FieldFunc& ar-
gument is actually of type Poi2sinesum and that Poi2sinesum::valuePt is the
function to be called. As soon as one gets used to this way of object-oriented
thinking, the set-up is safe to use and gives a high degree of flexibility at
very little programming cost. The larger your simulator project becomes, the
more one appreciates object-oriented coding techniques.

Finally, we mention a remaining weak part of the Poisson2 hierarchy:
Altering the f , k, or g function usually requires derivation of a new subclass
solver and recompilation. It would be advantageous to have more flexibility
in the choice of the coefficients of the PDE at run time. For example, we
should be able at run time to specify the type of the f function (constant,
data on file, name of functor) and its values. This is indeed possible, using
the FieldFormat class. Chapter 3.15.4 explains the details. The technique is
also used in Chapter 6.1, where it is combined with virtual functions, giving
an even higher degree of flexibility in handling variable coefficients.

3.5.8 Overriding Menu Answers in the Program

In all the subclass solvers mentioned in the preceding section, many of the
menu items in class Poisson2 are restricted to special choices. For example,
class Poi2flux requiresD1 = 0 andD2 = 0, and the boundary indicators must
be redefined. This means that Poi2flux likes to be in charge of setting D1 and
D2 as well as performing the mapping of default boundary indicators from
the PreproBox preprocessor to the boundary indicator numbering required by
the test case. In other words, we want the program to set appropriate menu
answers that override any answers given by the user at run time. This func-
tionality is accomplished by the forceAnswer function in class MenuSystem. Let
us consider the menu item Dirichlet value 1 defined by Poisson2::define,

menu.addItem(level,"Dirichlet value 1","const u value (ind. 1)","0.0");

used for assigning a value to D1. The user might set the value on the menu
by the command

set Dirichlet value 1 = 1.8

If we want to prescribe the menu answer inside the program, the appropriate
statement is

menu.forceAnswer ("Dirichlet value 1 = 0.0");

When we issue the call menu.get for extracting the value of D1 from the menu
system, the commands given to forceAnswer take priority over the user-given
answers or the default answers in the menu tree.

Class Poi2flux implements the test problem with a discontinuous k coef-
ficient as documented in Chapter 2.8. This test problem is restricted to the

3.5. Introducing More Flexibility 341

unit interval, square, or cube, with Dirichlet conditions on x = 0, 1 and homo-
geneous Neumann conditions on all other boundaries. Regardless of default
boundary indicators or what the user gives as boundary information, the
Poi2flux class should ensure that correct boundary indicators are set. Using
forceAnswer, we can adapt the too flexible menu system in class Poisson2 to
the special requirements of Poi2flux:

void Poi2flux:: scan ()

{

MenuSystem& menu = SimCase::getMenuSystem();

// override the menu system:

menu.forceAnswer ("Dirichlet value 1 = 0.0");

menu.forceAnswer ("Dirichlet value 2 = 1.0");

menu.forceAnswer ("add boundary nodes = NONE");

menu.forceAnswer ("beta = 0.0");

Poisson2anal::scan ();

// map default PreproBox indicators to the Poisson2 convention if

// the user fails to do this:

String redef = menu.get ("redefine boundary indicators");

if (redef.contains("NONE")) {

String redef_boinds;

const int nsd = grid->getNoSpaceDim();

if (nsd == 1)

redef_boinds = "n=2 names= u=0 u=1 1=(1) 2=(2)";

else if (nsd == 2)

redef_boinds =

"n=4 names= u=0 u=1 u=g Neumann 1=(1) 2=(3) 3=() 4=(2 4)";

else if (nsd == 3)

redef_boinds =

"n=4 names= u=0 u=1 u=g Neumann 1=(1) 2=(4) 3=() 4=(2 3 5 6)";

grid->redefineBoInds (redef_boinds);

}

// Note that redefineBoInds must be done *after* the grid is

// generated - otherwise we do not know the number of space dim!

Notice that we must override the menu answers before Poisson2anal::scan

reads the answers and initializes local variables like dirichlet val1. The
mapping of boundary indicators is performed after Poisson2anal::scan, be-
cause the grid must be initialized (in Poisson2::scan29) before we can call

29 Poi2flux::scan calls Poisson2anal::scan, which calls the scan function in class
ReportPoisson2, which again calls the Poisson2::scan function.

342 3. Programming of Finite Element Solvers

grid->redefineBoInds. Alternatively, we could have used the redef boinds

string to form a menu.forceAnswer call. In that case, Poisson2anal::scan

would perform the redefinition of boundary indicators. Other examples on
customizing menu answers in a particular test case are found in the classes
Poi2disk and Poi2Robin.

Although the forceAnswer function helps us to avoid incompatible input
to specialized solvers, a more user-friendly program would offer just the menu
items that are legal to change. A complete redefinition of the define and scan

functions in Poi2flux is in this case required. Alternatively, one can make
a scripting interface (see Chapter 1.4.5) to a standard Diffpack solver and
let the script take care of the input data handling. The script should then
construct appropriate input files or command-line options for Diffpack’s menu
system. An example of such customization is presented in Chapter 3.12.9.

An important remark is that the forceAnswer function gives a possibility
to initialize Diffpack’s library classes via the menu system without forcing
the user of the program to interact with the menu system. This is convenient
if the solver implements its own user interface.

Exercise 3.5. .
Consider the equation ∇ · (k∇u) = 0 in a domain with boundary con-

ditions as indicated in Figure 3.13. Explain how to create a subclass solver
of ReportPoisson2 that is adapted to the problem in Figure 3.13. The pa-
rameters C, D, and e should be adjusted on the menu. Regarding the k
function, one can either just define it mathematically in terms of x and y co-
ordinates, or one can apply the material concept from page 313 and test on
fe.grid().getMaterialType(fe.getElmNo()) inside the k function. The grid
should be constructed such that the boundaries of the material in the inte-
rior of the domain coincides with the element boundaries. Also suggest how
to reduce the size of the domain from symmetry arguments and what the
boundary condition at the symmetry line(s) should be. �

du/dn=0

du/dn=0

u=D-kdu/dn=C k=1 k=e

Fig. 3.13. Two-dimensional domain with boundary conditions for the
Laplace equation ∇ · (k∇u) = 0.

3.5. Introducing More Flexibility 343

3.5.9 Estimating Convergence Rates

Tools for Estimating Convergence Rates. There is a class ErrorRate which
makes it very easy to estimate the convergence rate of a numerical method,
according to the technique described in Chapter 1.7.2. In a finite element
context, the discretization measure h is typically a characteristic element
length, and the error measure e is a norm of the difference between the
numerical solution and an exact solution of the problem. Given a series of
data points (hi, ei), i = 1, 2, . . ., class ErrorRate computes the convergence
rate r from (1.83) on page 118, based on two consecutive data points (hi, ei)
and (hi+1, ei+1).

The usage of class ErrorRate is straightforward. First, one has to in-
clude the header file ErrorRate.h. Second, one declares an ErrorRate object
error rate as a member of the simulator class. Third, the ErrorRate object
must be initialized by the name of the quantity whose error we work with:

error_rate.setNameOfUnknown ("u");

This call is normally placed in the scan function along with other initialization
statements. After the measures of the error e are computed, one needs to add
the new data point of e(h) by calling the add function in the ErrorRate object.
For example, ErrorNorms::Lnorm computes the L1, L2, and L∞ norms of the
error and each of these norms can be associated with an r parameter. Just
call

error_rate.add (h, L1_error, L2_error, Linf_error);

The ErrorRate object requires multiple runs of the simulator. The easiest and
most flexible way of accomplishing multiple runs is to use the multiple loop
facility in Diffpack. After the runs are finished, the results of the estimation of
r values are written to the output by the print or the writeExtendedResults

functions in the ErrorRate object. The former writes to standard output,
whereas the latter writes to a MultipleReporter object. Normally, one uses
writeExtendedResults and calls this function in closeReport, since that func-
tion is automatically called at the end of a multiple loop, after all the exper-
iments are finished.

The specialized subclass Poisson2anal of Poisson2 is tailored to problems
where the analytical solution is known, and this class employs the classes
ErrorRate, ErrorNorms, and MultipleReporter in combination for estimating
and reporting convergence rates. From the source code one can also see how
to compute a suitable characteristic element length h from GridFE utilities.

Detecting Superconvergence at the Nodal Points. We shall now demonstrate
an application of class ErrorRate, which also will highlight some program-
ming conventions related to the use of enum types in Diffpack. The example
concerns the fact that in some problems the accuracy of the finite element

344 3. Programming of Finite Element Solvers

solution is higher at the nodal points than at arbitrary points in the domain.
Occasionally, the numerical solution can also be exact at the nodes. To inves-
tigate such features, one can base the computation of error norms on nodal-
point integration. That is, we sample the solution at the nodes only, when in-
tegrating the error, instead of using the more common Gauss-Legendre points.
The type of integration points is a parameter to the ErrorNorms::Lnorm func-
tion. The parameter can have two self-explanatory enum values, NODAL POINTS

or GAUSS POINTS. It is convenient to let the type of integration point be set
on the menu. We now outline the necessary extensions of an Poisson1-like
code to allow a new variable, the integration point type, to be included in
the solver, with full menu support.

// declare new data member in class:

NumItgPoints error_itg_pt_tp; // this enum is defined in enum.h

// in the define function:

menu.addItem (level, // determines main menu, submenu etc

"error integration point type", // menu command

"err_itg", // command-line option: --err_itg

"type of itg rule used in ErrorNorms::Lnorm",

"GAUSS_POINTS", // default answer

"S/GAUSS_POINTS/NODAL_POINTS/"); // legal answers

// in the scan function:

assignEnum (error_itg_pt_tp,

menu.get("error integration point type"));

// in call to ErrorNorms::Lnorm, replace GAUSS_POINTS

// by error_itg_pt_tp

// in e.g. resultReport one can write the itg. pt. type like this:

s_o << "Error integration over " << getEnumValue(error_itg_pt_tp);

// in input file

set error integration point type = { NODAL_POINTS & GAUSS_POINTS }

Some of these statement demonstrate important features in Diffpack and de-
serve a few comments. The addItem call has more parameters than explained
on page 275. The overloaded version of addItem used here allows explicit
specification of the command-line option corresponding to the menu item,
which is chosen as --err itg in this case. Recall that the command-line op-
tion for the simpler version of addItem is automatically set equal to the menu
command, with spaces replaced by underscores. Of more importance in the
extended addItem function is the possibility to specify legal answers. Here,
this is a string (S) that can take two values, GAUSS POINTS or NODAL POINTS.

3.5. Introducing More Flexibility 345

When one applies the graphical menu interface, enabled by the command-line
option --GUI to the solver, the legal answers are listed in a pull-down menu.

The integration point type is an enum, and we need to map the menu
answer, which is a string, to the appropriate enum value. The assignEnum

functions accomplish this task, using the syntax demonstrated above. The
opposite conversion, from an enum to a string, is enabled by the getEnumValue

function, also demonstrated in the preceding code example. Most of the
enums defined in enum.h have assignEnum and getEnumValue functions (see
the header file enumfunc.h for a complete list of these functions).

The statements above are incorporated in the Poisson2 solver, or more
precisely, in the subclass Poisson2anal. The reader should now try to establish
the convergence rate in L∞ norm for the model problem from Chapter 3.2.1.
The experiment can be accomplished by the following command:

./app --class Poi2sinesum --batch --casename c1 --Default Verify/test1.i

--err_itg ’{ NODAL_POINTS & GAUSS_POINTS }’ --casedir c1

The simulation program app is here run with the menu in pure command-line
mode (--batch), where menu items are given by their command-line option,
like --err itg, and in a file (--Default Verify/test1.i). All generated files
appear in the subdirectory c1 because of the --casedir option. Looking at the
end of a report file in the c1 directory, i.e., c1-report.html, c1-report.tex, or
c1-report.txt, we see a table like the one shown in Table 3.1. Although we
use only bilinear elements, we achieve fourth order convergence at the nodal
points. The reader is encouraged to carry out this experiment for biquadratic
elements as well as for linear and quadratic triangular elements.

Exercise 3.6. .
Set up a family of convergence rate experiments for the model problem

in class Poi2disk. This problem involves the Laplace equation in a hollow
disk, i.e., the computations are performed on a curved mesh. Is the conver-
gence rate higher at the nodal points? How much faster is the convergence
for quadratic elements? How does the convergence rate vary with the type
of norm? Is there any difference in the performance of triangular30 versus
quadrilateral elements? The answers are readily obtained within five minutes
of human work and a bit of CPU time. �

3.5.10 Axisymmetric Formulations and Cartesian 2D Code

It will often be advantageous to develop simulators that can handle axisym-
metric 3D problems within the same code lines as standard 2D problems in

30 We remark that nodal-point integration over the ElmT6n2D is not available.

346 3. Programming of Finite Element Solvers

Table 3.1. Error norms, computed by numerical integration, and correspond-
ing rates for the unknown u in the model problem from Chapter 3.2.1. In the
first five runs only nodal points are used in the integration, whereas a stan-
dard 2 × 2 Gauss-Legendre rule is applied in the next five runs. The grids
consist of 2k× 2k bilinear elements in the domain (−0.25, 1.25)× (0, 1.2), for
k = 2, 3, 4, 5, 6. One can clearly see that the solution at the nodes converges
to the exact solution as h4, while the convergence at the Gauss-Legendre
points (and other points) goes like h2, where h is the length of the sides in
the elements in this case.

run h L1 error L1 rate L2 error L2 rate L∞ error L∞ rate

1 3.7500e-01 8.7934e-03 9.2068e-03 1.2923e-02
2 1.8750e-01 5.0459e-04 4.12 4.7561e-04 4.27 7.0224e-04 4.20
3 9.3750e-02 3.0409e-05 4.05 2.8277e-05 4.07 4.2352e-05 4.05
4 4.6875e-02 1.8988e-06 4.00 1.7451e-06 4.02 2.6859e-06 3.98
5 2.3438e-02 1.1854e-07 4.00 1.0872e-07 4.00 1.6748e-07 4.00

6 3.7500e-01 4.8930e-01 4.5544e-01 6.3488e-01
7 1.8750e-01 1.3246e-01 1.89 1.2054e-01 1.92 1.8320e-01 1.79
8 9.3750e-02 3.3819e-02 1.97 3.0552e-02 1.98 4.7011e-02 1.96
9 4.6875e-02 8.4991e-03 1.99 7.6641e-03 2.00 1.1829e-02 1.99

10 2.3438e-02 2.1271e-03 2.00 1.9177e-03 2.00 2.9622e-03 2.00

Cartesian coordinates. Considering the Poisson equation −∇ · (λ∇u) = f ,
the axisymmetric formulation in cylindrical coordinates (r, θ, z) reads

− 1

r

∂

∂r

(
λ(r, z)r

∂u

∂r

)
− ∂

∂z

(
λ(r, z)

∂u

∂z

)
= f(r, z). (3.18)

Can this equation be easily incorporated in a code that solves

− ∂

∂x1

(
λ(x1, x2)

∂u

∂x1

)
− ∂

∂x2

(
λ(x1, x2)

∂u

∂x2

)
= f(x1, x2)

by the finite element method? The answer to this question is yes!
Equation (3.18) is to be solved in a 2D (r, z) domain Ω. However, when

we formulate the weighted residual method, we integrate the residual over
the whole 3D space, i.e., we require

2π∫

0

∫

Ω

RWirdrdzdθ = 0, i = 1, 2, . . . , n,

where R is the residual in the PDE and Wi is the weighting function in
the weighted residual method. Inserting u ≈ û =

∑
j ujNj(r, z), multiplying

3.5. Introducing More Flexibility 347

(3.18) by Wi, and integrating over a 3D cylindrical domain results in

2π

∫

Ω

λ(r, z)

(
∂Wi

∂r

∂û

∂r
+
∂Wi

∂z

∂û

∂z

)
rdrdz =

2π

∫

Ω

f(r, z)rdrdz + 2π

∫

∂Ω

rWiλ
∂û

∂n
dΓ,

for i = 1, . . . , n. Introducing x1 ≡ r and x2 ≡ z and dividing by 2π, this
equation can be written

∫

Ω

λ(x1, x2)

(
∂Wi

∂x1

∂û

∂x1
+
∂Wi

∂x2

∂û

∂x2

)
x1dx1dx2 =

∫

Ω

f(x1, x2)x1dx1dx2 +

∫

∂ΩN

x1WiU0dΓ,

if −λ∂û/∂n = −U0 on the part ∂ΩN of the boundary ∂Ω in the (r, z) plane.
This latter equation coincides with the corresponding weighted residual equa-
tion for the 2D Poisson equation in Cartesian coordinates, if we just multiply
the integrands by the factor x1. From an implementational point of view,
we can therefore treat axisymmetric problems in a Cartesian 2D code by
replacing det J by x1 det J . This could be done as follows in integrands:

if (axisymmetric) detJxW *= fe.getGlobalEvalPt()(1);

Similarly, in integrands4side we write

if (axisymmetric) detSideJxW *= fe.getGlobalEvalPt()(1);

We have introduced these modifications and a bool axisymmetric data mem-
ber in class Poisson2. The value of axisymmetric can be set on the menu.
Hence, it is trivial to apply class Poisson2, or its subclasses, to axisymmetric
problems. Just remember that when specifying the grid, r is along the “x
axis” and z is along the “y axis”.

Standard Dirichlet (3.13)–(3.15), Neumann (3.16) (plus (3.17) with α =
0), and Robin (3.17) conditions apply as boundary conditions in the axisym-
metric case as well. If the line r = 0 is a part of the boundary, the solution
is symmetric about r = 0, so the relevant condition here is ∂u/∂r = 0.

Exercise 3.7. .
Solve the following Poisson problem in radial coordinates,

1

r

d

dr

(
r
du

dr

)
= −4, u′(0) = u(1) = 0,

using the Poisson2 solver. This problem models viscous flow in a tube, where
r is the distance from a point in the fluid to the axis of the tube. (We refer to

348 3. Programming of Finite Element Solvers

Project 2.6.2 for more information.) You will need to modify the f function
in class Poisson2, or you can derive a subclass where you implement the right
value of f. The axisymmetric menu command must be set to ON in order
to handle an axisymmetric Poisson problem. Generate a 1D grid and verify
that the exact solution is obtained using a single quadratic element. Linear
uniformly partitioned elements results in exact nodal values for a differential
equation u′′ = constant, but does this nice property appear also in the present
example where the exact solution is also a parabola? (Answer the question
by running simulations.) �

Exercise 3.8. .
Repeat Exercise 3.3, but implement the solver as a subclass of Poisson2

or ReportPoisson2. �

3.5.11 Summary

Let us summarize how a typical finite element solver in Diffpack is con-
structed. As usual, the simulator is realized as a class. Standard finite element
algorithms can be inherited by having FEM as base class. It is then necessary
for the simulator class to implement the virtual function integrands for defin-
ing the integrands in the integrals of the finite element equations. Class FEM is
derived from SimCase, which allows multiple loops and handling of numerical
experiments through the menu system.

The data structures in a finite element solver are typically a grid (GridFE),
a finite element field over the grid (FieldFE), an interface to linear systems
and linear solvers (LinEqAdmFE), a mapping between the field representation
and the linear system representation of the primary unknown(s) (DegFreeFE),
and perhaps some problem-dependent constants and functions. The relations
between a solver, its base classes, and its internal data structures are shown
in Figure 3.14.

The standard member functions in a simulator are

– adm for administering the menu system,

– define for defining the items on the menu,

– scan for reading input data from the menu system and initializing the
internal objects (grid, fields, etc.),

– integrands (ElmMatVec&,FiniteElement&) for defining the integrands of
the element-level finite element equations,

– fillEssBC for marking essential boundary conditions,

– solveProblem for the main program flow of the solver,

– resultReport for writing results.

Optional routines are

3.6. Step-by-Step Development of a Diffpack Solver 349

FieldFE

GridFE

DegFreeFEFEM

Poisson2

LinEqAdmFE

SimCase

Fig. 3.14. A sketch of a simulator class (Poisson2), its base classes and in-
ternal objects. A solid line indicates class derivation (“is-a” relationship),
whereas dashed lines represent a pointer/handle (“has-a” relationship).

– calcElmMatVec(int,ElmMatVec&,FiniteElement&) for computing the ele-
ment matrix and vector (normally, this function will call the correspond-
ing default version in class FEM and just do some additional task, like
debug output or surface integrals),

– integrands4side for defining the integrands corresponding to boundary
integrals in the weak formulation,

– saveResults for storing results on file.

In later chapters we shall introduce two additional key functions in finite
element simulators:

– solveAtThisTimeStep for advancing the solution one time step in time-
dependent problems (see Chapter 3.10.2),

– makeAndSolveLinearSystem for defining and solving the linear system in
iteration methods for nonlinear algebraic equations (see Chapter 4.2).

Automatic report generation is conveniently coded by first letting the script
MkReport generate a default code. This code can then be edited. It is a matter
of taste whether one wants to separate the report generation statements in a
subclass or not.

3.6 Step-by-Step Development of a Diffpack Solver

In this section we shall describe a PDE problem and how we can solve it, step
by step, using Diffpack. Our intention is to provide the main recipe for how
to work with Diffpack. As we will demonstrate, coding a Diffpack simulator is
an interplay between C++ programming, knowledge of the Diffpack libraries,
understanding of the involved numerics, and insight into the behavior of

350 3. Programming of Finite Element Solvers

typical solutions of the PDE. The interdisciplinary nature of such work is also
the reason why the present book contains a mixture of modeling, numerics,
and Diffpack programming topics.

3.6.1 Physical and Mathematical Problem

B

D D

C

A

Fig. 3.15. Sketch of the domain for the heat transfer problem in Chapter 3.6.

We shall address a physical problem involving heat transfer in a floor
structure. Figure 3.15 shows a cross section of a floor. The hole (boundary
A) in the middle of the figure represents a pipe through the floor, transport-
ing water at temperature TA. The surrounding dark gray area consists of
highly conducting metal, which we refer to as material 1. The water is flow-
ing sufficiently fast to make the heat transfer from the water to this material
efficient such that we can set T = TA at the circular boundary A. The gray
area on top is denoted material 2, whereas the white area constitute another
material, referred to as material 3.

The stationary heat transfer problem is governed by the PDE

∂

∂x

(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂y

)
= 0, (3.19)

where T is the temperature and κ is the heat conduction coefficient, which
varies with the material type. The PDE is to be solved in the 2D domain
sketched in Figure 3.15. On the boundary A, T = TA. On the boundaries B
and C we apply a cooling law, i.e., the Robin condition

− κ∂T
∂n

= hB(T − TB), (3.20)

−κ∂T
∂n

= hC(T − TC) . (3.21)

3.6. Step-by-Step Development of a Diffpack Solver 351

Here, hB and hC are prescribed positive heat transfer coefficients, while TB

and TC are given temperature values in the rooms above and below the floor.
On the rest of the boundary (D) we have symmetry conditions: ∂T/∂n = 0.
The symmetry condition models periodic extension of the domain in horizon-
tal direction, i.e., many parallel pipes.

The κ(x, y) function is constant in each material:

κ(x, y) =

κ(1), dark gray area (material 1)

κ(2), gray area (material 2)
κ(3), white area (material 3)

(3.22)

Later, we shall turn the water flow on and off (Chapter 3.13). This will
give a transient behavior of the temperature. The goal of the simulations can
be to find out how the water pump is to be turned on and off and still get a
satisfactory temperature distribution in the floor.

3.6.2 Editing and Writing Source Code

We shall now develop a Diffpack simulator for the current heat transfer prob-
lem. This development is decomposed into nine steps.

Step 1: Define the Integrands Expressions. The weighted residual formulation
of the present problem takes the form

∫

Ω

κ∇Ni · ∇T̂ dΩ = −
∫

B

NihB(T − TB)dΓ −
∫

C

NihC(T − TC)dΓ, (3.23)

with T̂ =
∑

j TjNj as usual. The formula for the element matrix becomes

Ã
(e)
i,j =

∫

Ω̃

κ∇Ni · ∇Nj det Jdξ1dξ2 +

∫

∂Ω̃B

NihBNjdetsJdΓ +

∫

∂Ω̃C

NihCNjdetsJdΓ . (3.24)

Here, Ω̃ denotes a reference element, ∂Ω̃B is a side of the reference element,
which coincides with the B boundary. The notation ∂Ω̃C has a similar mean-
ing. The ξ1 and ξ2 coordinates are local to the reference element. Further-
more, det J is the determinant of the Jacobian of the isoparametric mapping
of the reference element, and detsJ is the corresponding quantity for the side
integral in the element. The element vector reads

b̃
(e)
i =

∫

Ω̃B

NihBTBdetsJdΓ +

∫

Ω̃C

NihCTCdetsJdΓ . (3.25)

352 3. Programming of Finite Element Solvers

The integrals over Ω̃ are implemented in the integrands function (see Chap-
ter 3.1.2), whereas the integrals over Ω̃B and Ω̃C are implemented in the
integrands4side function (see Chapter 3.5.2).

In integrands we will sample

κ∇Ni · ∇Nj det J · w,

where w denotes the integration weight at the current integration point. The
quantities to be sampled in integrands4side read

NiNjhB detsJ · w and NiNjhC detsJ · w

for the matrix terms (elmat.A(i,j)) and

NihBTB detsJ · w and NihCTC detsJ · w,

for the vector terms (elmat.b(i)) – provided that we integrate along the
boundary B or C.

Step 2: Examine Existing Diffpack Simulators. You are strongly encouraged
to start with an existing Diffpack simulator when developing a new one.
The present problem solves a Laplace equation so the simulators Poisson0,
Poisson1, and Poisson2 are relevant starting points. Class Poisson2 is most
relevant since it incorporates more general boundary conditions than the
other two classes. We therefore start by taking a copy of class Poisson2. At
this stage we should determine if it is smarter to derive a subclass of Poisson2
as argued in Chapter 3.5.7. In the present case we decide to make a tailored
solver, having variables that reflect the notation in the problem specification.
It then makes more sense to copy and edit class Poisson2.

Step 3: Make Directory and Copy Files. Let us name the new application
SteadyHeating and place it in a directory with the similar name. The Unix
commands accomplishing these tasks read

Mkdir SteadyHeating

cd SteadyHeating

cp $NOR/doc/Book/src/fem/Poisson2/Poisson2.h .

cp $NOR/doc/Book/src/fem/Poisson2/Poisson2.cpp .

cp $NOR/doc/Book/src/fem/Poisson2/main.cpp .

Rename --texttoo Poisson2 SteadyHeating *.h *.cpp

The Rename script is useful for changing (parts of) filenames; here Poisson2 is
replaced by SteadyHeating in all files with extensions .h and .cpp. The option
--texttoo performs the same name changes in the text of the files as well.

You can find the complete SteadyHeating application in the src/examples

directory.

3.6. Step-by-Step Development of a Diffpack Solver 353

Step 4: List the Required Data Structures in the Header File. The original
Poisson2 class is quite general, and we do not need all the data structures
declared in the header file. What we need in the present problem is

– a finite element field: Handle(FieldFE) T,

– a finite element grid: Handle(GridFE) grid,

– a degree of freedom handler: Handle(DegFreeFE) dof,

– a linear system toolbox: Handle(LinEqAdmFE) lineq,

– a finite element vector field: Handle(FieldsFE) flux,

– three values of κ: real kappa 1, kappa 2, kappa 3,

– the boundary temperatures: real T A, T B, T C,

– the heat transfer coefficients: real h B, h C.

We declare these data in the SteadyHeating.h file:

class SteadyHeating : public FEM

{

public:

// general data:

Handle(GridFE) grid; // finite element grid

Handle(DegFreeFE) dof; // mapping: field <-> Vec

Handle(FieldFE) T; // temperature (primary unknown)

Vec(real) linsol; // solution of linear system

Handle(LinEqAdmFE) lineq; // linear system, storage and solution

Handle(SaveSimRes) database; // store computed fields on file

Handle(FieldsFE) heat_flux; // flux = -k*grad(u)

real T_A, T_B, T_C; // boundary temperatures

// heat conduction coefficients:

real kappa_1, kappa_2, kappa_3;

real h_B, h_C; // heat transfer coefficients

Step 5: Find the Functions to be Implemented. We need the functions

– adm, define, and scan for setting up the menu, reading answers, and
initializing the data structures,

– integrands for defining the integrands in the weighted residual statement
(see step 1),

– integrands4side for computing line integrals along the boundaries B and
C (see step 1), and an associated version of calcElmMatVec for line inte-
grals,

– fillEssBC for setting essential boundary conditions.

354 3. Programming of Finite Element Solvers

We need, of course, the standard functions solveProblem and resultReport

as well as a constructor and destructor. The rest of the SteadyHeating.h file
hence looks like this:

virtual void calcElmMatVec // extended w/boundary integration

(int elm_no, ElmMatVec& elmat, FiniteElement& fe);

virtual void integrands4side // integrand in boundary integral

(int side, int boind, ElmMatVec& elmat, const FiniteElement& fe);

virtual void fillEssBC ();

virtual void integrands

(ElmMatVec& elmat, const FiniteElement& fe);

SteadyHeating ();

virtual ~SteadyHeating ();

virtual void adm (MenuSystem& menu);

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan ();

virtual void solveProblem (); // main driver routine

virtual void resultReport ();

virtual void saveResults (); // dump solution to file

// coefficient in the diffusion term (also required by FEM::makeFlux):

virtual real k (const FiniteElement& fe, real t = DUMMY);

// other coefficients in the PDE and BCs:

virtual real temp_A (int node, real t = DUMMY);

virtual real temp_B (const FiniteElement& fe, real t = DUMMY);

virtual real temp_C (const FiniteElement& fe, real t = DUMMY);

virtual real source (const FiniteElement& fe, real t = DUMMY);

};

Step 6: Define the Boundary Indicator Convention. We realize that we need
two Robin conditions and two associated boundary indicators. We can either
extend Poisson2’s convention for boundary indicators, or we can invent our
own. The latter strategy is adopted here, and we set indicators 1 for the
Dirichlet condition at A, indicators 2 and 3 for the Robin conditions at B
and C, and indicator 4 for the vanishing normal derivative condition at D.

Step 7: Edit the Poisson2 Code. How much can we use from the class Poisson2
functions and how much do we need to edit?

– On the menu, we drop items like redefine boundary indicators and add

material, because we assume that the stand-alone program makegrid is

3.6. Step-by-Step Development of a Diffpack Solver 355

used to generate the grid, set correct boundary conditions, and assign
material numbers. Moreover, we tailor the menu items to the terminology
of this solver. For example, there is only need for one Dirichlet value,
which can be called T A. Instead of the Poisson2 solver’s parameters in the
Robin condition, we include the physical parameters in the two cooling
laws we have in the present problem.

– The integrands function from class Poisson2 can be used as is, but it
contains terms that are zero in the present case. Therefore, we specialize
integrands to handle a 2D problem with a variable-coefficient Laplace
term and no right-hand side. This is a matter of taste; keeping the original
integrands might be safer than editing it, as it is very easy to introduce
bugs in this part of the code.

– We need to extend integrands4side, because the Poisson2 version of this
function handles only one heat transfer coefficient and surrounding ma-
terial temperature (now we have two sets from (3.20)–(3.21)).

– In fillEssBC we just specialize the code to handle one Dirichlet condition.
The Robin conditions are taken care of in an extension of calcElmMatVec,
where we run through the sides of the element and test if a side is subject
to boundary indicators 2 or 3. For a positive test, numItgOverSide function
is called to perform the integration along the element side.

These modifications are easy to carry out, as will be shown below. We start
with presenting the final define and scan functions:

void SteadyHeating:: define (MenuSystem& menu, int level)

{

menu.addItem (level, // menu level (1 is main, 2 is first submenu)

"gridfile",// menu command/name

"file or preprocessor command",

"P=PreproBox | d=2 [0,1]x[0,1] | "

"d=2 e=ElmB4n2D div=[4,4] grading=[1,1]");

menu.addItem (level, "T_A", "temperature at boundary A", "1.0");

menu.addItem (level, "T_B", "temperature at boundary B", "0.0");

menu.addItem (level, "T_C", "temperature at boundary C", "0.0");

menu.addItem (level, "kappa 1", "heat conduction", "1.0");

menu.addItem (level, "kappa 2", "heat conduction", "1.0");

menu.addItem (level, "kappa 3", "heat conduction", "1.0");

menu.addItem (level, "h_B", "heat transfer coefficient at B", "1.0");

menu.addItem (level, "h_C", "heat transfer coefficient at C", "1.0");

// submenus:

LinEqAdmFE::defineStatic (menu, level+1);

FEM::defineStatic (menu, level+1);

SaveSimRes::defineStatic (menu, level+1);

}

356 3. Programming of Finite Element Solvers

void SteadyHeating:: scan ()

{

MenuSystem& menu = SimCase::getMenuSystem();

// load answers from the menu:

String gridfile = menu.get ("gridfile"); // menu.get returns a string

grid.rebind (new GridFE()); // make an empty grid

readOrMakeGrid (*grid, gridfile);

T_A = menu.get ("T_A").getReal();

T_B = menu.get ("T_B").getReal();

T_C = menu.get ("T_C").getReal();

h_B = menu.get ("h_B").getReal();

h_C = menu.get ("h_C").getReal();

kappa_1 = menu.get ("kappa 1").getReal();

kappa_2 = menu.get ("kappa 2").getReal();

kappa_3 = menu.get ("kappa 3").getReal();

FEM::scan (menu);

database.rebind (new SaveSimRes ());

database->scan (menu, grid->getNoSpaceDim());

// allocate data structures in the class:

T.detach().rebind (new FieldFE (*grid, "T"));

heat_flux.detach().rebind (new FieldsFE (*grid, "heat_flux"));

dof.detach().rebind (new DegFreeFE (*grid, 1));

lineq.detach().rebind (new LinEqAdmFE());

lineq->scan (menu);

linsol.redim (dof->getTotalNoDof());

lineq->attach (linsol);

}

The next function in the SteadyHeating.cpp file is fillEssBC for setting the
essential boundary condition T = TA:

void SteadyHeating:: fillEssBC ()

{

// boundary indicator convention:

// bo.ind. 1: water temperature (Dirichlet condition) on A

// bo.ind. 2: cooling law (Robin condition) on B

// bo.ind. 3: cooling law (Robin condition) on C

// bo.ind. 4: homogeneous Neumann condition

dof->initEssBC (); // init for assignment below

const int nno = grid->getNoNodes() ; // no of nodes

Ptv(real) x; // a nodal point

for (int i = 1; i <= nno; i++) {

// is node i subjected to any Dirichlet value boundary indicator?

3.6. Step-by-Step Development of a Diffpack Solver 357

if (grid->boNode (i, 1))

dof->fillEssBC (i, temp_A(i));

}

#ifdef DP_DEBUG

dof->printEssBC (s_o, 2); // for checking the essential BCs

#endif

}

The calcElmMatVec function from the Poisson2 solver must in our case be
slightly altered, as we need to call up the side integration if we have a side
with boundary indicators 2 or 3.

void SteadyHeating:: calcElmMatVec

(int elm_no, ElmMatVec& elmat, FiniteElement& fe)

{

// integral over element:

FEM::calcElmMatVec (elm_no, elmat, fe);

// integral over the boundaries (here: cooling laws/Robin cond.)

int s, nsides = fe.getNoSides();

for (s = 1; s <= nsides; s++) {

if (fe.boSide (s, 2)) // cooling law on B?

numItgOverSide (s, 2, elmat, fe);

if (fe.boSide (s, 3)) // cooling law on C?

numItgOverSide (s, 3, elmat, fe);

}

#if DP_DEBUG >= 2

elmat.print (s_o);

#endif

}

We then encounter the heart of every Diffpack finite element solver, the
integrands function. In the present case, our integrands in the weighted resid-
ual formulation are listed on page 352. The integrands function then take
the form

void SteadyHeating:: integrands

(ElmMatVec& elmat, const FiniteElement& fe)

{

const real kappa_value = k (fe);

const real source_value = source (fe);

int i,j;

const int nbf = fe.getNoBasisFunc(); // no of nodes

real detJxW = fe.detJxW();

358 3. Programming of Finite Element Solvers

for (i = 1; i <= nbf; i++) {

for (j = 1; j <= nbf; j++) {

elmat.A(i,j) += kappa_value*(fe.dN(i,1)*fe.dN(j,1) +

fe.dN(i,2)*fe.dN(j,2))*detJxW;

}

elmat.b(i) += fe.N(i)*source_value*detJxW;

}

}

Observe that the expressions are hardcoded for two spatial dimensions. For
detailed testing in 1D and potential application in 3D, we would be better
off with having the number of space dimensions as a variable parameter, as
we usually recommend. The source code of the integrands function in class
Poisson1 or Poisson2 explains how this is done. In the present case we can
achieve space dimension independent code by evaluating the scalar product
∇Ni · ∇Nj in a loop:

int k; int nsd = fe.getNoSpaceDim();

real Laplace = 0;

for (k = 1; k <= nsd; k++)

Laplace += fe.dN(i,k)*fe.dN(j,k)

elmat.A(i,j) += kappa_value*Laplace*detJxW;

The integrands4side function involves integrands in line integrals, as out-
lined on page 352. The implementation reads

void SteadyHeating:: integrands4side

(int /*side*/, int boind, ElmMatVec& elmat, const FiniteElement& fe)

{

const real T_B_value = temp_B (fe);

const real T_C_value = temp_C (fe);

const int nbf = fe.getNoBasisFunc();

real detSideJxW = fe.detSideJxW();

int i,j;

if (boind == 2) {

for (i = 1; i <= nbf; i++) {

elmat.b(i) += fe.N(i)*h_B*T_B_value*detSideJxW;

for (j = 1; j <= nbf; j++)

elmat.A(i,j) += h_B*fe.N(i)*fe.N(j)*detSideJxW;

}

}

else if (boind == 3) {

for (i = 1; i <= nbf; i++) {

elmat.b(i) += fe.N(i)*h_C*T_C_value*detSideJxW;

for (j = 1; j <= nbf; j++)

3.6. Step-by-Step Development of a Diffpack Solver 359

elmat.A(i,j) += h_C*fe.N(i)*fe.N(j)*detSideJxW;

}

}

}

The solveProblem and saveResults functions from Poisson2 need minor edit-
ing: u must be replaced by T, and in saveResults we must remove the com-
putation and the dumping of the flux magnitude field (since we have omitted
this field from the new simulator).

The final function to be implemented is k, modeling the spatial variable
κ(x, y). Recall from page 302 that we name this member function k, because
this is required by the FEM::makeFlux utility (for computing −κ∇T). With
slightly more flux computation coding, we can use any name instead of k.

Inside the k function we grab the element number of the current element
and then look up the material number:

real SteadyHeating:: k (const FiniteElement& fe, real /*t*/)

{

const int e = fe.getElmNo();

const int mat = grid->getMaterialType(e);

if (mat == 1) { return kappa_1; }

else if (mat == 2) { return kappa_2; }

else if (mat == 3) { return kappa_3; }

else {

errorFP("SteadyHeating::k","wrong material type %d in element %d",

mat,e);

return DUMMY;

}

}

Step 8: Make the Main Function. The main.cpp file becomes as easy as in
the Poisson1 example:

#include <SteadyHeating.h>

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

global_menu.init ("Heat transfer simulator","SteadyHeating");

SteadyHeating s;

global_menu.multipleLoop (s);

}

We are now done with all the coding. Nevertheless, the most demanding work
remains, namely verifying the implementation.

360 3. Programming of Finite Element Solvers

Step 9: Introduce a Scaling. It is convenient to introduce a scaling of the
problem:

T̄ =
T − TA

TA
, x̄ =

x

L
, ȳ =

y

L
, κ̄(i) =

κ(i)

κ(1)
.

In the following we remove the bars and assume that all quantities are di-
mensionless. The scaled PDE reads

∇ · (κ∇T) = 0,

whereas the boundary conditions become

−κ∂T
∂n

= γhB (T − δB) ,

−κ∂T
∂n

= γhC (T − δC) ,

where γ, δB , and δC are dimensionless numbers given by

γ =
L

κ1
, δB =

TB − TA

TA
, δC =

TC − TA

TA
.

Instead of coding γ, δB , and δC in the simulator, we can utilize the code for
the original problem with physical dimensions; we just set TA to 0, TB to δB ,
TC to δC , hB to hBL/κ1, and hC to hCL/κ1. Moreover, the typical length
scale in the grid should be of order 1.

3.6.3 A Simplified Test Case

Before we even think of attacking the problem in Figure 3.15 we must con-
struct a problem for which we can judge whether the numerical solution is
correct or not. To this end, we construct a 1D example and run it with a 2D
grid. The test case should involve different materials and the Dirichlet and
Robin type boundary conditions. One simple case is

(κT ′)′ = 0, x ∈ (0, 1), T (0) = TA, −κu′(1) = hB(T − TB) . (3.26)

Integrating twice gives

T (x) = C

∫ x

0

dτ

κ(τ)
+D,

where C and D are integration constants. We immediately get D = TA.
Calculating C results in

T (x) = TA + hB(TB − TA)

[
1 + hB

∫ 1

0

dτ

κ(τ)

]−1 ∫ x

0

dτ

κ(τ)
.

3.6. Step-by-Step Development of a Diffpack Solver 361

Let us introduce

κ(x) =

κ(1), 0 ≤ x < 0.25

κ(2), 0.25 < x < 0.5

κ(3), 0.5 ≤ x ≤ 1

The solution then becomes

T (x) = TA + hB(TB − TA)

[
1 + hB ×

(
0.25

(
κ(1)

)−1

+ 0.25
(
κ(2)

)−1

+ 0.5
(
κ(3)

)−1
)]−1

×

x
(
κ(1)

)−1
, 0 ≤ x ≤ 0.25

0.25
(
κ(1)

)−1
+ (x − 0.25)

(
κ(2)

)−1
, 0.25 ≤ x ≤ 0.5

0.25
(
κ(1)

)−1
+ 0.25

(
κ(2)

)−1
+ (x − 0.5)

(
κ(3)

)−1
, 0.5 ≤ x ≤ 1

(3.27)

The test code for this particular example can be made completely separate
from the SteadyHeating files. We follow the set-up from Chapter 3.4.6 and
create a subdirectory test,

Mkdir test

The next step is to create the SteadyHeatingTest.h and SteadyHeatingTest.cpp

files in this directory. The purpose of these files is to implement a sub-
class of SteadyHeating, just to test the code in a simple example. We add
in SteadyHeatingTest.h a function analyticalSolution. Furthermore, we re-
define resultReport such that it can write out the difference between the
numerical solution and the analytical solution at the nodal points.

The complete SteadyHeatingTest.h file is short:

#ifndef SteadyHeatingTest_h_IS_INCLUDED

#define SteadyHeatingTest_h_IS_INCLUDED

#include <SteadyHeating.h>

class SteadyHeatingTest : public SteadyHeating

{

public:

SteadyHeatingTest () : SteadyHeating() {}

virtual ~SteadyHeatingTest () {}

real analyticalSolution (real x);

virtual void resultReport ();

};

#endif

The associated SteadyHeatingTest.cpp file is also short:

362 3. Programming of Finite Element Solvers

#include <SteadyHeatingTest.h>

real SteadyHeatingTest:: analyticalSolution (real x)

{

const real C = h_B*(T_B - T_A)/

(1 + h_B*(0.25/kappa_1 + 0.25/kappa_2

+ 0.5/kappa_3));

real integral;

if (x < 0.25) {

integral = x/kappa_1;

} else if (x < 0.5) {

integral = 0.25/kappa_1 + (x-0.25)/kappa_2;

} else {

integral = 0.25/kappa_1 + 0.25/kappa_2

+ (x-0.5)/kappa_3;

}

const real T_exact = T_A + C*integral;

return T_exact;

}

void SteadyHeatingTest:: resultReport ()

{

// write out numerical error

// grab the direction of variation from a command-line argument:

int dir; initFromCommandLineArg ("--dirvar", dir, 1);

const int n = grid->getNoNodes(); real T_e, T_n;

for (int i = 1; i <= n; i++) {

T_e = analyticalSolution (grid->getCoor(i,dir));

T_n = T->values()(i);

s_o << oform("node %3d: error=%12.4e T=%g\n",i,T_e-T_n,T_n);

}

}

We also need to make a standard main.cpp; copy the one from the SteadyHeating
directory and edit the solver name to SteadyHeatingTest.

Since class SteadyHeatingTest relies on code in the parent directory, we
need to let the makefile compile code in the SteadyHeating directory as well:

AddMakeSrc ..

We can now compile the SteadyHeatingTest application. As always, we
start with the non-optimized mode, i.e., type

Make MODE=nopt

3.6. Step-by-Step Development of a Diffpack Solver 363

or just Make. It probably takes some Make iterations to remove typing errors
found by the compiler.

Before running the application, we need an appropriate input file for the
menu. The simplest way of setting up such a file is to try to run the solver
with the default input, and thereafter use the DpMenu script to automatically
generate an input file (see page 296). Start the application and quit the menu,
or run

./app --batch

The --batch option signifies that menu answers are read from the command
line. Hence, there will be no prompt. If the program terminates successfully,
we can run DpMenu to generate an input file:

DpMenu --input > test1.i

Since we do not have any way of redefining boundary indicators in the simu-
lator, we need to generate the grid with the separate makegrid program and
store the grid in a file. (We could, of course, set the grid in the simulator’s
input file and provide a menu item for redefining the boundary indicators in
the simulator. This is done in the Poisson2 class, but the geometry of inter-
est in Figure 3.15 is most conveniently generated outside the simulator. We
therefore apply this strategy in the simple test example.)

Following the example on page 311, we can construct a makegrid command
for a 2D grid with x = 0 marked by the boundary indicator 1, x = 1 marked
by indicator 2, and y = 0, 1 marked by indicator 4. In addition, we add
material 2 in the domain [0.25, 0.5] and material 3 in [0.5, 1]:

makegrid --batch -m PreprBoox -g ’d=2 [0,1]x[0,0.5]’ \

-p ’d=2 e=ElmB4n2D [4,4] [1,1]’ \

--redefine_boundary_indicators \

’n=4 names= T=T_A B C noflux \

1=(3) 2=(1) 3=() 4=(2 4)’ \

--add_material_1 ’no=2 [0.25,0.5]x[0,0.5]’ \

--add_material_2 ’no=3 [0.5,1]x[0,0.5]’ --casename test1

The exact solution is piecewise linear. We thus expect the numerical solu-
tion to be exact, provided the material boundaries coincide with the element
boundaries. To achieve this property, the division parameter in the x direction
must be a multiple of four. The boundary indicators can easily be checked
by

plotmtvboinds test1

resulting in a plot as shown in Figure 3.16.
The next step is to modify the grid specification in the input file test1.i:

364 3. Programming of Finite Element Solvers

−1 0 1 2
−0.25

0

0.75

T=T_A

B

noflux

−1 0 1 2
−0.25

0

0.75

Fig. 3.16. Plot of the boundary indicators in a grid generated by makegrid

for the test problem in Chapter 3.6.3.

set gridfile = test1.grid

Then we are ready for the first test – almost. Debugging of this application is
made easier if we first test some trivial solutions. For example, setting TA = 0
and hB = 0, leads to T = 0. Checking that the simulator “reproduces zero”
is a good initial test:

./app --batch --Default test1.i --h_B 0.0 --T_A 0.0

We can thereafter add different κ values in the three materials to check that
the T = 0 solution is preserved:

./app --batch --Default test1.i --h_B 0.0 --T_A 0.0 \

--kappa_1 100 --kappa_3 5

At this stage, we are confident that the simulator does not contain funda-
mental errors, and it is time to run the test case (3.26):

./app --batch --Default test1.i --h_B 10.0 --T_A 2.0 --T_B 0.5 \

--kappa_1 100 --kappa_3 5 \

--line1_start ’0 0’ --line1_stop ’1 0’

curveplot gnuplot -f .SIMULATION.curve.map -r ’Cross’ ’.’ ’.’ \

-o ’set yrange [0:2.1];’

As expected, the error is zero within machine precision at each node. The
plot produced by curveplot is shown in Figure 3.17.

We emphasize that starting with running the complete test problem (3.26)
is not a good idea. It is easy to introduce an error in the analytical solution,
either in the mathematics or the implementation. The initial “reproduction
of zero” tests check that both the simulator and the analytical solution pass
the most basic requirements. You can often easily remove errors in such a

3.6. Step-by-Step Development of a Diffpack Solver 365

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

Cross Section Plot, (0,0) to (1,0)

u(s1)

Fig. 3.17. The T profile produced by the SteadyHeatingTest simulator for
solving the test problem (3.26).

simple test; searching for the cause of discrepancy between the analytical
and the numerical solution in the general case (3.26) is much harder.

In case the solver fails to solve (3.26) correctly, try running simplified
versions of (3.26). For example, use a constant κ, and other input param-
eters set to unity and zero systematically, for turning on and off terms in
the boundary-value problem. The author’s first version of the code failed to
reproduce the straight line for κ = constant. When setting TA = 0, TB = 1,
hB = 1, and κ = 1, correct results were obtained. Changing these four pa-
rameters one by one revealed that hB 6= 1 led to wrong computations. With
these simple choices of the parameters it is also easy to check the correct-
ness of the analytical solution. Searching for h B in the SteadyHeating.cpp file
quickly led to the integrands4side function. It turned out that the factors
h B and h C were forgotten in the right-hand side terms.

Although we now have fairly convincing evidence that our simulator
works, we can increase this confidence further by “rotating” the test problem
such that the variation of T is in the y direction. This is basically a question
of a different boundary indicators mapping (when running makegrid):

1=(4) 2=(2) 3=() 4=(1 3)

In addition, the grid must cover [0, 1] in the y direction, and the add material

instructions to makegrid must be modified.
The outlined stepwise testing is important for establishing reliability of

the simulator. When the code is modified in the future, it might be necessary
to run the tests again to check if errors have entered the source files. There-
fore, we should automate the execution of all the test examples. This has
been done in the Python script testall.py in the SteadyHeatingTest/Verify

directory.

366 3. Programming of Finite Element Solvers

3.6.4 Creating the Grid

With a seemingly working simulator, we can address the original problem
sketched in Figure 3.15. The domain consists of a rectangle with a hole and
includes three materials. We should aim at aligning the element boundaries
with the material boundaries. That is, we need to generate a composition of
an outer rectangle, an inner hole, a disc and a rectangle at the top. Profes-
sional preprocessors can do this easily, but the control of the element partition
in the various materials differs greatly between preprocessors. The super el-
ement preprocessor that comes with Diffpack (see page 323) is well suited
for defining the geometry in Figure 3.15 and allows detailed control of the
element partition throughout the domain. For some users, the downside of
the super element preprocessor is the scripting interface; the geometry and
partition is defined through a manually generated mesh of large super ele-
ments covering the domain. On the other hand, as soon as the super elements
are defined, the scripting interface is very convenient and makes it easy to
change geometric features of the domain in a consistent way by a couple of
keystrokes. This will be demonstrated later.

Inspection of the domain in Figure 3.15 and the associated boundary
conditions reveals that the problem is symmetric about a vertical line in the
middle of the domain. That is, the problem can be formulated in the right or
left part of the original domain. The boundary condition along the symmetry
line is ∂T/∂n = 0.

We choose to work with the right part of the original domain and divide
it into box-shaped super elements as depicted in Figure 3.18a. Key geometric
features of the domain are parameterized by

– pipe radius: a,

– material 1 thickness: b,

– material 3 thickness above the pipe: c,

– material 2 thickness: d,

– horizontal length: e,

– material 3 thickness below the pipe: f .

These parameters make it trivial to change the diameter of the pipe, the
thickness of material 1, etc. In addition, we introduce a stretch factor s for
moving the node at the middle of a side in super elements 2 and 6 (s = 1
places the node at the center point, s < 1 moves the node towards the pipe,
for grid grading purposes).

There are four independent partition parameters: the divisions in the
radial and azimuthal direction in material 1, the divisions in the “radial”
direction in material 3, and the divisions in the y direction in material 2.

The specification of the super elements is conveniently done in a Python
script as explained in Chapter 3.5.4. The script is found in

3.6. Step-by-Step Development of a Diffpack Solver 367

a

b

c

1

2

3

4

5

6

7

8

d

f

9

s

P5a

P5b

P4b
P3b

P2b

P2a

P3a
P4a

P6

P7b

P8a

P8b

P9a

P9b

P12

P16a

P14P15

P13a

P13bP16b

P10b

P11b

P11a

P7a

P1

P10a

e

(a)

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

(b)

Fig. 3.18. (a) Division of the symmetric part of the domain in Figure 3.15
into nine super elements. The geometry is parameterized in terms of the
length measures a–f . (b) Example on grid with three materials.

368 3. Programming of Finite Element Solvers

src/examples/SteadyHeating/supel.py

and a sketch is shown below.

#!/usr/bin/env python

from dplib import PreproSupElDef

from math import pi, cos, sin, sqrt

import sys

p = PreproSupElDef(casename=’tmp1’, nsd=2,

boind_names=[’A’, ’B’, ’C’, ’D’])

a = 0.4 # pipe radius

b = 0.2 # material 1 thickness

c = 1.2 # material 3 thickness above the pipe

d = 0.5 # material 2 thickness

e = 2.5 # horizontal length

f = 2 # material 3 thickness below the pipe

s = 0.8 # stretch parameter, radial direction in material 3

<1: stretch towards pipe, >1: stretch away from pipe

parameterize the partition:

div_r_mat1 = 5 # no of elements in radial dir. in material 1

div_t_mat1 = 8 # asimuthal dir. in material 1

div_r_mat3 = 16 # "radial" dir. in material 3

div_y_mat2 = 6 # no of elements in y dir. in material 2

define nodal coordinates:

P1 = (a,0)

P2a = (a*cos(pi/8), a*sin(pi/8))

P2b = (a*cos(pi/8), -a*sin(pi/8))

P3a = (a*cos(pi/4), a*sin(pi/4))

P3b = (a*cos(pi/4), -a*sin(pi/4))

P4a = (a*cos(pi*3/8.0), a*sin(pi*3/8.0))

P4b = (a*cos(pi*3/8.0), -a*sin(pi*3/8.0))

P5a = (0, a); P5b = (0, -a)

P6 = (a+b, 0)

P7a = ((a+b)*cos(pi/8), (a+b)*sin(pi/8))

P7b = ((a+b)*cos(pi/8), -(a+b)*sin(pi/8))

P8a = ((a+b)*cos(pi/4), (a+b)*sin(pi/4))

P8b = ((a+b)*cos(pi/4), -(a+b)*sin(pi/4))

P9a = ((a+b)*cos(pi*3/8.0), (a+b)*sin(pi*3/8.0))

P9b = ((a+b)*cos(pi*3/8.0), -(a+b)*sin(pi*3/8.0))

P10a = (0, a+b); P10b = (0, -(a+b))

P12 = (e,0)

P13a = (e,a+b+c); P13b = (e, -(a+b+f))

3.6. Step-by-Step Development of a Diffpack Solver 369

P14 = (e, a+b+c+d)

P15 = (0, a+b+c+d)

P16a = (0, a+b+c); P16b = (0, -(a+b+f))

calculate midpoint in supel 2:

x1, y1 = ((a+b)*cos(pi/4), (a+b)*sin(pi/4))

x2, y2 = (e,a+b+c)

xm2 = (x2+x1)/2*s; ym2 = (y2+y1)/2*s

P11a = (xm2, ym2)

calculate midpoint in supel 6:

x1, y1 = ((a+b)*cos(pi/4), -(a+b)*sin(pi/4))

x2, y2 = (e,-(a+b+f))

xm6 = (x2+x1)/2*s; ym6 = (y2+y1)/2*s

P11b = (xm6, ym6)

1

p.supel(material_no=1,

supel_type="ElmB8n2D",

nodes={ 1: P3a, 2: P1, 3: P8a, 4: P6, 5: P2a, 6: P7a },

boinds={ 1: (4) },

element_type="ElmB4n2D",

divisions=(div_t_mat1, div_r_mat1),

grading=(1,1))

2

p.supel(material_no=2,

supel_type="ElmB8n2D",

nodes={ 1: P8a, 2: P6, 3: P13a, 4: P12, 7: P11a, 5: P7a },

boinds={ 4: (2) },

element_type="ElmB4n2D",

divisions=(div_t_mat1, div_r_mat3),

grading=(1,1))

...

9

p.supel(material_no=3,

supel_type="ElmB8n2D",

nodes={ 1: P16a, 2: P13a, 3: P15, 4: P14 },

boinds={ 2: (2), 4: (1, 3) },

element_type="ElmB4n2D",

divisions=(div_t_mat1, div_y_mat2),

grading=(1,1))

370 3. Programming of Finite Element Solvers

p.writefiles()

p.generate(view=1)

Note that the writer of such a script must decide upon a local numbering
of nodes within a super element. The convention for the local numbering is
sketched in Figure 3.10 on page 324. For example, in super element no. 1
we let node P3a be local node 1, P1 is local node 2, P8a is local node 3,
P6 is local node 4, P2a is local node 5, and P7a is local node 6. The local
nodes 7 and 8 are not defined, implying that they are automatically placed
at the midpoint of the respective element sides. The nodes P11a and P11b
are not necessarily placed at the midpoint of an side, thus making it possible
to stretch the mesh towards or away from the inner circular area.

The data in the above script results in the grid in Figure 3.18b. The corre-
sponding grid file is called case1.grid and located in the Verify subdirectory
of the SteadyHeating directory.

3.6.5 Running Some Initial 2D Simulations

We can copy the input file used for the simplified test case in Chapter 3.6.3
and make the appropriate modifications for running the original problem with
the grid in Figure 3.18b.

As emphasized in Chapter 3.6.3, confidence in the simulation results de-
mands investigating a series of simplified cases, where it is easy to check the
validity of solutions. Before running the real case sketched in Figure 3.15
we should therefore construct some simple examples to check that the solver
behaves correctly with the generated grid from Chapter 3.6.4. The next para-
graphs describe typical choices of such examples. We choose numerical values
for the input data as if the problem were scaled (see page 360).

Constant Solution. Consider homogeneous Neumann conditions ∂T/∂n = 0
at the boundaries B and C, enabled by prescribing hB = hC = 0. With
∂T/∂n = 0 at the boundary D, and T = TA at the boundary A, the solution
is easily shown to be T (x, y) = TA, provided κ is constant. Notice that the
scaling on page 360 actually implies that TA = 0 is the only relevant boundary
condition for the scaled temperature. Moreover, κ = 1 is the only relevant
value for the scaled heat conduction coefficient in a homogeneous medium.
However, working with zero or unit values when testing a numerical code is
not a good strategy, since forgetting a parameter in the implemented code
might be equivalent to setting it equal to 0 or 1. We therefore choose TA and
κ different from 0 and 1, implying that we actually use a different scaling
than the one outlined on page 360. The details of this alternative scaling
are of minor interest; the point is that T and κ are dimensionless such that,
e.g., negative temperature values are not nonphysical. (For example, when
working with TA = 2 and κ(x, y) = 10 as input in the scaled problem, we can

3.6. Step-by-Step Development of a Diffpack Solver 371

imagine the scaling is T̄ = (T − TA)/TA + 2 and κ̄ = 10κ/κ(1); this implies
T̄ = 2 at A and κ̄ = 10)

The file Verify/test1 const.i contains the input data for this test. Exe-
cuting

simres2summary -f SIMULATION -n T -s -a

after the simulator is run (with casename SIMULATION), lists the minimum and
maximum values in the T field, and it is easy to control that these values are
equal.

We recommend to run simplified test examples with Gaussian elimination
as solver for the linear system, because problems related to insufficient conver-
gence of iterative solvers are then avoided. Hence, we set the basic solver

menu item on the LinEqSolver prm submenu to GaussElim. The associated
matrix format must be MatBand. However, many preprocessors, including the
super element preprocessor used to generate the present grid, lead to a grid
with a very large bandwidth. The bandwidth size may easily make Gaussian
elimination prohibitively CPU-time and storage demanding. The remedy is
to run a bandwidth reduction algorithm. The stand-alone program redband

comes with Diffpack and does the job. Just type

redband case1.grid

if the name of the file containing the grid is case1.grid. The nodes in the
grid are now renumbered and the new bandwidth is hopefully significantly
reduced.

Extreme hB and hC Values. Choosing the heat transfer coefficients hB or
hC in the Robin conditions equal to zero gives a solution with zero normal
derivative. This is easy to control in a plot of the isolines, since vanishing
normal derivative implies that the isolines are perpendicular to the boundary.
Choosing a very large value for hB (or hC) forces T to be close to TB (or
TC). This is evident from (3.27): limhB→∞ T (1) = TB. A possible set of values
for such test purposes is TA = 2, hB = 0, and hC = 105, which is realized
in the input file Verify/test1 extreme1.i. The corresponding T (x, y) field is
visualized in Figure 3.19a. The “opposite” choice, hB = 105 and hC = 0, is
realized in Verify/test1 extreme2.i. Because the distance from the hole in
the grid to the upper and lower boundaries differs, the two cases will not
correspond to just a flipping of the solution about the line y = 0.

Symmetric Solution Field. We can adjust the domain, boundary conditions,
and material properties such that the T field becomes symmetric. A test of
the simulator is to see if the simulations reproduce the expected symmetry.
In our case, neither the geometry nor the boundary conditions are symmetric
about y = 0, but we can change the geometry such that the parameters
c, d, and f from Figure 3.18a fulfill f = c + d. This is the case in the grid

372 3. Programming of Finite Element Solvers

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

T

−0.727 −0.727

−0.454
−0.454

−0.182

−0.182

0.091

0.0910.364

0.3640.636

0.636

0.909

0.909

1.18

1.18

1.
45

1.
45

1.45

1.73

1.73

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

(a)

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.6

T

−0.185

−0.185

−0.185

−0.185

0.0339

0.0339

0.0339

0.0339

0.252

0.252

0.252

0.252

0.471

0.471

0.471

0.471

0.689

0.
68

9

0.689

0.689

0.908

0.908

0.908

1.13

1.13

1.34

1.34

1.
56

1.
78

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.6

(b)

Fig. 3.19. (a) Plot of T (x, y) for the test case Verify/test1 extreme1.i, where
we should observe T = −1 at the bottom boundary and isolines normal to the
upper boundary. (b) Plot of T (x, y) for the test case Verify/test1 symmetry.i,
where the solution should be symmetric about y = 0.

3.6. Step-by-Step Development of a Diffpack Solver 373

generation script Verify/supel symmetry.py. The resulting grid is found in the
file case1s.grid. Setting, in addition, κ constant throughout the domain and
using the same boundary conditions at the boundaries B and C, i.e., hB = hC

and TB = TC , the solution should be symmetric about y = 0. However, the
numerical solution will never be perfectly symmetric about y = 0, because
the structure of the grid is not symmetric about this line; we have a layer of
elements in material 2, which is not present in the bottom part of the grid.
Figure 3.19b shows the apparently symmetric T (x, y) field.

Extreme κ Values. The κ parameter measures how easily the heat “flows”
through the medium. Setting, for example, a very low value in material 1
almost stops the heat transfer from the pipe. A very large value in material 3
makes the heat flow easily through this part of the domain, and the solu-
tion will typically be close to linearly varying between the lower and upper
boundaries. With a very small value of κ in material 2, the solution becomes
almost flat in this region. The Verify/test1 extreme3.i input file sets some
appropriate parameters to test this behavior, and Figure 3.20 displays how
the solution looks like. Note that the T (x, y) field in Figure 3.20 is visualized
both for x < 0 and x > 0, although the computations are performed for x ≥ 0
only, because of symmetry.

374 3. Programming of Finite Element Solvers

T

−9.98

−8.98

−7.99

−6.99

−5.99

−4.99

−3.99

−2.99

−2

−0.998

0

X

Y

Z

−9.982

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

−2
−1

0
1

2
−2.6 −2 −1 0 1 2

Fig. 3.20. The T profile produced by the SteadyHeating simulator with the
material parameters κ(1) = 0.00001, κ(2) = 0.01, and κ(3) = 10000. The
boundary temperatures TB and TC are set to −1 and −10, respectively.

3.6. Step-by-Step Development of a Diffpack Solver 375

Visual Convergence. One should always run a simulator with a series of re-
fined grids, compare the solutions to find the appropriate resolution, and con-
trol that the solution converges. The scripts supel fine1.py and supel fine2.py

generate two grids with 1/2 and 1/4 of the element size of the grid from
supel.py, respectively. The corresponding grid files have the names case2.grid
and case3.grid and are located in the Verify directory. We have made an
input file test1 conv.i, which invokes a multiple loop (see Chapter 3.4.2)
over the grid files case1.grid (780 nodes), case2.grid (2999 nodes), and
case3.grid (11757 nodes). Running the simulator with this input file pro-
duces three simres datasets with casenames

SIMULATION_m01 SIMULATION_m02 SIMULATION_m03

In the input file we have specified dumping of curves along two lines (see
Chapter 3.3.8): y = 0 and x = 2. With the curveplot script we can eas-
ily plot the solution along these lines in the three grid cases and hence
see how close the curves are. The names of the mapfiles are of the form
.SIMULATION m0*.curve.map so an appropriate curveplot command is

curveplot gnuplot -r ’Cross’ ’T’ ’line1’ \

-f .SIMULATION_m01.curve.map \

-f .SIMULATION_m02.curve.map \

-f .SIMULATION_m03.curve.map

We can hardly distinguish the three curves in this plot. The fairly coarse grid
case1.grid with only 780 nodes might therefore provide sufficient accuracy
for simulations. A problem with the plot in this case is that the lables of
the three curves are identical. We would prefer to mark each curve with a
label reflecting the grid size. Such customization is easy, because curveplot

creates a command file used to run the plotting program. This file is available
for editing and fine tuning (see page 745). In the present case, where we
use Gnuplot to produce the plot, the default name of the file with Gnuplot
commands is .gnuplot.commands. The file looks as follows:

set title "Cross Section Plot, (0.4,0) to (2.5,0)";

set data style lines;

plot command:

plot ’..SIMULATION_m01.curve_1’ title ’T(s1)’, \

’..SIMULATION_m02.curve_1’ title ’T(s1)’, \

’..SIMULATION_m03.curve_1’ title ’T(s1)’;

We can easily edit the plot title (set title) and add the number of nodes to
the title of each curve:

set title "Temperature along the line from (0.4,0) to (2.5,0)";

set data style lines;

376 3. Programming of Finite Element Solvers

plot command:

plot ’..SIMULATION_m01.curve_1’ title ’780 nodes’, \

’..SIMULATION_m02.curve_1’ title ’2999 nodes’, \

’..SIMULATION_m03.curve_1’ title ’11757 nodes’;

The resulting plot is shown in Figure 3.21a. It goes without saying that this

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.5 1 1.5 2 2.5

Temperature along the line from (0.4,0) to (2.5,0)

780 nodes
2999 nodes

11757 nodes

(a)

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-0.5

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Temperature along the line from (2,-2.6) to (2,2.3)

T(s2)
T(s2)
T(s2)

(b)

Fig. 3.21. Convergence of the solution, plotted along lines, for the three grids
with consecutively halved element size. Plot along the lines (a) y = 0; (b)
x = 2.

author prefers to write a script automating the customization. A Python
script customize plot.py for editing the command file may take the form

#!/usr/bin/env python

customize a Gnuplot command file

import re, sys, os

commandfile = sys.argv[1]

f = open(commandfile, ’r’); filestr = f.read(); f.close()

change title:

filestr = re.sub(r’Cross Section Plot,’,

’Temperature along the line from’, filestr)

change labels:

filestr = re.sub(r"m01.curve_1’ title ’T\(s1\)",

"m01.curve_1’ title ’780 nodes", filestr)

filestr = re.sub(r"m02.curve_1’ title ’T\(s1\)",

"m02.curve_1’ title ’2999 nodes", filestr)

filestr = re.sub(r"m03.curve_1’ title ’T\(s1\)",

"m03.curve_1’ title ’11757 nodes", filestr)

f = open(commandfile, ’w’); f.write(filestr); f.close()

3.6. Step-by-Step Development of a Diffpack Solver 377

We may now run any appropriate curveplot command, e.g., one that produces
PostScript plots:

curveplot gnuplot -r ’Cross’ ’T’ ’line1’ -ps tmp.ps \

-f .SIMULATION_m01.curve.map \

-f .SIMULATION_m02.curve.map \

-f .SIMULATION_m03.curve.map

Thereafter, we run our new script,

python customize_plot.py .gnuplot.commands

Finally, we launch the visualization,

gnuplot .gnuplot.commands

to produce the plot in Figure 3.21a.
We can just replace line1 by line2 in the curveplot command and repeat

the steps to produce a comparison plot along the line y = 2, displayed in
Figure 3.21b. Again, the discrepancy is almost as small as the line thickness.

A very important remark must be made regarding investigating the ef-
fects of grid refinements. If an iterative solver is used for the linear system,
the tolerance in the convergence criterion must be set sufficiently small, such
that errors from the iterative solution process are negligible compared to the
discretization errors. In the present application, storage demands and compu-
tational speed in the fine grid case require an iterative solver. The Conjugate
Gradient method with some incomplete factorization as preconditioner is a
natural choice. To terminate the iteration, we use a relative residual crite-
rion with tolerance 10−9 (see Chapter 3.10.2 and Appendix D.6). A rough
estimate of the tolerance as a function of the number of nodes appear in
Chapter 3.13.6 (page 460).

Convergence with Manufactured Solutions. The stepwise examination of in-
creasingly more difficult test problems constitutes an important technique for
detecting and finding programming mistakes. A more comprehensive form of
verification, which may test almost all parts of the implemented numerics,
is the method of manufactured solutions [121]. The idea is to write up any
expression for T (x, y), insert this in the boundary-value problem, and adjust
a source term in the PDE such that the selected expression for T (x, y) is a
valid solution of the problem. The expression for T (x, y) should be sufficiently
complicated, such that all terms in the PDE and boundary conditions come
into play when the code is running.

378 3. Programming of Finite Element Solvers

3.6.6 Running Real Simulations

At this stage we have enough confidence with our simulator to attack the
original problem from Chapter 3.6.1. A possible input file31 can look like
this:

! Input file for the application in ’SteadyHeating’

set gridfile = case1.grid

set T_A = 0.0

set T_B = -1.0

set T_C = -1.0

set kappa 1 = 1.0

set kappa 2 = 0.001

set kappa 3 = 0.1

set h_B = 1.0

!set h_C = 0.0001

set h_C = 0.01

sub LinEqAdmFE

sub Matrix_prm

set matrix type = MatSparse

ok

sub LinEqSolver_prm

set basic method = ConjGrad

set use default convergence criterion = false

set no of additional convergence monitors = 1

set max iterations = 300

ok

sub Precond_prm

set preconditioning type = PrecRILU

set RILU relaxation parameter = 0.0

ok

sub ConvMonitorList_prm

sub Define ConvMonitor #1

set #1: convergence monitor name = CMRelResidual

set #1: convergence tolerance = 1.0e-4

ok

ok

ok

sub SaveSimRes

set time points for plot = ALL

! horizontal line plot along y=0:

set line1: start = 0.4 0

31 The file is found as test.i in src/examples/SteadyHeating/Verify.

3.6. Step-by-Step Development of a Diffpack Solver 379

set line1: stop = 2.5 0

set line1: resolution = 61

! vertical line plot along x=2:

set line2: start = 2 -2.6

set line2: stop = 2 2.3

set line2: resolution = 61

set field storage format = BINARY

set grid storage format = BINARY

ok

ok

! end of input

After having run the simulator,

../app < test1.i

we can easily visualize the temperature field by, e.g., the Plotmtv program:

simres2mtv -f SIMULATION -n T -s -a

plotmtv SIMULATION.T.mtv

A nice feature of the simres2xxx filters is that they can flip (or mirror) the
plot about a symmetry line (see page 282). In the present case, where we
have symmetry about x = 0, we can plot the solution in the left part of the
domain by adding the -flip x 0 (flip around x = 0) option:

simres2mtv -f SIMULATION -n T -s -a -flip_x 0

The resulting file SIMULATION.T flip x=0.mtv can be plotted together with the
solution in the right part, generated by the standard simres2mtv command
(SIMULATION.T.mtv):

plotmtv -plotall SIMULATION.T_flip_x=0.mtv SIMULATION.T.mtv

All the manual commands should of course be automated by a script. A
possible script run.py is included in the Verify subdirectory of SteadyHeating:

#!/usr/bin/env python

import os, sys

try:

inputfile = sys.argv[1]

except:

print "Usage: python run.py inputfile"; sys.exit(1)

casename = "SIMULATION"

os.system("RmCase " + casename) # clean up old files

380 3. Programming of Finite Element Solvers

app = "../app --casename %(casename)s < %(inputfile)s" % vars()

os.system(app)

simres = "simres2mtv -f %(casename)s -n T -s -a" % vars()

os.system(simres)

os.system(simres + " -flip_x 0") # the symmetric (left) part

plotmtv = "plotmtv -plotall -nodate -colorps -o tmp_T.ps "\

"%(casename)s.T.mtv %(casename)s.T_flip_x=0.mtv" % vars()

os.system(plotmtv + "&")

make a contour plot (with boundaries, but since there is no

gb2mtv support for flipping the boundaries about the symmetry

line, we plot in the right part of the domain only)

simres = "simres2mtv -f %(casename)s -n T -s -a "\

"-o ’%% nsteps=22 contstyle=1’ "\

"-out %(casename)s_contour.T" % vars()

os.system(simres)

boind = "drawgrid tmp1 99" # 99 means drawing all indicators

gb2mtv = "gb2mtv tmp1.boundary.gb > tmp1.boundary.mtv"

os.system(boind)

os.system(gb2mtv)

plotmtv = "plotmtv -plotall -nodate -o tmp_Tc.ps "\

"%(casename)s_contour.T.mtv tmp1.boundary.mtv" % vars()

os.system(plotmtv + "&")

This script produces plots as shown in Figure 3.22.

3.7 Adaptive Grids

The finite element method offers the possibility of having a dense mesh in
regions where the solution changes rapidly and a coarser mesh where the
variations in the solution are smaller. In other words, the grid is adapted to
the solution. For this purpose one needs grid software that enables local mesh
refinements. Moreover, one must have a refinement indicator for selecting the
elements to be refined.

3.7.1 Grid Classes with Local Mesh Refinements

Diffpack has two grid classes that support local mesh refinements: class
GridFEAdT and class GridFEAdB. These are subclasses of GridFE such that the
finite element libraries work with objects of these grid classes in the same way
as they work with GridFE objects. The refinement indicators are administered
by a class GridRefAdm. Extending an existing solver with local mesh refine-
ment capabilities is a matter of replacing the GridFE object by a GridFEAdT or

3.7. Adaptive Grids 381

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

u

−0.909

−0.909

−0.909
−0.909

−0.818

−0.818

−0.818

−0.818

−0.727

−0.727

−0.727

−0.727

−0.636

−0.636

−0.636

−0.636

−0.545

−0.5
45

−0.545

−0.545

−0.454

−
0.454

−0.454

−0.364

−
0.364

−0.364

−0.273

−
0.273

−0
.1

82

−0.182

−0.0
90

9

−0.0909

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

(a)

−2.5 −2 −1 0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

u

−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

−2.5 −2 −1 0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

(b)

Fig. 3.22. Plot of the temperature distribution of the problem defined in
Chapter 3.6.1. The input file for this run is Verify/test1.i.

382 3. Programming of Finite Element Solvers

GridFEAdB object, declaring a GridRefAdm object, and adding about 10 lines
of code involving these new classes32.

The GridFEAdB class works only with rectangle- and box-shaped elements
of Lagrange type (ElmB2n1D, ElmB3n1D, ElmB4n2D, ElmB9n2D, ElmB8n3D, and
ElmB27n3D, or ElmTensorProd1 and ElmTensorProd2) and subdivides each el-
ement, being marked for refinement, into q × q new elements of the same
type, where the integer q can be freely chosen by the user. Such a subdivi-
sion generally leads to irregular nodes (also called hanging nodes, improper
nodes, or slave nodes), meaning that a node in one element does not coincide
with a node in another element (and the node is not on the boundary). Fig-
ures 2.9 on page 205 and 3.24d on page 397 show examples of irregular nodes.
The value of a field at an irregular node is constrained by the values at the
neighboring regular nodes. This gives rise to auxiliary constraint equations
in the linear system [57]. The Diffpack libraries automatically take care of
the additional constraint equations in the presence of a GridFEAdB grid.

Class GridFEAdT works only with triangular or tetrahedral elements of the
types ElmT3n2D, ElmT6n2D, ElmT4n3D, ElmT10n3D33 (in fact also ElmB2n1D and
ElmB3n1D). Irregular nodes are not allowed in the grid, which means that
refining an element implies refining also the neighbors to obtain a smooth
transition from a refined region to a coarser region. Since irregular nodes
are avoided, the refined grids are standard finite element grids that can be
used in combination with any other software tool in Diffpack or other finite
element packages. Various strategies for dividing a triangle or tetrahedron
into new elements are available. Both GridFEAdT and GridFEAdB can perform
repeated refinements, yielding a hierarchy of refinement levels. A nice feature
of class GridFEAdT is that the grids associated with the refinement levels are
nested. The corresponding function spaces (Vh in Chapter 2.10 terminology)
are also nested. This is advantageous for computational efficiency, especially
when implementing multigrid methods [96] based on the hierarchy of grids
in class GridFEAdT.

3.7.2 How to Extend an Existing Simulator

The following recipe explains how to extend an existing simulator class with
local mesh refinement functionality. In the code segments we use the grid
class GridFEAdT, but the class name can be replaced by GridFEAdB if desired.

1. Add

32 The classes and corresponding adaptive grid functionality are available in a sep-
arate Diffpack add-on module.

33 The current version of the adaptivity toolbox does not support direct refinement
of GridFEAdT grids with ElmT10n3D elements. As a remedy, you can refine a
GridFEAdT grid with ElmT4n3D elements and use the changeGridL2Q function in
class GridFEAdT to transform ElmT4n3D elements to their quadratic counterpart
ElmT10n3D.

3.7. Adaptive Grids 383

#include <GridFEAdT.h>

#include <GridRefAdm.h>

in the header file of the simulator.

2. Add a grid refinement administrator object in the simulator, i.e., include

Handle(GridRefAdm) refcrit1;

in the definition of the simulator class.

3. Add the refinement administrator menu at the end of the define function:

GridRefAdm::defineStatic (menu, level+1);

4. In the simulator’s scan function, replace the creation of GridFE by

grid.rebind (new GridFEAdT());

The grid handle can still be of type Handle(GridFE), since GridFEAdT

is a subclass of GridFE. When we pass the *grid object to, e.g., the
readOrMakeGrid function, it will never be noticed that the grid is not
a standard GridFE grid.

Also create and initialize the GridRefAdm object in the scan function,

refcrit1.rebind (new GridRefAdm());

refcrit1->scan (menu);

To enable predefined refinement criteria that make use of the solution
field (e.g., criteria based on the gradient of the solution), the field (here u)
must be attached to the refinement indicator object in the grid refinement
administrator:

refcrit1->getRefinementInd().attach (*u);

Make sure that the field object is created (u.rebind(new FieldFE...))
before this call. If you also want to define your own refinement criterion,
you need to attach a link from your simulator object to the refinement
indicator object in the refinement administrator. This is done by the call

refcrit1->getRefinementInd().attach (*this);

384 3. Programming of Finite Element Solvers

5. All fields defined over the grid depend on the size of the grid. Since
adaptive finite element methods imply regeneration of the grid many
times, the fields must also be redimensioned correspondingly. This means
that we must create a function redim, where we update the DegFreeFE

object, the linsol array, and all fields, typically by calling the redim

function of these objects:

void MySimulator:: redim ()

{

u->redim (*grid, "u");

grad_u->redim (*grid,"grad_u");

dof->redim (*grid, 1);

linsol.redim (dof->getTotalNoDof());

// lineq is redimensioned inside makeSystem

}

Notice the use of u->redim; one should never create new objects with
u.rebind(new FieldFE...), because attachments of the old *u will then
not work as intended.

The refinement of the grid is carried out by calling

refcrit1->refine (grid);

redim ();

Because the grid has changed, the simulator’s redim function must be
called immediately so that the fields match the new grid.

The refine function examines a refinement criterion. The user can choose
among several predefined criteria in the menu system, or the user can
provide his own tailored criterion in a virtual function in the simulator
class.

The local mesh refinement is usually performed inside a loop that enables
repeated refinements. In a stationary solver this is naturally implemented
in the solveProblem function. A simple loop, where we just perform a
given number (nlevels) of refinements can be coded like this:

void MySimulator:: solveProblem ()

{

solve (); // make and solve linear system & dump fields

grid_level = 0;

while (grid_level < nlevels) {

grid_level++;

refcrit1->refine (grid);

3.7. Adaptive Grids 385

redim ();

u->setFieldname (oform("u_ref%d",grid_level));

solve ();

}

}

Observe that we change the name of the u field so that we can iden-
tify the various fields and their different grids in the simres database. If
the solution field at intermediate refinement levels is not dumped to the
database, there is of course no need to redefine the field name.

The programmer of the simulator is completely in charge of the grid re-
finement loop and can employ any criterion for determining how many
refinements that should be made. The most comprehensive criteria ex-
amine an estimate of the error in the solution.

The solve function, appearing in the previously shown solveProblem func-
tion, typically reads something like this:

void MySimulator:: solve ()

{

fillEssBC ();

makeSystem (*dof, *lineq);

linsol.fill (0.0);

lineq->solve();

dof->vec2field (linsol, *u);

database->dump (*u);

database->lineCurves (*u);

}

The use of GridFEAdB or GridFEAdT is transparent, as we only operate
with GridFE objects in the simulator. This makes it easy to allow for both
grid types. In scan we can enable this flexibility by reading the grid type from
the menu:

String grid_tp = menu.get ("grid type");

if (grid_tp == "GridFEAdB") {

grid.rebind (new GridFEAdB());

readOrMakeGrid (*grid, gridfile);

} else {

grid.rebind (new GridFEAdT());

readOrMakeGrid (*grid, gridfile);

// box-shaped elements must be transformed to triangles/tetrahedra

386 3. Programming of Finite Element Solvers

if (grid->getElmType(1).contains(’B’) ||

grid->getElmType(1).contains("Tensor"))

PreproBox::box2triangle (*grid);

}

3.7.3 Organization of Refinement Criteria

Let m be number of elements in the current finite element mesh, and let I =
(v1, . . . , vm), vi ∈ IR, represent indicator values for each element. We refer to
I as a refinement indicator. For example, vi may be the estimated error of the
numerical solution in element no. i. Intuitively, we would refine this element
if vi is larger than some critical value. We therefore introduce a refinement
criterion for evaluating the indicator I and deciding which elements that
actually should be refined. The refinement criterion C can be expressed asB =
C(I), B = (b1, . . . , bm), where bi is a boolean value indicating whether element
no. i is to be refined (true) or not (false). When a subset of the elements
are marked for refinement, one must, at least in the case of a GridFEAdT

grid, extend the set with additional elements, due to geometric restrictions
on the refinement procedure. For example, if a triangle is to be refined, it
often means that it is to be subdivided into four new triangles, with new
nodes at the mid point of each side. The neighboring elements must then
also be refined to avoid irregular nodes, although the indicator values in
these elements may not qualify for direct refinement. In other cases one can
impose additional smoothness properties of the element size distribution,
which lead to increased refinement beyond the set of elements marked by
C(I). We represent these additional refinement requirements by an operator
G and write B := G(B).

Refinement of Diffpack grids is based on a four-step procedure:

1. evaluate the indicator I ,

2. apply criterion: B = C(I),
3. add extra refinements: B := G(B),

4. call a refinement procedure in a grid object.

Class GridRefAdm administers these four steps. The class has a pointer to
an object in the class RefinementInd hierarchy, representing the refinement
indicator I . A parameter object of type RefinementInd prm is used to select a
desired indicator and associated parameters on the menu. Class GridRefAdm

contains a set of criteria C(I) that can also be selected through the menu
system. Having I and C(I), the GridRefAdm object calls an adaptive grid
class, GridFEAdB or GridFEAdT, for determining the additional set of required
refinements, G(I), and carrying out the modification of the mesh. Several
refinement criteria, e.g., for different fields when solving systems of PDEs, is
trivially enabled by having several GridRefAdm objects in the simulator class.

3.7. Adaptive Grids 387

Figure 3.23 shows the relations between adaptive grid tools and a solver class
MySim.

MySim

FieldFE
u

GridRefAdm

GeometricInd

RefinementInd

RefinementInd_prm

ErrorEstimator

Fig. 3.23. Sketch of the relation between a simulator class MySim and the
GridRefAdm utility for administering adaptive grid refinement. Dashed arrows
represent pointers, whereas solid arrows denote inheritance. The subclasses
GeometricInd and ErrorEstimator implement various refinement indicators
based on simple geometric criteria or user-controlled error estimation, re-
spectively.

The currently available refinement criteria C(I) in class GridRefAdm are of
two types:

1. refine element no. i (bi is true) if `lo ≤ Ii ≤ `hi (absolute criterion), or

2. refine element no. i (bi is true) if Ii is among the largest p percent values
in I (percentage criterion).

A common choice is to let `hi →∞, which means that we refine all elements
whose indicator values are larger than some critical value `lo.

Some examples on available refinement indicators I are listed next. These
are available on the RefinementInd prm submenu.

GeometricRegions: Set Ii = 1 if the centroid of element no. i is inside a
prescribed geometric region, for example, a set of disks or hypercubes.
Otherwise, Ii ≤ 0. With `lo ≤ 1 and `hi ≥ 1, all elements inside the
geometric regions will be refined. On the menu, one can specify refinement
inside a rectangle and two disks as follows:

set refinement criterion = GeometricRegions

set hypercube regions = Hypercubes d=2 n=1 [-0.2,1.0]x[0.85,1.0]

set disk regions = Disks d=2 n=2 (0,0)->0.2 (0.8,0.7)->0.1

This will lead to refinement of all elements whose centroids are inside
a rectangle [−0.2, 1] × [0.85, 1] and two disks with radius 0.2 and 0.1,

388 3. Programming of Finite Element Solvers

centered at (0, 0) and (0.8, 0.7), respectively. The hypercube regions and
disk regions items have effect only for the GeometricRegions refinement
criterion.

OwnIndicator: This indicator calls a virtual function evalOwnIndicator in the
simulator class and leaves it up to the programmer of the simulator to
provide a suitable indicator through this function. The indicator can be
based on heuristic considerations, on a posteriori error estimation, or on
other procedures that depend on the particular PDE being solved. This
type of refinement indicator requires access to the simulator, obtained by
the statement

refcrit1->getRefinementInd().attach (*this);

The criterion calls the virtual function

void evalOwnRefInd (FieldPiWisConst& refinement_field,

real& evaluated_error);

in the simulator class. The refinement field object is supposed to be
filled by indicator values, one for each element. The value for element no. i
equals Ii. An example is shown later. In case the refinement indicator is
based on an error estimator for the PDE in question, the evaluated error

argument can be filled with an estimate of the error. If such an estimate
is provided, a menu entry

set error used in stop criterion = ON

will then lead to a stop in the repeated refinements when the estimate
of the error is less than a tolerance. The tolerance is given through the
tolerance item on the GridRefAdm submenu (see later).

Gradient: Given a field u over the grid, set Ii = ||∇u||, where the gradient
is evaluated at the centroid of element no. i. This indicator is often used
to refine the elements where u has large gradients. The field u must be
attached to the refinement indicator class:

refcrit1->getRefinementInd().attach (*u);

It is not necessary that the attached field is the solution – it can be any
field on the grid.

Value: Simply set Ii equal to the average of the nodal values of a field u over
element no. i. The simulator must attach the u field to the refinement
indicator tools, as we have mentioned for the Gradient indicator.

3.7. Adaptive Grids 389

Contour: This criterion gives local mesh refinements in the vicinity of a con-
tour line (2D) or isosurface (3D):

set refinement indicator = Contour

set contour value = 0.5

In this example we refine elements around the line/surface where u = 0.5.
The u field must be attached to the refinement indicator object as under
the Gradient criterion. The contour value menu item has effect only when
choosing the Contour indicator.

ZZ: This is the indicator based on the ZZ error estimator, see Chapter 2.10.7
and [155]. The simulator must be attached to the refinement indicator as
demonstrated for the OwnIndicator criterion.

The GridRefAdm submenu offers items for setting parameters common to
most refinement criteria. The most important menu items are listed below.

refinement strategy determines whether we deal with an absolute or a per-
centage criterion. Valid values are Absolute and Percent.

hi limit corresponds to the `hi parameter, which is of relevance when the
parameter refinement strategy has the value Absolute.

lo limit corresponds to the `lo parameter, used together with the hi limit

value in an absolute criterion.

percent refined elements specifies the percentage of the elements to be re-
fined. That is, the element indicators are sorted with respect to their
values, and the top percentage of the elements qualify for refinement.
The item has effect only when refinement strategy equals Percent.

number of refinements specifies the number of repeated refinements per call
to GridRefAdm::refine. The parameter is often chosen to be 1, with the
number of repeated refinements being controlled in the simulator instead.

The following items are only relevant if the refinement strategy is OwnIndicator
and the item error used in stop criterion is ON. In this case the user can
provide a measure of the error, and by allowing a large number of refinements,
the GridRefAdm::refine function will perform successive refinements until the
error measure is smaller than a preset tolerance, or the number of nodes, el-
ements, or refinements exceeds the maximum accepted values. The relevant
levels are set by the items below.

tolerance sets a tolerance for the estimated error. Refinements can be re-
peated until the estimated error is below the tolerance, unless the number
of refinements, nodes, or elements is too large.

max refinement levels specifies the maximum number of refinement levels
allowed in a grid.

390 3. Programming of Finite Element Solvers

max nodes is the maximum number of nodes allowed in a refined grid.

max elements is the maximum number of elements in a refined grid.

Some of the items on the GridRefAdm menu are relevant for either GridFEAdT or
GridFEAdB grids. The most important items related to grids of type GridFEAdT

are presented next.

mixed refinement method determines whether elements chosen for refinement
may produce a variable number of child elements (ON). The default choice
is ON.

refine all elements determines whether all elements are to be refined, ne-
glecting the calculated indicator values.

regular or bisection specifies the type of subdivision of elements and is only
useful when refine all elements is chosen to be ON. Three values are
valid: REGULAR, BISECTION, and SHORTEST (see the man page of GridFEAdT

for more information).

no of edge refinements is only useful when mixed refinement method is OFF

or if refinement strategy is chosen as Absolute. All elements to be refined
are then divided into a fixed number of child elements.

Grids of type GridFEAdB have some special menu items on the GridRefAdm

submenu:

subgrid partition determines how many child elements that will arise from
one refined element. A value of 3 means that rectangular 2D elements
receive 3 nodal intervals in each space direction, i.e., 4× 4 nodes34. With
bilinear elements (ElmB4n2D), 3 × 3 = 9 new child elements are formed
in this case, whereas with biquadratic elements (ElmB9n2D) there is no
way to form new elements out of 4× 4 nodes. With ElmB9n2D elements, a
subgrid partition of 4 gives 2 × 2 new elements and a subgrid partition
of 2 does not make any new child elements. For multi-linear elements
(ElmB2n1D, ElmB4n2D, ElmB8n3D), a subgrid partition value of 2 is a widely
used choice.

start grid for refinement determines whether the refinement is carried out
on the current level in the grid hierarchy (menu answer is current) or on
the coarsest level (menu answer is original). Note that repeated refine-
ments with the GridFEAdB demands the value current.

smooth grid turns on or off a transition in element size between highly re-
fined and coarse regions, see Figure 3.25 for an illustration. Especially
when choosing the subgrid partition larger than 2, the jump in element
size from a refined to a non-refined element is significant. The quality
of the discretization may increase by smoothing the grid in such cases.

34 The convention is the same as used for the division parameter in the PreproBox

preprocessor, see page 278.

3.7. Adaptive Grids 391

A demonstration of the effect of smoothing can be obtained by running
the src/fem/adaptive/PoissonA simulator with Verify/Laplace.i as input
and looking at the grid/field plots in the generated report. The smooth-
ing has only effect if one performs repeated refinements of a grid (either
multiple GridRefAdm::refine calls or number of refinements chosen larger
than 1).

Exercise 3.9. .
Introduce adaptive grids in a copy of the Poisson2 solver. Focus on the

problem in Chapter 2.8.2, concerning the Poi2flux subclass and a large jump
in the coefficient of the PDE. Try the GeometricRegions refinement indicator,
using an interval in the vicinity of the jump as refinement domain. Investigate
possible advantages of using local mesh refinements. �

3.7.4 Grid Refinements as a Preprocessor

Grid refinements based on geometric criteria may be useful when creating a
grid. One can use a simple preprocessor to generate a coarse grid and then
apply local refinements to form the desired element density. Suppose you have
a GridFEAdT handle grida. Calling

grida.rebind (grida->refine(marked_elms));

performs local refinement of the elements marked by the marked elms vector
(of type VecSimple(int)). Element e is refined if marked elms(e) is 1. Alter-
natively, it may be more convenient to use the framework with refinement
indicators and let GridRefAdm::refine refine the grid according to a flexible
menu-based setting of the type of Ii indicators (this avoids explicit filling of
a marked elms array).

The makegrid program (see page 311) allows easy-to-use access to local
mesh refinements as part of the grid generation. The menu in the makegrid

application contains the GridRefAdm and RefinementInd prm submenus. Note
that only the GeometricRegions indicator is of relevance since criteria de-
pending on the solution or user-provided information have no meaning in
makegrid, which does not solve any PDE.

Suppose we have generated a grid by some tool, either an external prepro-
cessor or makegrid. If we want to make a local mesh refinement around the
origin, we could construct the following input file (say) mygrid.i for makegrid:

set existing grid = mygrid.grid ! load premade grid from this file

set output gridfile name = mygrid_refined ! casename for new grid

continue

set grid class type = GridFEAdT ! enable adaptive grid

sub RefinementInd_prm

! refine elements inside a disk with center at the origin

! and radius 0.5:

392 3. Programming of Finite Element Solvers

set refinement indicator = GeometricRegions

set disk regions = Disks: d=2 n=1 (0,0)->0.5

ok

sub GridRefAdm

set refinement strategy = Absolute

set number of refinements = 2 ! 2 refinement levels

ok

set plot = ON

ok

You can now run

makegrid < mygrid.i

and get a file mygrid refined.grid with a grid equipped with local refinements
in a disk of radius 0.5 centered at the origin. The grid is a result of two
refinement levels.

Some more examples on using makegrid to obtain local mesh refinements
are found in the elasticity application directory. Take a look at the makegrid

input files

src/app/Elasticity1/*-makegrid.i

No knowledge about the elasticity application is required to understand these
input files.

Exercise 3.10. .
The purpose of this exercise is to get experience with writing a tailored

grid generation program. Suppose you have a square domain and need re-
finements along a diagonal of the domain. Generate a uniform square-shaped
grid with makegrid. Make a C++ program that

1. reads a grid file using GridFE::scan,

2. creates a GridFEAdT grid out of a plain grid,

3. fills a VecSimple(int) marked elms such that entry e is 1 if element e has
a centroid sufficiently close to the refinement line (the other values are
zero),

4. calls the GridFEAdT::refine function twice (two refinement levels),

5. writes the grid back to file (GridFE::print).

Discuss other ways of creating the same refined grid. For example, make a
fake simulator as a subclass of FEM and attach to GridRefAdm a suitable field
with a contour line along the diagonal. Another strategy is to equip the fake
simulator with an evalOwnInd function for marking the elements to be refined.
In this case one can set the indicator values as the inverse distance from the
centroid to the diagonal. �

3.7. Adaptive Grids 393

3.7.5 Example: Corner-Flow Singularity

A classical illustration of the benefits of local mesh refinements is the case of
flow around a corner, as depicted in Figure 3.24a. In a fluid without vorticity,
the stream function fulfills the Laplace equation. For the flow geometry in
Figure 3.24, one can find the analytical solution of the stream function to be

u = r
2
3 sin

(
2

3
(θ +

π

2
)

)
,

where r and θ are polar coordinates (r = 0 at the corner). The geometric
features of this example enable us to a priori predict that large gradients in u
will occur close to the corner. From Figure 3.24b we see that the magnitude of
the velocity field, here equal to the norm ||∇u||, grows fast towards the corner
(it approaches infinity in the continuous case). Therefore, it may be appropri-
ate to apply a simple refinement indicator, for example GeometricRegion, to
specify where elements are to be refined. Such an indicator may lead to grids
as we show in Figure 3.24. (Normally it is more optimal to use a criterion
based on the solution, even if the criterion is heuristic.)

A solver PoissonA for the present case has been developed from a Poisson2-
like class. The initial grid was generated by the PreproStdGeom preprocessor,
using the BOX WITH HOLE option. The adaptive grids were incorporated adding
the statements listed in Chapter 3.7.2. The source code can be found in
src/fem/adaptive/PoissonA. The reader is strongly encouraged to compile
this application and try the experiments below.

A quick tour of grid refinement features results from running the appli-
cation with the input file corner tour.i, found in the Verify subdirectory.
Move to this directory and issue the command

../app < corner_tour.i

This input file performs a multiple loop over 2, 3, and 4 refinement levels with
both grid types GridFEAdB and GridFEAdT. Load the SIMULATION-report.html

file into a Web browser and view the u field and the error field.
Further experiments can be performed by creating multiple loops in an

input file and viewing the plots in the automatically generated report. To test
the effect of smoothing in GridFEAdB grids, we can perform two refinements
with a subdivision of 4, and turn smooth grid on and off to see the effect of
smoothing a grid where there is a significant jump in the element size. The
key menu items to be set are35

set grid type = GridFEAdB

set no of levels = 2

set refinement indicator = GeometricRegions

set disk regions = Disks d=2 n=1 (0,0)->0.2

35 The file corner smooth.i contains the complete input.

394 3. Programming of Finite Element Solvers

set number of refinements = 1

set subgrid partition = 8

set smooth grid = { true & false }

Running the PoissonA application with such input produces a report with
plots of the resulting refined grid – with and without smoothing. Figure 3.25
shows the two types of refinements close to the corner.

Instead of examining experiments in the report, we may plot the results
manually. The script demo.py automates running the simulator and visualizing
the fields and grids. We can apply demo.py to demonstrate the effect of various
refinement indicators. The input file to the PoissonA simulator is given as a
command-line argument to demo.py, e.g.,

./demo.py corner.i

or

python demo.py corner.i

The Gradient indicator examines ||∇u|| in each element. The following key
menu items lead to refinement of 20 percent of the elements, where ||∇u||
has its largest values:

set grid type = GridFEAdT

set refinement indicator = Gradient

set refinement strategy = Percent

set percent refined elements = 20

Figure 3.26a shows such a grid, computed with the input file corner gradient1.i.
Alternatively, we can apply the Absolute refinement strategy, but then we
need to set appropriate lower and upper values of ||∇u|| (`lo and `hi):

set grid type = GridFEAdT

set refinement indicator = Gradient

set refinement strategy = Absolute

set lo limit = 1.0

set hi limit = 1.0E+20

Elements with ||∇u|| > 1 will in this case be refined. You can run the solver
with corner gradient2.i as input to see the effect of the criterion.

Refinements along a line or surface is easy with the Contour indicator, but
this is not relevant in this particular application. However, for illustration
purposes we show the key menu items for refinement of elements along the
u = 0.5 contour line:

set refinement indicator = Contour

set contour value = 0.5

set refinement strategy = Percent

set percent refined elements = 20

3.7. Adaptive Grids 395

Figure 3.26b displays the resulting grid, computed with the corner contour1.i

input file. The Contour criterion is convenient in problems with sharp layers
or moving fronts.

3.7.6 User-Defined Refinement Criteria

As mentioned on page 388, choosing the refinement indicator menu item
(on the RefinementInd prm submenu) to be of type OwnIndicator, makes the
grid refinement administrator (GridRefAdm) call up the simulator to define the
value of the refinement indicators Ii in the elements. As a simple example on
a user-defined refinement criterion, suppose we want to use the size of the
gradient of the solution, ||∇u||, but elements with a volume less than 10−6

should not be refined.
The function to be called in our simulator class must have the name

evalOwnRefInd and take two arguments: (i) a refinement field, where we shall
fill in the refinement indicator value (Ii) for each element, and (ii) an estimate
of the error in the solution. The latter is of no relevance here, since the
refinement indicator has nothing to do with errors in the elements.

void MySimulator:: evalOwnRefInd (FieldPiWisConst& refinement_field,

real& /*evaluated_error*/)

{

// criterion: indicator = ||grad(u)|| in each element if

// element volume is larger than 10^{-6}, otherwise indicator is 0

// FEM::makeGradient can fill the average gradient value

// in each element into a FieldPiWisConst object:

FEM::makeGradient (refinement_field, *u)

// find the volume of each element:

Vec(real) elm_volume;

ErrorEstimator::calcElmVolume (elm_volume, *grid);

for (int i = 1; i <= grid->getNoElms(); i++) {

if (elm_volume(e) < 1.0E-6) {

// no refinement of small elements:

refinement_field.setValueElm (e, 0.0);

}

}

}

Because we set Ii = 0 in the elements we do not want to refine, we must set
`lo > 0 and use the absolute refinement strategy on the menu.

The reader can hopefully use this simple example as a starting point for
implementing his own indicator in a given problem.

A subclass PoissonAee of PoissonA implements a more sophisticated user-
defined refinement indicator, utilizing a residual-based error estimator for

396 3. Programming of Finite Element Solvers

the Poisson equation, more specifically (2.211) in Chapter 2.10.7. We refer to
the source code PoissonAee.cpp for implementational details. The input file
Verify/ee1.i is a possible starting point for experimenting with this solver.

3.7.7 Transient Problems

The previous description of adaptive grids is also valid for time-dependent
problems, but in such cases, the grid will be repeatedly refined at certain
time levels. Since the PDE involves quantities at different time levels, it will
be necessary to interpolate quantities at a previous time level onto the new
refined grid. Our refinements will be based on an original coarse grid instead
of, e.g., coarsening and refining a refined grid from a previous time step. The
corresponding refinement step is implemented according to

// start refinements with the original grid:

grid.rebind (grid->getStartGrid());

refcrit1->refine (grid);

Suppose we have a typical heat equation solver (Chapter 3.10) with the fields
u and u prev, representing the primary unknown at the present and the pre-
vious time level. Since it is necessary to interpolate u prev onto the current
grid, we need a copy of u prev, say u prev save, in the simulator. Each time
u prev is updated from u, we also update u prev save. After the refinement
call above, we must redimension the fields and interpolate u prev save, which
is defined on the previous grid, onto u prev on the new grid:

u_prev->redim (*grid, "u_prev");

u_prev->interpolate (*u_prev_save);

u_prev_save->redim (*grid, "u_prev_save");

// after u is computed: *u_prev_save=*u; *u_prev=*u;

Other fields might also need to be interpolated, and copy fields like u prev save

are then needed for these fields as well.
The code in src/fem/adaptive/AdvecA exemplifies the use of GridFEAdT

and GridFEAdB for a time-dependent PDE

∂u

∂t
+ v · ∇u = 0 .

3.7. Adaptive Grids 397

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(a)

−1 0 1
−1

0

1

0.
77

3

0.773

0.773

0.773

0.954

0.954

1.13

1.31

1.68

−1 0 1
−1

0

1

(b)

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(c)

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(d)

Fig. 3.24. (a) Streamlines of inviscid and irrotational flow around a corner
(contour lines of u); (b) magnitude of the velocity (norm of the gradient
of u). Three levels of refinement, using the GeometricRegions criterion and
refinement of elements inside a disk of radius 0.2 at the corner (0, 0), are used
for creating the refined grids. (c) Mesh made by class GridFEAdT; (d) mesh
made by class GridFEAdB.

398 3. Programming of Finite Element Solvers

−0.586 0 0.6
−0.6

0

0.6

−0.586 0 0.6
−0.6

0

0.6

(a)

−0.586 0 0.6
−0.6

0

0.593

−0.586 0 0.6
−0.6

0

0.593

(b)

Fig. 3.25. Two levels of refinements of a GridFEAdB grid with bilinear elements
and subgrid partition equal to 4. (a) No smoothing; (b) smoothing.

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(a)

−1 0 1
−1

0

1

−1 0 1
−1

0

1

(b)

Fig. 3.26. Three levels of refinement of GridFEAdT grids with linear elements,
Percent refinement strategy, and 20 percent refinement: (a) Gradient indica-
tor; (b) Contour (u = 0.5) indicator.

3.8. Projects 399

3.8 Projects

3.8.1 Flow in an Open Inclined Channel

Mathematical Problem. The boundary-value problem to be solved in this
project reads

−∇2u(x) = 1, x ∈ Ω, (3.28)

u = 0, x ∈ ∂ΩE , (3.29)

∂u

∂n
= τ, x ∈ ∂ΩN . (3.30)

The quantity τ is a dimensionless constant.

Physical Model. This project concerns incompressible viscous fluid flow in a
straight open channel, as depicted in Figure 3.27a. The axis along the channel
makes the angle α with the horizontal plane, and the fluid flow is driven by
gravity and a wind stress, here represented in scaled form through τ , at the
fluid surface ∂ΩN . Both positive and negative values of τ are relevant. The
cross section of the channel can be arbitrary, but it is a basic assumption
that the fluid surface is flat; that is, there are no waves. The boundary ∂ΩE

is the channel wall. We can introduce x = (x1, x2) as the coordinates in Ω.
The x3 coordinate is then directed along the axis of the channel. The primary
unknown u(x) is the velocity in x3 direction.

Derive the boundary-value problem from the incompressible Navier-Stokes
equations with the proper boundary conditions. (Hint: Make a basic assump-
tion that the flow is directed along the x3 axis and omit the pressure gradient
term ∂p/∂x3.) Introduce a scaling to arrive at (3.28)–(3.30) and find the di-
mensionless parameter τ expressed by physical parameters in the problem.

Numerical Method. The problem (3.28)–(3.30) is to be solved by a Galerkin
finite element method.

Analysis. If the “width” of Ω is much larger than the “height”, the problem
can be approximated by a thin film on an inclined plate of infinite extent
(i.e., Ω is a rectangle whose width tends to infinity). Neglecting end-effects,
we have hence reduced the problem to one space dimension, with the effec-
tive coordinate, here called x1, running in the normal direction to the plate.
(Calling the effective coordinate x1 makes it easy to use the same code for a
1D test problem as well as for the original 2D problem.) The 1D test problem
reads

− u′′(x1) = 1, x1 ∈ (0, 1), u(0) = 0, u′(1) = τ . (3.31)

Show that this problem can be solved exactly by a finite element method with
linear elements, regardless of the element size, thus making the test problem
ideal for program verification.

400 3. Programming of Finite Element Solvers

wind
stress

Ω
fluid

velocity

3x

g

(a) (b)

Fig. 3.27. (a) Viscous fluid flow in an open channel; (b) examples on various
cross sections (Project 3.8.1).

Implementation. Create a standard Diffpack finite element solver for the
problem, where the number of space dimensions is parameterized as usual
(only 1D and 2D cases make sense in the current physical context). Provide
debug output of the numerically computed and the hand-calculated element
matrices and vectors in the 1D problem (linear elements), see page 330 for
how to turn the debug statements on or off at compile time. Demonstrate in
particular that the program works as expected with three elements. Visualize
the solution u (the fluid velocity) and ||∇u|| (a measure of the strain rate36).
Furthermore, compute the effective fluid volume that passes through Ω per
time unit, i.e., Q =

∫
Ω udx1dx2/

∫
Ω dx1dx2 (normalized volume flux). The

material in Appendix B.6.1, especially on page 753, is useful for implementing
the calculation of Q.

Computer Experiments. Run some examples with nontrivial geometries as
depicted in Figure 3.27b (all the shown cross sections can be generated by
the PreproStdGeom utility from Chapter 3.5.3). In all the cases, make sure to
utilize symmetry. For example, the semi-disk can be reduced to a quarter of
a disk, with ∂u/∂n = 0 on the symmetry line. Determine which of the cross
sections that has the maximum normalized volume flux Q.

36 FieldsFE::magnitude can be used to compute ||∇u|| when ∇u is available, see
page 305.

3.8. Projects 401

3.8.2 Stress Concentration due to Geometric Imperfections

moment

moment

(a)

a

b

Ω

(b)

Fig. 3.28. (a) Torsion of a long cylinder, subject to moments at the ends;
(b) cross section Ω of the cylinder (Project 3.8.2).

Mathematical and Physical Problem. We consider torsion of a long elastic
cylinder with arbitrary cross section Ω as depicted in Figure 3.28. An impor-
tant physical quantity is the absolute value of the shear stress in the cross
section, which can be expressed as ||∇u||, where u solves ∇2u = −2 in Ω,
with u = 0 on the boundary ∂Ω. The torsion problem is derived in most
textbooks on elasticity, see e.g. [56,61,126,140].

Numerical Method and Implementation. The current boundary-value prob-
lem is to be solved by a standard Galerkin finite element method. Implemen-
tation of the torsion problem is in fact described in Chapter 3.4.6, but one
can also develop a tailored solver by straightforward editing of class Poisson1

or Poisson2. Adaptive grids, as described in Chapter 3.7, are useful in the
present context, especially since we know a priori that the area around the
crack tip in Figure 3.28 should be refined. It is important to calculate and
visualize the shear stress ||∇u|| and write out the maximum value of ||∇u||
and where it occurs.

402 3. Programming of Finite Element Solvers

Computer Experiments. The purpose of this project is to study the impact of
cracks or geometrical imperfections, at the boundary, on the maximum shear
stress. Figure 3.28b depicts a cross section containing an exaggerated crack
with dimensions a and b. Due to symmetry it is only necessary to compute
u in the area to the right of the dashed line. Along the dashed line we apply
the symmetry condition ∂u/∂n = 0. Generation of a grid over this domain
can be accomplished by, e.g., transfinite mappings as explained in the report
[77]. We suggest to read the crack-size parameters a and b from the menu
and let the simulator transform a grid on the unit square to the actual form
demanded by this particular problem. For each value of the pair (a, b), run
through a series of grids with increasing refinement and find some criterion for
picking a suffiently refined grid. One will find that even small imperfections
of the geometry have a significant impact on the maximum shear stress.

3.8.3 A Poisson Problem with Pure Neumann Conditions

Mathematical Problem. We consider in this project the Poisson equation

−∇ · (k(x)∇u) = f(x) in Ω, (3.32)

with pure Neumann conditions on the boundary:

− k ∂u
∂n

= g(x) on ∂Ω . (3.33)

Physical Model. Neumann problems of this type arise in, e.g., porous media
flow with prescribed normal velocity on the boundary. Another application
is heat transfer with prescribed normal component of the heat flux on the
boundary. The coefficient k is positive.

Analysis of the Mathematical Problem. Show that if u solves (3.32)–(3.33),
then u+C solves the same problem, where C is an arbitrary constant. This
means that the solution of the Neumann problem (3.32)–(3.33) is not unique.
An additional constraint is needed to fix the value of C and ensure uniqueness.
Two suggestions for such a constraint are

1. u = u0 at a point in the domain or on the boundary.

2.
∫

Ω u dΩ = I .

Here, u0 and I are prescribed constants. We shall refer to these two extra
conditions as constraint 1 and 2, respectively.

Suppose we have found a solution ū of (3.32)–(3.33) using constraint 1.
Show that the solution u of (3.32)–(3.33) fulfilling constraint 2 can be ob-
tained by adding a suitable constant to ū, and calculate this constant.

Another aspect of the Neumann problem (3.32)–(3.33) is that the func-
tions f and g cannot be chosen independently. Show by integrating (3.32)

3.8. Projects 403

over Ω and using (3.33) that

∫

Ω

f dΩ =

∫

∂Ω

g dΓ .

We shall now study a specific example of (3.32)–(3.33) in one space di-
mension:

− u′′(x) = 1, 0 < x < 1, u′(0) = 1, u′(1) = α . (3.34)

Carry out the following tasks:

1. Find the value of α that is compatible with the right-hand side f = 1 in
the differential equation.

2. Solve the problem analytically with constraint 1 as u(1) = 0.

3. Solve the problem analytically with constraint 2 as
∫ 1

0
u(x)dx = 0.

Numerical Method. Formulate a finite difference method and a Galerkin fi-
nite element method with linear elements for (3.34). Incorporate constraint 1
(u(1) = 0) in the system of algebraic equations. As an alternative, show how
constraint 2 can be incorporated in the system (use the trapezoidal method
to evaluate the integral). What type of efficient solution algorithms can be
used to solve the systems of discrete equations?

Analysis of the Discrete Problem. Set up the discrete equations, without in-
corporating any extra constriant, when there are only two grid points (x1 = 0
and x2 = 1). Show that the coefficient matrix of the linear system is singular.
Incorporate constraint 1, show that this makes the coefficient matrix non-
singular, find the numerical solution at the two grid points, and compare the
solution with the exact result. Repeat the steps using constraint 2.

Apply the Jacobi and the SOR method (see Appendix C.1) to the 2× 2
linear system without any extra constraint and run a few iterations by hand
(or in a tailored computer program). How do these iterative methods behave?
Try two different start vectors: (0, 0) and (−10, 10). Find the constant you
must add to the solution produced by SOR to fulfill constraint 1 or constraint
2.

Implementation. Create a subclass of Poisson2 where you re-implement the
fillEssBC function such that you can set an essential condition at a single
node (constraint 1), e.g., the first or last node. Introduce a menu item for
turning this condition on and off. Make appropriate input files for solving
(3.34) on a 1D, 2D, and 3D grid, with and without constraint 1. Incorporation
of constraint 2 is done via applying constraint 1, computing the integral of
the solution over the domain, and then adding a constant to the solution
(see above). (Hint: In 2D and 3D, just set ∂u/∂n = 0 on x2 = const and

404 3. Programming of Finite Element Solvers

x3 = const boundaries, which makes a solution in accordance with (3.34).
Also be careful with ∂u/∂x versus ∂u/∂n; at x1 = 0 ∂u/∂n = −∂u/∂x. The
integral can be computed by class IntegrateOverGridFE, see Appendix B.6.3
or the man page of this class.)

Computer Experiments. Specify banded Gaussian elimination as solver and
observe what happens when you run the program with Neumann conditions
only and no extra constraints in 1D and 2D. Test three iterative solvers in 2D:
(i) the Conjugate Gradient method with RILU preconditioning, (ii) Jacobi
iteration, and (iii) SOR iteration. Use two different start vectors for the itera-
tive methods: USER START (the default choice; the user fills the solution vector
as in Poisson2::solveProblem) and RANDOM START (random values). The type
of start vector is set by the startvector menu item on the LinEqSolver prm

submenu. MatSparse is an appropriate matrix format when experimenting
with these linear solvers.

The conclusion from the experiments is that iterative solvers can fix the
undetermined additive constant in (3.32)–(3.33).

3.8.4 Lifting Airfoil

Mathematical Problem. This project concerns flow around a 2D airfoil as
depicted in Figure 3.29. We assume that the flow is inviscid, irrotational,
and incompressible. The governing equation is then the Laplace equation

∇2ψ = 0 (3.35)

in the fluid domain Ω. The primary unknown ψ is the stream function. The
flow velocity v = (u, v)T is tangent to the isolines of ψ, and we have u =
∂ψ/∂y and v = −∂ψ/∂x. There is no velocity through the airfoil. This means
that ψ = c, where c is a constant, on the airfoil boundary. On the outer
boundary we set ψ = U∞ · (y,−x), where U∞ is the free stream velocity.

At the trailing edge E we need a special condition called the Kutta-
Joukowski condition. This means that the unknown constant c is determined
so that ∂ψ/∂n is continuous at the point E.

Analysis. Explain why ∇2ψ = 0 reflects that the flow is irrotational (∇×v =
0). Also explain that any flow described by a stream function ψ must be
incompressible (∇ · v = 0), provided ψ is sufficiently smooth. Show that
the pressure behaves like const− 1

2 |∇ψ|2 (hint: use the Bernoulli equation).
Finally, explain why the boundary condition ψ = const ensures that the
normal velocity v · n vanishes (n being the outward unit normal to the
boundary).

Numerical Method. The challenge in this problem is to devise a procedure
for incorporating the Kutta-Joukowski condition. One idea, taken from [90,
Ch. 1], consists in setting

ψ = ψ0 + cψ1,

3.8. Projects 405

E

Fig. 3.29. Flow around a 2D airfoil (Project 3.8.4).

where ψ0 solves the problem with c = 0 and ψ1 solves the problem with c = 1.
The unknown constant c can then be computed by requiring a continuous
normal derivative of ψ at the trailing edge E. The normal direction n is
perpendicular to the dotted line starting at E in Figure 3.29. A numerical
approximation to the normal derivative of ψ at E becomes

∂ψ

∂n
≈ 1

δ
(ψ0(E + δn) + cψ1(E + δn)− (ψ0(E) + cψ1(E)))

=
1

δ
(ψ0(E + δn) + cψ1(E + δn)− c) .

The approximation is exact when the constant δ > 0 approaches zero. The
jump in the normal derivative can then be written

[
∂ψ

∂n

]
≈ 1

δ
(ψ0(E + δn) + cψ1(E + δn)− c+ψ0(E− δn)+ cψ1(E− δn)− c) .

Requiring this jump to be zero gives

c = − ψ0(E + δn) + ψ0(E − δn)

ψ1(E + δn) + ψ1(E − δn)− 2
.

Implementation. We shall consider a symmetric airfoil, but with U∞ making
an angle α with the line of symmetry (i.e. α is the angle of attack and the
flow becomes nonsymmetric, resulting in a lift on the airfoil). The NACA0012
airfoil geometry is given by [90]:

y = 0.17735
√
x− 0.075597x− 0.212836x2 + 0.17363x3 − 0.06254x4,

for x ∈ [0, 1]. Use a preprocessor, e.g. Geompack [77] or Triangle [127], to
generate a suitable mesh around the complete airfoil.

Extend a typical linear stationary solver, like Poisson1 or Poisson2, to this
problem, by stripping unnecessary parts of the code, introducing three fields
psi0, psi1, and psi instead of u, and adding a flag in the class that indicates
whether we are solving the problem for ψ0 or ψ1. Test on this flag inside

406 3. Programming of Finite Element Solvers

relevant routines (fillEssBC, integrands). The solveProblem must call up two
assembly and solve processes, one for psi0 and one for psi1. Implement the
formula for c with a finite δ (one can use the valuePt function in the FieldFE

class to evaluate ψ0(E + δn) = ψ0(1, δ) etc.). Visualize the final ψ function,
the magnitude of the velocity field ||∇ψ|| and the pressure − 1

2%||∇ψ||2, where
% is the constant density of air. (Find a smooth ∇ψ from makeFlux and use
the FieldsFE::magnitude to compute ||∇ψ||, then take a copy of this field
and apply the FieldFE functions apply(sqr) and thereafter mult(-0.5*rho)

to calculate − 1
2%||∇ψ||2). The streamlines are trivially visualized by plotting

the isolines of ψ.
The total lift on the airfoil is obtained by integrating the pressure around

the airfoil. Perform this integration numerically. (Hint: Use information from
Appendix B.6.1 and construct a loop over all elements, check if current ele-
ment contains the airfoil boundary, and if so, invoke a loop over the integra-
tion point on the sides, interpolate the pressure, and add the contribution to
the lift.)

3.9 A Convection-Diffusion Solver

The Poisson equation solvers in Chapters 3.1 and 3.2 can almost trivially be
extended to convection diffusion problems, involving equations like

v · ∇u = ∇ · (λ∇u), (3.36)

with appropriate boundary conditions. We shall in this section outline a solver
for a 2D version of (3.36), with λ constant and v = (v cos θ, v sin θ)T , being
also constant, and θ ∈ [0, π/2). The boundary conditions are depicted in
Figure 3.30. When v → ∞ we get u = 1 for y > x tan θ + 1/4 and u = 0
for y < x tan θ + 1/4. There will hence be a steep front aligned with y =
x tan θ + 1/4 for large velocities. If u = 0 at y = 1 there will be also a thin
boundary layer close to y = 1. These rapid changes in umake strong demands
on the discretization methods.

We employ the standard weighted residual method, with û =
∑

j ujNj

and weighting functionsWi. The weighted residual statement for this problem
takes the form

n∑

j=1

∫

Ω

[
Wiv cos θ

∂Nj

∂x
+Wiv sin θ

∂Nj

∂y
+

λ
∂Wi

∂x

∂Nj

∂x
+ λ

∂Wi

∂y

∂Nj

∂y

]
dxdy uj = 0, (3.37)

with the constraint that some ui are required to fulfill the Dirichlet conditions.
As explained in Chapter 2.9, Galerkin methods (Wi = Ni) for equations

like (3.36) may lead to nonphysical oscillations if the convective term is much
larger than the diffusion term. The local mesh Peclet number, here Pe∆ =

3.9. A Convection-Diffusion Solver 407

u=0

u=0du/dn=0 or
1

1

y

x

u=1
θ

v

y = x tan θ + 0.25

0.25

u=0

du/dn=0

Fig. 3.30. Two-dimensional domain with boundary conditions for the
convection-diffusion equation v · ∇u = ∇2u.

vh/λ, h being the characteristic element length, indicates whether a Galerkin
approach is appropriate or not; a value of 2 is the critical size for a stable
Galerkin solution. For large velocities v relative to λ and coarse grids one
must in general apply Petrov-Galerkin methods where Wi 6= Ni to stabilize
the spatial discretization. Diffpack offers some common choices of weighting
functions in class UpwindFE. To incorporate this tool in a solver, include the
UpwindFE.h header file, declare an object UpwindFE PG as class member, put
PG on the menu: UpwindFE::defineStatic or PG.define, initialize PG from the
menu: PG.scan, and use PG as follows in the integrands routine:

void ConvDiff1::integrands (ElmMatVec& elmat,const FiniteElement& fe)

{

const int nbf = fe.getNoBasisFunc(); // no of nodes in this element

const real detJxW = fe.detJxW(); // Jacobian * integr. weight

// compute Petrov-Galerkin weighting functions:

PG.calcWeightingFunction (fe, velocity, diffusion, 0.0, true);

// (velocity and diffusion are Ptv(real) class members)

int i,j;

for (i = 1; i <= nbf; i++) {

for (j = 1; j <= nbf; j++)

elmat.A(i,j) +=

(PG.W(i)*(velocity(1)*fe.dN(j,1) + velocity(2)*fe.dN(j,2)) +

lambda*(PG.dW(i,1)*fe.dN(j,1) + PG.dW(i,2)*fe.dN(j,2)))*detJxW;

// not necessary: elmat.b(i) += 0;

}

}

408 3. Programming of Finite Element Solvers

The parameters to the UpwindFE::calcWeightingFunction are the finite ele-
ment information fe, the velocity vector at the current integration point,
the diagonal of the diffusion tensor at the current integration point (rep-
resented as a Ptv vector, where each entry equals λ in the present prob-
lem), the time step length (0 in a time-independent problem) and a boolean
parameter that is true if the problem is time independent. Some of the
methods in class UpwindFE require additional information to be passed to
calcWeightingFunction. We refer to the man page for further details.

A complete solver for our particular problem is found in the directory
src/fem/ConvDiff1. This solver is tailored to the geometry and the bound-
ary indicators in our problem, using tools like GridFE::redefineBoInds and
GridFE::addBoIndNodes, which are described in Chapters 3.5.1 and 3.5.1.

Using a multiple loop, we can investigate how nonphysical oscillations are
suppressed by “upwind finite elements”. Let us compare the Galerkin method
with the classical weighting functions from Brooks and Hughes [16], denoted
as methods 0 and 1, respectively, in class UpwindFE. The experiments could
be performed for some values of v and θ and test the effect of u = 0 versus
∂u/∂n = 0 as “outflow” boundary condition on y = 1. To see the various
menu items offered by the ConvDiff1 solver, we can either read the define and
scan functions in the ConvDiff1.cpp file, or we can compile the application,
run the program once (just type ./app and then ok) and generate a manual
for the menu system by DpMenu --HTML followed by loading the manual file
tmp.manual.html into a Web browser. Here is a relevant set of commands for
performing the experiment and some associated visualization:

./app --batch --nel_x 18 --upwind ’{0 & 1}’ --u0y1 ’{ true & false }’

--velocity ’{10 & 1000 & 1000000}’ --theta ’{0.1 & 0.7}’

plotmtv -nodate -colorps SIMULATION_m*.mtv &

We emphasize that the solver dumps the u field directly in Plotmtv format;
that is, the more general SaveSimRes utility is not utilized. You will see that
the solver adds a comment about v, θ, the number of nodes, and the upwind
method, in the upper right corner of the plot. This makes it easy to identify a
plot. More flexible visualization is of course enabled by adding a SaveSimRes

object in the solver class.
From these experiments, one can easily see the improvements of the

Petrov-Galerkin formulation when the velocity vector is large and skew to
the grid. Especially when we force u = 0 at the outflow boundary y = 1 (the
--u0y1 true option), the Galerkin method performs poorly. Method 1 in class
Upwind is successful at stabilizing the results for θ not too small. Figure 3.31
demonstrates the improvement of the Petrov-Galerkin formulation over the
traditional Galerkin method37.

37 The wireframe plot corresponds to setting contstyle=3 in the
Plotmtv file, e.g., by a Perl substitution command perl -pi.old -e

s’/contstyle=2/contstyle=3/’.

3.9. A Convection-Diffusion Solver 409

The current educational and quite primitive convection-diffusion equation
solver is in Chapter 6.1 combined with the more sophisticated elements of the
Poisson2 code. We recommend the result of this combination, class CdBase in
Chapter 6.1, rather than the ConvDiff1 class as a starting point for developing
convection-diffusion codes.

410 3. Programming of Finite Element Solvers

X

Y

Z

−0.65

0

1

2

0

1
0

1

(a)

X

Y

Z

−0.65

0

1

2

0

1
0

1

(b)

X

Y

Z

−0.65

0

1

2

0

1
0

1

(c)

X

Y

Z

−0.65

0

1

2

0

1
0

1

(d)

Fig. 3.31. Plot of u(x, y), computed by the ConvDiff1 solver, with v = 1000,
θ = 0.7, and 20 × 20 bilinear elements. (a) Pure Galerkin formulation and
u = 0 at y = 1; (b) Petrov-Galerkin formulation, corresponding to upwind
method 1 [16] in class UpwindFE, and u = 0 at y = 1; (c) as (a), but ∂u/∂n = 0
at y = 1; (d) as (b), but ∂u/∂n = 0 at y = 1.

3.10. A Heat Equation Solver 411

3.10 A Heat Equation Solver

Chapters 3.1–3.8 deal with stationary PDE solvers. In the rest of Chapter 3
we shall address transient PDEs. Our first task in this respect is to make a
Diffpack program that solves the standard time-dependent heat (or diffusion)
equation. The introductory initial-boundary value problem reads

∂u

∂t
= ∇ · (k∇u) + f, x ∈ Ω ⊂ IRd, t > 0, (3.38)

u(x, t) = g(x, t), x ∈ ∂ΩE , t > 0, (3.39)

u(x, 0) = I(x), x ∈ Ω, t = 0. (3.40)

Here u(x, t) is the unknown temperature, I(x) is a given initial temperature
distribution, k(x) is a coefficient related the conductive properties of the
medium38, f(x) represents a heat source, g(x) is the Dirichlet-type boundary
values for u, and ∂ΩE is the whole boundary of Ω. As usual, the subscript
E indicates that ∂ΩE has essential boundary conditions.

Application of finite elements to time-dependent problems is frequently
accomplished by first discretizing in time by finite differences and then solving
the resulting recursive spatial problems using the finite element method. This
strategy was explained in Chapter 2.2 and is frequently used throughout the
book. It will become evident that a time-dependent finite element solver in
Diffpack consists mainly of the objects and corresponding code we had in
stationary problems, with only some small software extensions.

To verify the implementation, it is convenient to compare the numerical
solution with an analytical solution. Let

u(x1, . . . , xd, t) = e−dπ2kt
d∏

j=1

sin(πxj)

and Ω = (0, 1)d. When f = 0, g = u, I = u(x, 0), and k is constant, this
specific u fulfills the initial-boundary value problem.

3.10.1 Discretization

Let∆t be the time step length, and let u`(x), ` ∈ IN, denote an approximation
to u(x, `∆t). Application of a backward finite difference approximation to
the time derivative in (3.38) transforms the heat equation into a sequence of
spatial problems,

u` −∆t∇ · (k∇u`) = ∆tf + u`−1 . (3.41)

38 More precisely, k is the heat conduction coefficient (in Fourier’s law) divided by
%C (density times the heat capacity) and f is the heat source divided by %C.

412 3. Programming of Finite Element Solvers

A standard Galerkin finite element method can be used to convert (3.41) to
a sequence of linear systems,

Au` = b(u`−1), (3.42)

where u` is the vector of nodal values of u`(x). The contribution to the
element matrix and vector from a numerical integration point ξ` becomes

[(NiNj + k∆t∇Ni · ∇Nj) det J]ξ=ξ
`

w` (3.43)

for the matrix and

[
Ni(f∆t+ u`−1) det J

]
ξ=ξ

`

w` (3.44)

for the vector. The notation was explained in Chapter 3.1.

Remarks. We can alternatively write the discrete equations in matrix form
as

(M +∆tK)u` = ∆tfT (t)c + Mu`−1,

assuming that the time dependence in f is separable, that is, f(x, t) =
fT (t)f̃(x), and c is a vector arising from integrating the term f̃(x)Ni. The
coefficient matrix in the linear system is A = M + ∆tK. In this case, the
most efficient method for solving the problem is to compute M , K, and c

initially and avoid the complete computation and assembly of these matri-
ces at each time level. Moreover, if Gaussian elimination is used to solve the
linear system, the decomposition of A should only be performed initially.
The implementation of this procedure is given in Appendix B.7.2, and the
associated efficiency increase can be substantial. However, in this introduc-
tory example on solving time-dependent PDEs in Diffpack, we will first use
the general class FEM functionality and recompute the linear system at every
time level. This approach is simple and completely general and is therefore
the preferred method for rapid prototyping of a solver. We also know that in
nonlinear problems the linear systems must be recomputed for each nonlinear
iteration at each time step.

3.10.2 Implementation

Let Heat1 be the name of the solver. Class Heat1 must be derived from FEM,
just as in the stationary case. Because time-dependent finite element problems
are solved as a sequence of spatial problems, the reader should expect that a
time-dependent finite element solver in Diffpack can reuse much of the code
from the stationary solvers in Chapter 3. This is indeed the case. Our first
time-dependent solver can be viewed as an extension of class Poisson1, and
the reader should be familiar with that code and the material in Chapters 3.1
and 3.2 before proceeding with the present section.

3.10. A Heat Equation Solver 413

In addition to the steps in the stationary solvers, a time-dependent solver
needs to set the initial conditions for u in a function setIC and it needs to
run a time loop in a function timeLoop. The extra data needed in a time-
dependent solver is of course u at the previous time step (u`−1), as well as
information about ∆t and the time interval in which our initial-boundary
value problem is to be solved. These latter parameters, which are needed
in all time-dependent problems, are collected in a class TimePrm in Diffpack,
explained in Chapter 1.7.4 (see page 121).

Before discussing the contents of the various new functions in class Heat1,
we present the class definition.

class Heat1 : public FEM

{

public:

Handle(GridFE) grid;

Handle(DegFreeFE) dof;

Handle(FieldFE) u; // solution

Handle(FieldFE) u_prev; // u at previous time level

FieldSummary u_summary; // time history of extremes of u

Vec(real) linsol; // solution of linear system

Handle(LinEqAdmFE) lineq; // linear system and solvers

Handle(TimePrm) tip; // time discretization parameters

Handle(FieldsFE) flux; // flux = smooth -k*grad(u)

real diffusion_coeff; // constant k in PDE

Handle(SaveSimRes) database;

Handle(FieldFunc) uanal; // functor for analytical solution

Handle(FieldFE) error;

NumItgPoints error_itg_pt_tp;

real L1_error, L2_error, Linf_error;

// in case of surface integrals or debugging:

virtual void calcElmMatVec

(int e, ElmMatVec& elmat, FiniteElement& fe);

virtual void integrands (ElmMatVec& elmat, const FiniteElement& fe);

virtual void timeLoop();

virtual void solveAtThisTimeStep();

virtual void fillEssBC (); // set boundary conditions

virtual void setIC(); // set u_prev equal to u(x,0)

virtual void define (MenuSystem & menu,int level=MAIN);

virtual void scan ();

Heat1 ();

~Heat1 ();

414 3. Programming of Finite Element Solvers

virtual void adm (MenuSystem & menu);

virtual void solveProblem();

virtual void resultReport();

// f = source, k = diffusion, I = initial cond., g = Dirichlet cond.

virtual real f(const FiniteElement& fe, real t = DUMMY);

virtual real k(const FiniteElement& fe, real t = DUMMY);

virtual real I(const Ptv(real)& p);

virtual real g(const Ptv(real)& p, real t=DUMMY);

};

We have let all members of the class be public, just for convenient future ac-
cess to various data from functors or other classes. The danger of accidentally
manipulating internal data in class Heat1 is considered to be small.

Because most of the Heat1 class is similar to class Poisson139, we discuss
only the new functions in the time-dependent case in the following. Assign-
ment of initial conditions is performed in the setIC function:

void Heat1:: setIC ()

{

u_prev->fill (*uanal, 0.0); // call uanal for t=0 at all nodes

*u = *u_prev; // make u ready for dump also at t=0

}

We use a functor uanal in class Heat1 to hold the analytical solution of the
problem. The field handle u prev, representing u`−1(x) in our formulas, is
filled with values from the analytical solution, evaluated at time zero, using

FieldFE::fill (FieldFunc& functor, real t)

The fill function calls the functor’s valuePt(x,t) function at all grid points
and sets the nodal values accordingly. As an alternative to FieldFE::fill, we
could have coded a standard loop over the nodal points in setIC:

/* alternative syntax in setIC: user loop, node by node:

const int nno = grid->getNoNodes();

Ptv(real) x; // spatial point

for (int i = 1; i <= nno; i++) {

x = grid->getCoor(i); // get the coord. x of node i

u_prev->values()(i) = I(x); // assign value to node i

}

*/

The time loop is coded in a function timeLoop, which typically takes the form

39 This observation points in the direction of letting Heat1 be a subclass of
Poisson1. Exercise 3.12 explores the idea.

3.10. A Heat Equation Solver 415

void Heat1:: timeLoop()

{

tip->initTimeLoop();

setIC();

database->dump (*u, tip.getPtr(), "initial condition");

while(!tip->finished())

{

tip->increaseTime();

solveAtThisTimeStep();

*u_prev = *u;

}

}

Notice that the call to the dump function takes two optional arguments in
time-dependent problems. The second argument is a pointer to a TimePrm

object and the third one is a string containing an optional comment. This
extra information is stored along with u in the simres database.

The spatial problem to be solved at the current time level is coded in
solveAtThisTimeStep. The reader should compare the contents of this function
with a typical solveProblem function in a stationary solver.

void Heat1:: solveAtThisTimeStep ()

{

fillEssBC (); // incorporate time-dep. ess. b.c.

makeSystem (*dof,*lineq); // FEM’s assembly algorithm

dof->field2vec (*u, linsol); // use most recent u as start vector

lineq->solve (); // solve linear system

s_o << "t=" << tip->time();

int niterations; bool c; // for iterative solver statistics

if (lineq->getStatistics(niterations,c)) // iterative solver?

s_o << oform(" solver%sconverged in %3d iterations\n",

c ? " " : " not ",niterations);

s_o << ’\n’; s_o.flush(); // flush() forces output _now_

dof->vec2field (linsol, *u); // load linsol into the field u

database->dump (*u, tip.getPtr(), "some comment if desired...");

u_summary.update (tip->time()); // keep track of max/min u etc

// compute smooth flux -k*grad(u);

FEM::makeFlux (*flux, *u);

database->dump(*flux, tip.getPtr(), "smooth flux -k*grad(u)");

}

416 3. Programming of Finite Element Solvers

Iterative solution methods for linear systems require a start vector for the
iteration, and the default choice in Diffpack is to use the current value of
the vector that is attached as solution vector in the LinEqAdmFE object. This
means that linsol is used as start vector. For direct methods, like Gaussian
elimination, the start vector has no meaning, but for iterative methods it
is important to use as good start vector as possible. The situation is quite
fortunate in linear time-dependent problems, since the solution at the pre-
vious time level provides a good guess for the solution at the current time
level. We therefore copy the u field (or u prev – they are equal after the up-
date *u prev=*u at the previous pass in the time loop) into linsol prior40

to calling lineq->solve. When the solution is computed, the linsol vector
must be copied into the FieldFE object representation of u. Copying between
field representations and vector representations is provided by the DegFreeFE

object.
The data item u summary is of type FieldSummary and keeps track of the

extreme values of u and where/when they occur. Such information can be
convenient to get a quick summary of the properties of u in a simulation. We
refer to the man page for class FieldSummary for information on the usage
of the class. The computation of the flux −k∇u, represented in terms of a
FieldsFE handle flux, is computed using the function makeFlux in class FEM.

The solveProblem function is only a call to timeLoop. Computations of er-
rors can be performed at each time step, but to avoid the associated overhead,
we do this only at the end of the simulation, in the function resultReport.
An appropriate call reads

ErrorNorms::Lnorm (*uanal, *u, tip->time(),

L1_error, L2_error, Linf_error, error_itg_pt_tp);

The third argument, which was DUMMY when explaining the Lnorm function in
Chapter 3.4.3, equals now the point of time for evaluating the uanal functor.
When the time argument is DUMMY, it means that the simulation is stationary
and the time parameter is to be ignored.

Finally, we show how the PDE itself enters the Heat1 simulator.

void Heat1:: integrands (ElmMatVec& elmat, const FiniteElement& fe)

{

const real detJxW = fe.detJxW();

const int nsd = fe.getNoSpaceDim();

const int nbf = fe.getNoBasisFunc();

const real dt = tip->Delta();

const real t = tip->time();

real gradNi_gradNj;

40 This is not strictly required – linsol contains the solution from the last call to
lineq->solve and therefore has the right contents. However, the explicit copy
performed in terms of the field2vec call is a safe habit.

3.10. A Heat Equation Solver 417

// u at the previous time level at the current integration point:

real up_pt = u_prev->valueFEM(fe);

const real k_value = k (fe, t);

const real f_value = f (fe, t);

int i,j,s;

for(i = 1; i <= nbf; i++) {

for(j = 1; j <= nbf; j++) {

gradNi_gradNj =0;

for(s = 1; s <= nsd; s++)

gradNi_gradNj += fe.dN(i,s)*fe.dN(j,s);

elmat.A(i,j) +=(fe.N(i)*fe.N(j) +

dt*k_value*gradNi_gradNj)*detJxW;

}

elmat.b(i)+= fe.N(i)*(f_value*dt + up_pt)*detJxW;

}

}

The other functions, like fillEssBC, define, scan, adm, f, g, and k are similar
to those in the stationary solvers and should need no specific explanation.
The reader should print out and study the complete source code of class
Heat1. The code is found in the directory src/fem/Heat1.

Exercise 3.11. .
Run the Heat1 application with the Verify/test1.i input file. To be con-

fident that the code is correct, we need to apply finer grids and observe that
the error goes to zero. Using bilinear (or linear) finite elements in combina-
tion with the backward Euler scheme is expected to lead to errors in u` of
order ∆t and h2, where h is a typical element length. Therefore, if we reduce
the time step by a factor of four and the element length by a factor of two,
the error should be reduced by a factor of four. We encourage the reader to
make an input file with this finer grid in space and time and confirm that
the errors are reduced by a factor of four. We can then expect that the error
goes to zero as fast as the theory predicts and that our simulator imple-
ments the numerical method correctly. Such convergence tests should always
be performed as partial verification of a simulation code. �

Most of the functionality explained for the stationary solvers is also avail-
able for the present heat equation simulator. The reader is encouraged to play
around with the menu system, multiple loops, etc. Better design of the Heat1

solver, by e.g. extracting the code specific to the current test problem in a
subclass, follows the same lines as we explained for the Poisson1 and Poisson2

solvers and is realized in Chapter 3.11. One can of course also create a time-
dependent heat equation solver as a subclass of a stationary solver. This is the
subject of an exercise below. Visualization of time-dependent data, including
making animations, is described in the next section.

418 3. Programming of Finite Element Solvers

Exercise 3.12. .
Because a time-dependent solver for the heat equation is nothing but a

stationary solver with some additional data and functions, it could be con-
venient to implement time-dependent solvers as subclass extensions to sta-
tionary simulators41. Explore this idea by starting with class Poisson2, or
ReportPoisson2, and making a subclass Heat1b in a separate directory (use
AddMakeSrc to indicate that Heat1b files are to be compiled and linked with
the Poisson2 files). �

A Comment on Termination Criteria for Linear Solvers. Finite element so-
lution of PDE problems normally requires iterative solution of linear systems,
such as (3.42), which we here write in general as Ax = b. All iterative solvers
start with some guess x0 of the solution vector x and generate hopefully im-
proved approximations x1,x2, . . . The iterations are stopped when a certain
termination criterion is reached, for example

||rk|| ≤ εr||r0||, rj = b−Axj , (3.45)

or
||rk|| ≤ εr . (3.46)

A good start vector x0 can speed up the iterative process significantly. In
linear time-dependent problems, the solution at the previous time step usually
provides a very good start vector. Using the default criterion (3.45), which
requires reduction of the relative residual, can be too restrictive if the start
vector is close to the exact solution, because then the initial norm of the
residual is small. As a consequence, (3.46) is often preferred in transient
problems.

The convergence criterion (3.45) is represented by the name CMRelResidual,
whereas (3.46) is called CMAbsResidual. A typical set of menu commands ad-
justing these and the convergence tolerance εr read

sub ConvMonitorList_prm

sub Define ConvMonitor #1

! test both relative and absolute residual:

set #1: convergence monitor name = { CMAbsResidual & CMRelResidual }

set #1: residual type = ORIGINAL_RES

set #1: convergence tolerance = 1.0e-6

This submenu is invoked from the LinEqAdmFE submenu. More information on
termination criteria for linear solvers is provided in Appendix D.6.

41 In Chapter 3.11.3 we explain how a time-dependent solver can be applied to a
stationary problem. The present exercise demonstrates the opposite possibility,
i.e., how a stationary solver can be reused in a transient problem.

3.11. A More Flexible Heat Equation Solver 419

Exercise 3.13. .
The purpose of this exercise is to determine the relative efficiency of the

two convergence criteria (3.45) and (3.46) in the test problem solved by class
Heat1, keeping εr fixed. First, run the Heat1 simulator with the Verify/test1.i
file as input. You can now run the DpMenu --HTML command to produce a
description of all menu items. Based on this information, set up an appro-
priate input file where the matrix storage format is MatSparse (a general
sparse matrix), the solver is ConjGrad (the Conjugate Gradient method), and
the preconditioner is PrecRILU with relaxation parameter 1.0 (correspond-
ing to MILU preconditioning). Finally, specify a multiple answer, containing
CMAbsResidual and CMRelResidual, to the convergence monitor items shown
previously. Run the experiment with a 100× 100 grid consisting of bilinear
elements on the unit square, and let the time step be 0.02 for t ∈ [0, 0.4].
You will see that the CMAbsResidual criterion roughly halves the efficiency of
the solver compared with CMRelResidual, while the final errors in u are of
approximately the same size. (Of course, the efficiency of CMRelResidual can
be improved by increasing εr when using that criterion.) �

3.11 A More Flexible Heat Equation Solver

Class Heat1 offers the same degree of flexibility as class Poisson1. In Chap-
ter 3.5 we motivated for more flexibility and presented the Poisson2 solver,
which had a design and employed tools that encourage extensive reuse of the
solver for other stationary scalar PDEs. The design and tools can almost triv-
ially be transferred to a time-dependent problem, resulting in the simulator
Heat2. This is hence the source code we recommend to be used as a template
when developing time-dependent Diffpack simulators for scalar PDEs.

3.11.1 About the Model Problem and the Simulator

The Model Problem. The Heat2 simulator solves

β
∂u

∂t
= ∇ · [k∇u] + f, x ∈ Ω, t > 0, (3.47)

u(x, 0) = I(x), x ∈ Ω, (3.48)

u = D1, x ∈ ∂ΩE1 , t > 0, (3.49)

u = D2, x ∈ ∂ΩE2 , t > 0, (3.50)

u = g(x, t), x ∈ ∂ΩE3 , t > 0, (3.51)

−k ∂u
∂n

= 0, x ∈ ∂ΩN , t > 0, (3.52)

−k ∂u
∂n

= αu− U0, x ∈ ∂ΩR . (3.53)

The parameter β is a prescribed coefficient, and the other symbols are as
explained in Chapter 3.5. The problem (3.47)–(3.53) can model many physical

420 3. Programming of Finite Element Solvers

problems, including heat transfer, diffusion, and fluid flow (in a straight pipe).
In a heat transfer interpretation, β(x) = %(x)C(x), where %(x) is the density
of the material and C(x) is the heat capacity; k(x) is the heat conduction
coefficient; and f(x) represents heat sources. The condition (3.53) reflects a
cooling law of the form −k∂u/∂n = hT (u−US), where hT is a heat transfer
coefficient and US is the temperature in the surrounding medium. To assign
proper values to α and U0 in (3.53) in a cooling law context, α = hT and
U0 = hTUS . The particular form (3.53) is not written directly as a cooling
law to make it easier to use (3.53) for non-homogeneous Neumann conditions
(just set α = 0 and then we have −k∂u/∂n = U0).

Solution Method and Implementation. We shall apply the θ-rule in time,
combined with a Galerkin finite element method in space, see Chapter 2.2.2.
The discrete initial-boundary value problem is implemented in the files in
src/fem/Heat2, using the same conventions for the boundary indicators as in
class Poisson2. Most of the menu items and usage of the simulator correspond
directly to the Poisson2 solver. The functions β, k, f , I , and g in (3.47)–
(3.51) are implemented as virtual functions beta, k, f, I, and g, which can be
redefined in subclasses.

Exercise 3.14. .
Derive the mathematical expressions to be coded in the functions integrands

and integrands4side when (3.47)–(3.53) is discretized by a θ-rule in time and
a Galerkin finite element method in space. �

Automatic Report Generation. Automatic report generation in the simulator
is a valuable tool when performing series of numerical experiments, as we
explained in Chapter 3.5.6 for the Poisson2 solver. Report generation func-
tions can be generated by the MkReport script also for the Heat2 solver. Now
we type MkReport -t Heat2, where the -t option indicates that Heat2 solves
a time-dependent problem. Two new files are made by the MkReport script:
ReportHeat2.h and ReportHeat2.cpp. These are slightly different from the files
generated in the stationary case, simply due to the presence of additional in-
formation to be reported in a transient problem.

The file testplot2D.i in Heat2’s Verify directory represents a suitable
test problem for the report generation facility. Run the case and invoke the
summary report in HTML format using your favorite browser (see page 334
for more information).

Overview of the Simulator Classes. The special test case used in the Heat1

solver is located in the subclass Heat2analsol of ReportHeat2. Other sub-
classes, representing other test problems, can be added as explained for the
Poisson2 application. The reader is recommended to print out the source code
of the files that make up the Heat2 solver and compare these with class Heat1

and the Poisson2 solver.

3.11. A More Flexible Heat Equation Solver 421

3.11.2 Variable Time Step Size

The input string "dt=0.1 t in [0,1]" for the time integration parameters
indicates a constant time step 0.1 throughout the time interval [0,1]. A slightly
more complicated input string allows the time step to vary, for example,

dt=[0.025 0.05 0.1] t in [0 0.2 0.5 1]

indicates that in the interval [0,0.2] the time step size is 0.025, in [0.2,0.5] it
is 0.05, while in [0.5,1] it is 0.1. Try this input string in the menu input file
or on the command line.

It is also worth mentioning that one can easily alter the time step size
inside the code, using the statement tip->setTimeStep(r), where r is a real

containing the new time step value.
A plot of the evolution of the time step size can be generated after the

time loop is finished using the tip->plotTimeSteps function which takes a
CurvePlotFile object as argument and generates a curve plot in Diffpack
format. We can typically write

tip->plotTimeSteps(database->cplotfile);

at the end of the timeLoop function. The plot is recognized in the database
by its title Time step evolution, its curve name dt, and its comment tracked

time steps. To see the resulting curve, you can use curve plotting tools
(curveplotgui or curveplot), as described in Chapter 1.4.4 and Appendix B.5.1,
or you can include the plot in an automatically generated report. The script
Verify/test2.sh exemplifies all the mentioned steps in a simulation with vari-
able ∆t.

3.11.3 Applying a Transient Solver to a Stationary PDE

Stationary solvers can be viewed as special cases of time-dependent solvers,
where the time derivative term is set to zero and where the initial condition
has no meaning. Mathematically, the stationary problem corresponds to the
limit t→∞ in the time-dependent problem. We can easily modify class Heat1
or Heat2 such that the Poisson equation problem from Chapter 3.5 can be
solved. The key to the easy implementation is that class TimePrm has a sta-
tionary mode, enabled by setting the time step to zero. This can for instance
be done by giving the answer dt=0 to the menu item time parameters. The
function bool TimePrm::stationary() can then be tested in the integrands

function for a true value, which implies that we should simply omit the time
derivative term, i.e. set β = 0, θ = 1, and enforce ∆t = 1. Before the i,j-loop
in integrands we insert the code

// enable a stationary problem as a special case:

if (tip->stationary())

422 3. Programming of Finite Element Solvers

{ dt = 1.0; t = DUMMY; theta = 1; beta_value = 0.0; }

else

{ dt = tip->Delta(); t = tip->time(); beta_value = beta (fe); }

The integrands4side must be edited accordingly; there we only need to adjust
dt and theta. The Heat2 solver is then capable of solving the same basic
boundary-value problems as class Poisson2.

3.11.4 Thermal Conditions During Welding

To link (3.47)–(3.53) to a physical application, we consider welding, which
is a widespread technique in industrial manufacturing of metal products.
The thermal conditions associated with welding are important, because they
influence the stress and deformation state of the material. To compute the
temperature measure u(x, t), we solve (3.47), recalling that β = %C in a
heat transfer problem. The production of heat from the welding equipment
is modeled through the heat source term f . A conventional welding source is

f(x1, . . . , xd, t) = QI exp

(
−

d∑

i=1

(xi − vit− yi)
2/(2E2

i)

)
.

The intensity QI of the source depends, among other things, on the electric
voltage and the current from the heat source. The position of the source is
(x1, . . . , xd), whereas (y1, . . . , yd) is its position at t = 0, and the velocity of
the heat source in the xi direction is vi. The quantity Ei reflects the extent
of the source in the xi direction. Phase changes should also be included in
the model, but this topic is omitted here for simplicity (see Chapter 6.1 for
how to include phase changes).

The initial condition in the welding problem can be set as u(x, 0) = 0,
assuming that u = T−T0, where T is the real (physical) temperature and T0 is
the uniform initial value of T . At the boundaries we apply Newton’s cooling
law, which can be expressed in terms of (3.53) as mentioned on page 420.
The welding case described here is implemented in class Heat2weld, which is
a subclass of ReportHeat2. We add the problem dependent parameters QI , vi,
yi, and Ei as data members in class Heat2weld and read their values from the
menu. Moreover, the heat source f is realized as a redefined virtual function
f.

We shall use the Heat2weld solver actively in the demonstration of various
visualization tools in the following section. For this purpose, it is not necessary
to understand the source code; one only needs to run the application with
ready-made input files.

3.12 Visualization of Time-Dependent Fields

Our heat equation simulator applies the SaveSimRes tool for storing the com-
puted fields on file. Filtering the resulting simres file format to a format

3.12. Visualization of Time-Dependent Fields 423

required by a special plotting program is explained in Chapter 3.3. In time-
dependent problems, some of the SaveSimRes and filter tools have additional
features that are outlined in this section.

Generating Data for Animation. The usage of animation tools is best illus-
trated by working with a specific data set. The following command generates
some simulation results, based on the welding example from Chapter 3.11.4:

./app --class Heat2weld --batch --Default Verify/weld1.i

--casename weld1 --source_center ’0.2 0.3’

--source_velocity ’1 0.8’ --source_intensity 4.0

--plot_times ALL

To run the command, you need to be in the Heat2 directory. The --source*

options override default answers or commands in weld1.i. The --plot times

ALL option is the counterpart to the set time points for plot command on
the SaveSimRes submenu and ensures that all the computed fields are stored
in the simres database. This is important for making a smooth movie. Al-
ternatively, the command-line options to app can be added to weld1.i (you
are encouraged to do this as an exercise to help you gain experience with the
menu system).

3.12.1 Filtering Time-Dependent Simres Data

Assume that you want to plot a field with name u at the time points 1.4,
2.6, and 3.9. The simres2xxx command must then be equipped with the -t

option for picking out the fields at the desired time points:

simres2xxx -f SIMULATION -n u -t ’1.4 2.6 3.9;’ -a

This results in three files, one for each time point. The time value is a part of
the filename. As mentioned on page 281, the characters xxx just reflect that
the command is the same for the whole family of simres filters; one can replace
simres2xxx by simres2mtv, simres2matlab, simres2vtk, simres2ucd, and so on.

To plot all the u fields in the simres database, use the -A option instead
of -t,

simres2xxx -f SIMULATION -n u -A -a

There is also an -E option that extracts every field in the simres database,
e.g.,

simres2xxx -f SIMULATION -n u -E -a

With the -A or -E options, the names of the generated plot files reflect field
numbers and not time values. The simres filters write these names to the
screen so it is easy to identify the files to be loaded into a visualization
program. You are encouraged to try out the commands above in the weld1

simulation case (just replace SIMULATION by weld1).

424 3. Programming of Finite Element Solvers

3.12.2 Storing Fields at Selected Time Points

By default, all fields that are subject to a database->dump call will be stored in
the simres database. In time-dependent problems this may lead to very large
storage demands. Writing fields to file is also a very time-consuming process.
To speed up the simulator (often significantly) and to save disk space, you are
encouraged to make frequent use of a feature of class SaveSimRes that enables
storage of fields only at a few selected time points. The feature is accessed
through the menu item time points for plot on the SaveSimRes submenu,
e.g.,

set time points for plot = [0:10,2]

This particular command ensures that database->dump will only have effect
when the time t approximates an entry in the set (0, 2, 4, 6, 8, 10). The syntax
[0:10,2] is a short form for a loop ([start:stop,increment]), generating in
this case the sequence 0, 2, 4, . . . , 10. The answer to this menu item can be
any string compatible with Diffpack’s SetOfNo::scan syntax (see page 91).
Non-uniformly spaced time points may be specified by just listing the time
values, e.g.,

set time points for plot = 0 1 2 5 100 500 1000 5000 10000

The command

set time points for plot = ALL

makes all calls to database->dump active, while

set time points for plot = NONE

avoids dumping fields to the simres database. The effect of the latter menu
answer is also obtained by the --nodump command-line option to app (cf. Ap-
pendix B.4.2). The command-line option corresponding to set time points

for plot is --plot times. For example, --plot times NONE turns off dumping
of fields.

3.12.3 Time Series at Selected Spatial Points

It can be of interest to plot the development of a field in time at fixed spatial
points. Class SaveSimRes supports such curves, much in the same way as it
supports plotting of fields along lines through the domain (see page 292).
To enable time series curves u(xp, t) at a number of specified points xp, we
simply invoke the SaveSimRes submenu and write

set time series points = d=2 n=2 (0.5,0.5) (0.9,0.9)

3.12. Visualization of Time-Dependent Fields 425

This command specifies time series at two (n=2) spatial points in 2D (d=2):
(0.5, 0.5) and (0.9, 0.9). To see the effect of this menu item, run the Heat2

solver with Verify/testplot2D.i as input. The time series of u at the specified
spatial points can be plotted by (i) the graphical curveplotgui tool, (ii) by
the script curveplot (see Chapter 1.4.4 and Appendix B.5.1), or on Windows
platforms (iii) by the curve plot utility in the GUI. For immediate testing we
give the appropriate options to the curveplot script:

curveplot gnuplot -f .SIMULATION.curve.map -r ’Time’ -r ’u’ -r ’.’

The code that activates plotting of time series at spatial points consists
of three calls to the SaveSimRes object database:

1. an initializing call to initTimeSeriesPlot before the time loop is invoked,

2. a call to the function add2TimeSeriesPlot at every time step (located in
Heat2::saveResults),

3. a final call to finishTimeSeriesPlot after the time loop has finished.

Calls from items 1 and 3 are normally placed in a timeLoop function, whereas
dumping of field data according to item 2 is performed together with other
dump actions. Here is an example:

void MySim:: timeLoop()

{

tip->initTimeLoop ();

database->initTimeSeriesPlot (*u); // enable time series of u

setIC ();

if (!tip->stationary())

database->dump (*u, tip.getPtr(), "initial condition");

while (!tip->finished())

{

tip->increaseTime (); // t = t + dt

solveAtThisTimeStep ();

saveResults (); // dump fields to simres database

updateDataStructures ();

}

database->finishTimeSeriesPlot ();

tip->plotTimeSteps (database->cplotfile); // graph of time step

}

void MySim:: saveResults ()

{

database->dump (*u, tip.getPtr());

...

database->add2TimeSeriesPlot (*u, *tip);

426 3. Programming of Finite Element Solvers

...

}

3.12.4 Using ImageMagick Tools

The ImageMagick utilities can manipulate and display a variety of image files.
Suppose you have produced lots of snapshot plots file001.ps, file002.ps and
so on, of a time-dependent simulation. You can use the ImageMagick utility
animate to make a movie of your PostScript frames on the screen:

animate -delay 100x2 file*.ps

The -delay option controls the speed of the animation, here we pause 100×
1/100 = 1 second between each frame and wait 2 seconds before repeating
the animation. The animate command may take some time to start. An al-
ternative program is display, which allows you to view each frame separately
(by pressing the spacebar):

display file*.ps

The animate and display programs can be used to view image files in a wide
range of formats. A collection of GIF files can be displayed just as easily, e.g.,

animate -delay 100x2 file*.gif

or

display file*.gif

We remark that wildcard specifications like file*.gif must expand to
the correct sequence of files. Thus, you need to be careful with numbers in
the filenames when you generate snapshot plots in some plotting program.
For example, file1.gif, file2.gif, and so on will be sorted as strings, mak-
ing file11.gif appear before file2.gif. If your plotting program supports
printf-like construction of strings, you can easily pad zeroes in front of in-
tegers using the format %04d (here an integer will be written in a field of
width 4 characters, padded with zeroes from the left, e.g. 0002). This results
in filenames of the form file0001.gif, file0002.gif, and so on, which will
be expanded in the correct order from a wildcard specification file*.gif.

Another very useful program in the ImageMagick suite is convert, which
converts one image format to another. The syntax for converting a PostScript
file to a GIF or PNG image may read

convert -crop 0x0+20+20 ps:file0024.ps png:file0024.png

convert -crop 0x0+20+20 ps:file0024.ps gif:file0024.gif

3.12. Visualization of Time-Dependent Fields 427

These conversions also include cropping (removal of “surrounding white space”).
As usual, we refer to the man pages for convert to see what the argument to
-crop means.

The resulting images become sharper by using Ghostscript (gs) to convert
the PostScript image to, e.g., the PPM format and then using convert to make
a GIF image:

gs -q -dNOPAUSE -dBATCH -sOutputFile=tmp.ppm -sDEVICE=ppm \

-f file0024.ps

convert -crop 0x0+20+20 ppm:tmp.ppm gif:file0024.png

Making an animated GIF image from a bunch of PostScript files is easy with
convert:

convert -crop 0x0+20+20 -delay 100 -loop 1000 file*.ps movie.gif

The -loop option specifies the number of animation repetitions when the file
is displayed in a Web browser. Diffpack offers a script ps2gif for transforming
PostScript to GIF, using Ghostscript and convert in the style shown above.
Typical ps2gif commands read

ps2gif file0024.ps file0024.gif # convert one file

ps2gif file*.ps movie.gif # convert files to animated GIF

The conversion to animated GIF is useful if you want your animations
“live” on the Web. Be aware that the GIF files from large-scale animations
can be huge in size and hence lead to unacceptable download times of your
Web page. The -crop option might help reducing the image sizes, but this
may be far from sufficient. MPEG movies, on the other hand, are much
more compact. In the present example, an MPEG movie can be generated
by Diffpack’s ps2mpeg script:

ps2mpeg file*.ps

The result is an MPEG movie in the file movie.mpeg, which can be shown
using any MPEG player. Popular MPEG players that run under Unix are
mpeg play, xanim, gtv, vlc, plaympeg, and xmovie.

ImageMagick is available on many platforms, including Unix and Win-
dows, but the display utilities display and animate require an X server. There
are numerous options to animate, convert, and display. We refer to their man
pages for documentation and examples.

3.12.5 Animation Using Plotmtv

We can employ the public domain plotting program Plotmtv for producing
the frames in a movie of u. Suppose you have run the welding example as
shown on page 423, with weld1 as casename. Plotmtv files can be generated
by

428 3. Programming of Finite Element Solvers

simres2mtv -f weld1 -n u -A

One basic problem with the Plotmtv data files generated from this command
is that the color scale in one plot is set independently of the color scale in the
other plots. For an animation it is crucial to use the same color scale in all
plots. To this end, we need to prescribe the global maximum and minimum
u values, for the whole simulation, each time we generate a Plotmtv plot.
This is done through the cmin and cmax (contour min/max) directives in the
Plotmtv file. The extreme values of u are in the Heat2 solver computed by a
FieldSummary object and written in the report. Alternatively, you can always
compute the extreme values from a simres dataset using the simres2summary

filter:

simres2summary -f weld1 -s -n u -A

This filter reads all (-A) the u fields (-n u) and applies a FieldSummary object
to analyze the variations in the field. For the present simulation we find
umin = 0 and umax ≈ 0.43. A suitable simres2mtv command is then

simres2mtv -f weld1 -s -n u -A -o ’%cmin=0 cmax=0.43’ -b

All the generated .mtv files have now the same color (or contour line) scale.
Conversion to PostScript is easy with Diffpack’s mtv2ps script:

mtv2ps weld1*.mtv

The resulting PostScript files have names tmp.frame0000.ps, tmp.frame0001.ps,
tmp.frame0002.s, and so on. We can animate the sequence of files with animate,
display each frame with display, make an animated GIF image with convert

or ps2gif, or make an MPEG movie with ps2pmeg:

animate -delay 100x2 tmp.frame*.ps

display tmp.frame*.ps

convert -crop 0x0+20+20 -delay 100 -loop 1000 \

tmp.frame*.ps movie1.gif

ps2gif tmp.frame*.ps movie2.gif

ps2mpeg tmp.frame*.ps

A script simres2mpeg automates the procedure of running simres2mtv,
mtv2ps, and ps2mpeg to produce MPEG movies. The basic syntax of the
simres2mpeg script is

simres2mpeg -s "simres2mtv flags" -p "plotmtv flags"

The appropriate simres2mpeg command in the present welding example be-
comes

3.12. Visualization of Time-Dependent Fields 429

simres2mpeg -s "-f weld1 -s -n u -A -o ’%cmin=0 cmax=0.43’ -b"

-p "-scale 1.0"

The -s option contains the relevant simres2mtv commands, here reflecting
that we should extract all (-A) scalar (-s) fields with name u (-n u), in-
sert the command %cmin=0 cmax=0.43 in the Plotmtv files (-o) and storing
the numbers in binary format (-b). The next option, -p "-scale 1.0", just
transfers the string -scale 1.0 to the Plotmtv program.

If we want a 3D perspective plot instead, we could add the -3D option.
However, in this latter case we must ensure that also the scale on the z axis
is fixed throughout the simulation. That is, we must prescribe zmin and zmax

in the Plotmtv files according to the minimum and maximum u values. The
proper simres2mpeg command then becomes

simres2mpeg -s "-f weld1 -s -n u -A

-o ’%cmin=0 cmax=0.43 zmin=0 zmax=0.43’ -b"

-p "-scale 1.0 -3D"

Unfortunately, the production time of such a movie might be substantial on
small computers.

Running simres2summary and simres2mpeg is most conveniently done in a
script. The Python module dplib, which comes with Diffpack, has a func-
tion for running simres2summary and extracting the extreme function values
in Python variables for constructing the visualization commands containing
information about the extent of the color scale and the z axis. Here is a
relevant code segment:

from dplib import minmax_simres2summary

umin, umax = minmax_simres2summary(casename, "u")

cmd = """simres2mpeg -s "-f %s -n u -s """\

"""-b -A -o ’%%cmin=%g cmax=%g """\

""" zmin=%g zmax=%g’" """\

"""-p ’-scale 1.0 -3D’ """ % (casename,umin,umax,umin,umax)

os.system(cmd)

See the Heat2/Verify/embed2.py file (and Chapter 3.12.9) for a complete script
that automates movie construction.

3.12.6 Animation Using Vtk

The Vtk system and the vtkviz interface, as introduced on page 289, offer a
user-friendly way of making movies. Having data from the weld1 simulation,
we first filter all u fields to Vtk format,

simres2vtk -f weld1 -s -n u -A -b

430 3. Programming of Finite Element Solvers

and then we start vtkviz, choose the Animation/Create Movie option on the
File menu, and fill in the filenames. The Help menu contains more detailed
instructions. Note that the filenames of the frames in the movie are specified
using the printf/oform/aform syntax, e.g., weld1.u f%05d.vtk.

3.12.7 Animation Using Matlab

When a field at multiple time points is extracted from a simres dataset using
the simres2matlab filter, the resulting Matlab script (with the default name
dpd.m) automatically collects the plots of each field in a Matlab movie. With
the previously generated weld1 dataset we can simply try

simres2matlab -f weld1 -s -n u -A -b

and thereafter issue the command dpd inside Matlab. Plots of the various
fields are shown successively and then a movie is displayed. You can replay
the movie X times with Y frames per second by typing movie(M,X,Y) at the
Matlab prompt. Tuning of the visualization is enabled by editing the script
file and repeating the execution of the script.

A plot of a single frame is easily accomplished since the various fields are
available as Matlab variables. In the present example, one can see from the
script file that the field u at t = 0.075 is stored in the variables x6 1, x6 2,
and v6, where x6 1 and x6 2 hold the coordinates of the nodal points and
v6 contains the nodal field values. Typing surf(v6) produces an alternative
visualization, which can be equipped with text or a different viewing angle
using the GUI.

Occasionally you want the Matlab movie to be converted to a standard
format like MPEG. This can be accomplished by dumping each frame in
PostScript format and using the Diffpack script ps2mpeg to produce an MPEG
movie. The Matlab script can dump each frame if the variable frame2file is
set equal to one prior to running the script. Try

>> frame2file=1

>> dpd

>> !ps2mpeg *.ps

Be aware that the ps2mpeg command can be a slow process.
Animations can also be made by animate or convert. We can either let

Matlab generate PostScript files and use these files as starting point:

animate -delay 100 *.ps

convert -crop 0x0+20+20 *.ps movie.gif

Alternatively, we can let Matlab dump plots in other image formats (PNG,
TIFF, JPEG, PPM), which can be viewed by animate or converted to ani-
mated GIF by convert.

3.12. Visualization of Time-Dependent Fields 431

3.12.8 Real-Time Visualization

Real-time visualization, i.e., displaying fields as soon as they are computed
during program execution, is possible by connecting Diffpack to Vtk or Mat-
lab. Since Diffpack by default is linked to Vtk, real-time visualization in Vtk
is easy. A typical outline reads

void vtkDisplay (const FieldFE& scalar_field, const char* options)

{

// start up Vtk:

vtkRenderer* r = vtkRenderer::New();

vtkRenderWindow* rw = vtkRenderWindow::New();

rw->AddRenderer(r);

vtkRenderWindowInteractor* rwi = vtkRenderWindowInteractor::New();

rwi->SetRenderWindow(rw);

// transfer Diffpack field to Vtk unstructured grid format:

vtkUnstructuredGrid* vtk_u_grid = vtkUnstructuredGrid::New();

SimRes2vtk:: field2vtk(scalar_field, vtk_u_grid, options);

// compute min and max extreme values of scalar_field

...

// create actors:

vtkDataSetMapper* u_grid_mapper = vtkDataSetMapper::New();

u_grid_mapper->SetInput(vtk_u_grid);

u_grid_mapper->SetScalarRange(min, max);

vtkActor* u_grid_actor = vtkActor::New();

u_grid_actor->SetMapper(u_grid_mapper);

u_grid_actor->GetProperty()->SetColor(.8,.8,.8);

u_grid_actor->AddPosition(0,0.001,0);

vtkActor* wire_actor = vtkActor::New();

wire_actor->SetMapper(u_grid_mapper);

wire_actor->GetProperty()->SetRepresentationToWireframe();

wire_actor->GetProperty()->SetColor(0,0,0);

// display actors in Vtk:

renderer->AddActor(u_grid_actor);

renderer->AddActor(wire_actor);

renderer->SetBackground(1,1,1);

rw->SetSize(600,700);

// interact with data:

rw->Render(); rwi->Start();

432 3. Programming of Finite Element Solvers

// clean up:

if (renderer) renderer->Delete();

if (rw) {

rw->SetReferenceCount(0);

rw->Delete();

}

if (rwi) rwi->Delete();

if (u_grid_mapper) u_grid_mapper->Delete();

if (u_grid_actor) u_grid_actor->Delete();

if (wire_actor) wire_actor->Delete();

if (vtk_u_grid) vtk_u_grid->Delete();

}

Real-time visualization in Matlab is enabled by using an object of class
MatlabEngine, which opens a run-time connection to Matlab that we can use
for computations as well. A MatlabEngine object is included in class Heat2 for
demonstrating real-time visualization. Comments in the file Heat2.cpp explain
the MatlabEngine syntax needed to produce the plots. In short, we can place
Diffpack arrays into Matlab’s workspace and assign Matlab variables to them.
Afterwards we can issue Matlab commands operating on the Diffpack data.

The MatlabEngine tools require of course that Diffpack is compiled and
linked with the Matlab libraries. The report [93] contains the necessary steps.
You can try to compile the Heat2 solver with the run-time Matlab-Diffpack
coupling. Since we have placed statements that cause Diffpack to be linked
to Matlab inside #ifdef MATLAB, you must provide the option CXXUF=-DMATLAB

to Make in order to activate the MatlabEngine statements. The .cmake2 file
in the Heat2 directory contains the statement SYSLIBS+=-lmat, which causes
the Matlab libraries to be linked with the Heat2 application. You need to
uncomment this statement. Furthermore, you need to add the directory where
the libmat.so library resides to the LDPATH variable in the .cmake2 file, e.g.,

LDPATH += /work/matlab/bin/glnx86

When the application is successfully compiled and linked, you are ready to
test the run-time Matlab interface. The menu system command real-time

visualization must be set to ON, and perhaps you also want to adjust the
z scale in the Matlab plot through the Matlab z axis menu item. Run for
example

./app --class Heat2weld --noreport < Verify/testmatlab.i

to see a demonstration of the real-time plotting capabilities. We refer to the
source code in Heat2.cpp and to the report [93] for more information about
the Matlab-Diffpack coupling.

3.12. Visualization of Time-Dependent Fields 433

3.12.9 Handling Simulation and Visualization from a Script

The purpose of the present section is to demonstrate how flexible computa-
tional engines, like Diffpack, can be combined with scripting languages, such
as Python or Perl, for creating a user-friendly tool adapted to a special prob-
lem. The material here only describes a productivity-enhancing technique and
is not a prerequisite for other parts of the book, except for Chapter 3.13.6.

The menu system in Diffpack offers great flexibility. Unfortunately, the
flexibility is sometimes too great, because the values of many of the input
data depend on each other. For instance, if we alter the value of β in (3.47),
i.e. %C in Chapter 3.11.4, we can view this as a change of the time scale:

βnew
∂u

∂t
= βold

∂u

∂t̄
, t̄ =

βnew

βold
t .

In other words, there is a relationship between the stopping time tstop, the
time step ∆t, and the coefficient β. Moreover, if we want to visualize the
temperature at four equally spaced points in the total time interval [0, tstop],
these time points also depend on β. The challenge of setting up a correct
input file is to make sure that all parameters are compatible.

Because a change in β affects many of the other parameters, it would be
advantageous to constrain the flexibility of the input file. This could be done
by deriving subclasses and implementing scan functions that adjust the menu
answers according to some principles. Nevertheless, a more optimal solution
would be to have variables and formulas for some of the menu answers in the
input file. Such functionality can be achieved by embedding the input file in
a script.

Move to the Verify directory of the Heat2 solver. Here you can find the
input file .embed-orig.i, which you should copy to embed.i before trying
out the forthcoming commands. The following input data are found in the
embed.i file:

set redefine boundary indicators = n=5 names=

u=c_1 u=c_2 u=g du/dn=0 cooling 1=() 2=() 3=() 4=() 5=(1 2 3 4)

set time parameters = dt =0.01875 t in [0,0.45]

set gridfile = P=PreproBox|d=2 [0,1]x[0,1]|d=2 e=ElmB4n2D [16,16] [1,1]

set time derivative coefficient = 0.3

sub SaveSimRes

set time points for plot = [0:0.45,0.0375]

ok

set time points for report field plot = [0:0.45,0.1125]

ok

Note that the redefine boundary indicators and gridfile answers must ap-
pear on a single line; the split here was done to fit the pagewidth limitation
of the book.

The command

434 3. Programming of Finite Element Solvers

PythonifyInputFile embed.i

results in a Python script embed.py that can write a new version of the input
file embed.i. In embed.py you can easily set up relations between the menu
answers. The generated embed.py script looks like this in the present case:

#!/usr/bin/env python

menu system input file embedded in a Python script

import sys, os, re

inputfile = "embed.i"

allow processing of command-line options:

while len(sys.argv) > 1:

option = sys.argv[1]

del sys.argv[1]

if option == "-option1":

action ...

del sys.argv[1]

elif option == "-option2":

action ...

del sys.argv[1]

os.rename(inputfile, inputfile+".bak"); # take a copy

construct new input file as a Python script:

f = open(inputfile, "w")

f.write("""

! input file - automatically constructed by embed.py

set redefine boundary indicators = n=5 names=

u=c_1 u=c_2 u=g du/dn=0 cooling 1=() 2=() 3=() 4=() 5=(1 2 3 4)

set time parameters = dt =0.01875 t in [0,0.45]

set gridfile = P=PreproBox|d=2 [0,1]x[0,1]|d=2 e=ElmB4n2D [16,16] [1,1]

set time derivative coefficient = 0.3

sub SaveSimRes

set time points for plot = [0:0.45,0.0375]

ok

set time points for report field plot = [0:0.45,0.1125]

ok

""" % vars())

f.close()

We have opened up for command-line arguments to the embed.py script such
that we can write, e.g.,

3.12. Visualization of Time-Dependent Fields 435

./embed.py -beta 3.2 -nx 100

and get a new input file embed.i, where β is set to 3.2 and the divisions in
the x and y directions are set to 100. Furthermore, we want the parameters
∆t and tstop to be adapted to the β and division values. Let us show how we
edit embed.py to achieve this.

#!/usr/bin/env python

menu system input file embedded in a Python script

import sys, os, re

inputfile = "embed.i"

default values:

beta = 0.3

nx = 16

allow processing of command-line options:

while len(sys.argv) > 1:

option = sys.argv[1]; del sys.argv[1]

if option == "-beta":

beta = float(sys.argv[1]); del sys.argv[1]

elif option == "-nx":

nx = int(sys.argv[1]); del sys.argv[1]

tstop = 1.5*beta

dt = beta/nx;

dumpincr = 2*dt # dump solution at every two time step

reportplotincr = tstop/4 # make 4 plots in the report

os.rename(inputfile, inputfile+".bak"); # take a copy

construct new input file as a Python script:

f = open(inputfile, "w")

f.write("""

! input file - automatically constructed by embed.py

set redefine boundary indicators = n=5 names=

u=c_1 u=c_2 u=g du/dn=0 cooling 1=() 2=() 3=() 4=() 5=(1 2 3 4)

set time parameters = dt =%(dt)g t in [0,%(tstop)g]

set gridfile = P=PreproBox | d=2 [0,1]x[0,1] |

d=2 e=ElmB4n2D [%(nx)d,%(nx)d] [1,1]

set time derivative coefficient = %(beta)g

sub SaveSimRes

set time points for plot = [0:%(tstop)g,%(dumpincr)g]

ok

436 3. Programming of Finite Element Solvers

set time points for report field plot = [0:%(tstop)g,%(reportplotincr)g]

ok

""" % vars())

f.close()

We can provide β and the grid partition as input variables to this version
of the script. The script is available in the file embed1.py. We find it appro-
priate to set tstop = 1.5β and ∆t = β/nx. Moreover, we dump the solution
at t = 2∆t, 4∆t, . . . and plot u in the report at four equally spaced time
points. To this end, we introduce variables beta, nx, tstop, dt, dumpincr, and
reportplotincr in the Python script. The beta and nx variables have default
values that can be modified on the command-line. The other variables depend
on beta and nx. A principal point in the script is that we write out the new
input file embed.i as a multi-line string with variables embedded in the text. In
this way, it is easy to ensure that tstop and other parameters are consistently
used throughout the menu file. In the present example, tstop appears in three
menu answers. So, without a script, you need to remember to edit the menu
answers carefully if you change β.

As an example, run

./embed1.py -beta 0.1 -nx 12

and look at the generated embed.i input file.
The previous script can trivially be extended to run the simulator and

visualize the results. We can either add statements to embed1.py or make a
new script that runs embed1.py and then performs the simulation and visu-
alization. Running embed1.py can be done by an os.system command or by
an import statement in Python. We illustrate the latter strategy here, in a
script embed2.py. This script offers an interface to the Heat2weld simulator
and manages input file generation, simulation, and production of an MPEG
movie:

#!/usr/bin/env python

import embed1 # run the embed1 script (i.e. make the embed.i file)

import os, sys, glob, re

casename = "embed"

os.system("RmCase %s" % casename) # clean up old files

cmd = "../app --class Heat2weld --batch --Default %s.i "\

"--casename %s --source_center ’0.2 0.3’ "\

"--source_velocity ’1 0.8’ --source_intensity 4.0 "\

"--noreport" % (casename, casename)

print cmd

failure = os.system(cmd)

if failure:

print "could not run ../app - is it compiled?"; sys.exit(1)

3.12. Visualization of Time-Dependent Fields 437

-- animation: --

from dplib import minmax_simres2summary

minmax_simres2summary runs simres2summary and extracts

the minimum and maximum values of a field (used here to

fix the color scale and the z axis):

umin, umax = minmax_simres2summary(casename, "u", scalar=1)

mpeg = 0

if mpeg: # (use """ strings to avoid quoting " and ’)

cmd = """simres2mpeg -s "-f %s -n u -s """\

"""-b -A -o ’%%cmin=%g cmax=%g """\

""" zmin=%g zmax=%g’" """\

"""-p ’-scale 1.0 -3D’ """ % (casename,umin,umax,umin,umax)

os.system(cmd)

os.system("mpeg_play -loop movie.mpeg");

else:

use ImageMagick utilities (animate):

cmd = "simres2mtv -f %s -n u -s -b -A "\

"-o ’%%cmin=%g cmax=%g zmin=%g zmax=%g’"\

% (casename,umin,umax,umin,umax)

os.system(cmd)

for mtvfile in glob.glob("%s.u_f*.mtv" % casename):

psfile = re.sub(r"\.mtv$", ".ps", mtvfile)

#psfile = mtvfile[:-3] + ".ps" # alternative

os.system("plotmtvps %s -colorps -3D %s" % (psfile, mtvfile))

os.system("animate -delay 100x2 %s.u_f*.ps" % casename)

Readers who are familiar with Perl may want to use that language in-
stead of Python. All of the scripts mentioned in this section are also avail-
able in Perl42. There is also a Perl counterpart to PythonifyInputFile, called
PerlifyInputFile.

3.12.10 Heat Transfer Exercises

Exercise 3.15. .
Consider the heat conduction problem in Figure 3.32. Make an input

file for the Heat2 solver with menu settings corresponding to this test case.
Produce a movie of the evolution of u. You should observe the significant
smoothing of the initial discontinuity at the boundary. �

Exercise 3.16. .

42 The Perl script files are recognized by the extension .pl.

438 3. Programming of Finite Element Solvers

0 1
0

1

0.16

0.32

0.48

0.64

0.64

0.8

0.8

0.96

0.96

0.96

1.12

1.12

1.12

1.28

1.28

1.44

1.44

1.6

1.76

1.92

0 1
0

1

u=2

u=0

Fig. 3.32. Sketch of a heat conduction problem to be solved in Exercise 3.15.
There are no internal heat sources (f = 0). Initially, u = 1. At two parts of
the boundary, the temperature u is held at u = 2 and u = 0. The rest of the
boundary is perfectly insulated, such that −k∂u/∂n = 0. The contour lines
of u correspond to the steady-state solution as t→∞.

Figure 3.33 shows an isolated circular tube. The goal is to compute the
temperature distribution in the isolating material, bounded by the tube and
a square-shaped outer boundary. Air at constant temperature Ts is flowing
through the inner tube. Outside the square-shaped boundary the temper-
ature is oscillating, e.g., due to day and night variations, here modeled as
To = T1 +A sinωt. At both boundaries of this material we employ the cool-
ing law −k∂T/∂n = hT (T − B), where B is either Ts or To, k is the heat
conduction coefficient, and T is the unknown temperature. Make a subclass of
ReportHeat2 for simulating the steady-state oscillating temperature response.
The initial condition is in this case immaterial so T (x, 0) = T1 is a possible
choice. Work with as small computational domain as possible by exploiting
the symmetry in the problem (identify the symmetry lines and their associ-
ated boundary conditions). Mesh generation can conveniently be performed
by the PreproStdGeom utility (see Figure 3.9 on page 322). Make animations
of the resulting temperature field. �

Exercise 3.17. .
We asserted in Exercise 3.16 that the steady state solution obtained as

t→∞ is independent of the initial condition. We can therefore prescribe any
initial temperature distribution. Run the simulator with an initial condition
that is significantly different from T1. Instead of a cooling law at the inner
and outer boundary, use Dirichlet conditions T = Ts and T = T1. Discuss
the impact of an initial condition T 6= T1 in this latter case. �

3.13. A Transient Heat Transfer Application 439

Fig. 3.33. Sketch of the geometry of the heat conduction problem to be
solved in Exercise 3.16.

Exercise 3.18. .
Scale the problem in Exercise 3.16. Discuss alternative choices of the time

and temperature scales. Modify the code such that the scaled initial-boundary
value problem is solved, with dimensionless parameters read from the menu.
Determine how to demonstrate the typical effects of the solution by varying
the dimensionless parameters. �

Exercise 3.19. .
Modify the Heat2 solver such that it can solve a time-dependent convection-

diffusion equation

β
∂u

∂t
+ v · ∇u = ∇ · (k∇u) + f,

with appropriate initial and boundary conditions. The material in Chap-
ter 3.9 can be useful. �

Exercise 3.20. .
Extend class Heat2 with restart functionality. That is, the simulator can

use a solution field from a previous run as initial condition for a new (con-
tinued) simulation. Class SimResFile can be used to read fields from a simres
database. A relevant code segment appears on page 481. �

3.13 A Transient Heat Transfer Application

We shall now build an application for solving a transient extension of the
physical problem covered in Chapter 3.6. The reader should be familiar with
that chapter before studying the forthcoming text. Also here we employ a
step-by-step approach and cover all aspects of the problem solving process:
setting up the mathematical model, formulating a numerical method, modify-
ing an existing program, and most important, verifying the implementation.

440 3. Programming of Finite Element Solvers

3.13.1 The Mathematical and Physical Model

We consider the heat equation

%C
∂T

∂t
=

∂

∂x

(
κ
∂T

∂x

)
+

∂

∂y

(
κ
∂T

∂y

)
(3.54)

in a 2D domain as sketched in Figure 3.15 on page 350, but now the white
hole, i.e., the cross section of the pipe with flowing water, is a part of the
domain. When water is flowing in the pipe, T = TA in this area. The flow is
then turned off for a time interval Woff (“water off”) before it is turned on
again for a time interval Won (“water on”). This process is repeated period-
ically in time. When there is no water flow, heat conduction takes place in
the water.

We introduce the pipe cross section (i.e. the water) as material 4 and
formulate the following initial condition:

T (x, y, 0) = f(x, y) =

{
TA, in material 4
Ts(x, y), outside material 4

(3.55)

The function Ts is the solution of the stationary problem in Chapter 3.6.1.
The relevant boundary conditions at the boundaries B, C, and D are the

same as in Chapter 3.6.1, i.e., Robin conditions on the boundaries B and C,

− κ∂T
∂n

= hB(T − TB) on boundary B, (3.56)

−κ∂T
∂n

= hC(T − TC) on boundary C, (3.57)

whereas there is no heat flux (∂T/∂n = 0) at the sides D.
At first sight, one may think of the present application as a two-grid

problem. The function Ts in (3.55) is to be found from a stationary computa-
tion, where the pipe cross section is not a part of the domain. The condition
T = TA is instead applied at the boundary A. The further time-dependent
evolution requires, however, heat transfer computations also in the pipe cross
section. When the water flow is turned on again, we have T = TA in the water
area, just as for the initial condition. We can avoid working with two domains
if we formulate the stationary initial problem with the pipe cross section as
a part of the domain. This is easily done by specifying Dirichlet “boundary”
conditions T = TA at each node in material 4 (the pipe cross section). That
is, the initial function f(x, y) fulfills

∂

∂x

(
κ
∂f

∂x

)
+

∂

∂y

(
κ
∂f

∂y

)
= 0, (3.58)

f(x, y) = TA in material 4, (3.59)

−κ∂f
∂n

= hB(T − TB) at boundary B, (3.60)

3.13. A Transient Heat Transfer Application 441

−κ∂f
∂n

= hC(T − TC) at boundary C, (3.61)

∂f

∂n
= 0 at boundary D . (3.62)

For t ∈ (0,Woff), there are no condition T = TA in material 4, just conduction
according to the PDE. For t ∈ (Woff ,Woff +Won), we assume that T = TA

in this area again. The water on/off switching is repeated in time.
The material properties % (density), C (heat capacity), and κ (heat con-

duction) vary, in general, through material 1–4. That is, we define %(x, y),
C(x, y), and κ(x, y) as piecewise constant functions (constants %(i), C(i), and
κ(i) in material no. i), see the function expression (3.22) on page 351 in the
case of three materials. We remark that the symbols C (heat capacity) and
C (the lower boundary) have different meanings. Different fonts are used
consistently so the confusion is hopefully minor.

A possible discretization in time is the θ-rule, whereas the Galerkin finite
element method is an obvious candidate for the discretization in space. The
discrete problem can be summarized by the following time-discrete weighted
residual formulation:

∫

Ω

[
%CT̂ ` + θ∆t∇Ni · ∇T̂ `

]
dΩ =

∫

Ω

[
%CT `−1 − (1− θ)∆t∇Ni · ∇T̂ `−1

]
dΩ −

∆t

∫

B

hB(θT̂ ` + (1− θ)T̂ `−1 − TB)dΓ −

∆t

∫

C

hC(θT̂ ` + (1− θ)T̂ `−1 − TC)dΓ . (3.63)

From these expressions it should be evident what the relevant formulas in the
integrands and integrands4side functions are. The reader is strongly recom-
mended to write down these mathematical expressions before proceeding!
Recall that the generality and flexibility of Diffpack requires the programmer
to be responsible for the validity of the numerical expressions. Diffpack lets
you concentrate on problem-dependent code (physical parameters, boundary
conditions, weighted residual form) and program administration, whereas fi-
nite element assembly, linear system solution, and storing computed data are
general tasks performed by the libraries.

3.13.2 Implementation

The present time-dependent simulator, named TransientHeating, can be re-
alized in several ways:

442 3. Programming of Finite Element Solvers

1. as a subclass of SteadyHeating (from Chapter 3.6),

2. as an extension of a copy of class SteadyHeating,

3. as a subclass of Heat2 (from Chapter 3.11),

4. as an edited copy of class Heat2.

The author actually started out making a subclass of SteadyHeating, but it
turned out that almost all of the functions needed to be extended in the time-
dependent solver. The TransientHeating class was instead developed as an
extension of a copy of the class SteadyHeating files. All in all, this is mostly
a matter of personal taste.

What do we need to add to the SteadyHeating class in order to solve the
time-dependent version of the heat transfer problem? The TransientHeating

class must be extended with

– a TimePrm object,

– a FieldFE object representing the primary unknown at the previous time
level (T̂ (`−1)(x)),

– the time discretization parameter θ,

– parameters for indicating whether the water flow is on or off (i.e., if
T = TA applies in material 4 or not),

– an additional κ(4) parameter,

– % and C values for the four materials: %(1), %(2), %(3), %(4), C(1), C(2),
C(3), and C(4).

The integrands and integrands4side functions need to be modified because
of the time-dependent scheme. Also the k function must to be extended since
we now have four materials. In addition, we need rho and C functions for
computing % and C (these follow the code segments of the k function). Our
hardcoding of the type of coefficients in the PDE is straightforward. Neverthe-
less, we show in Chapter 3.15.4 a much more flexible and less code demanding
way of handling variable coefficients, using the Field and FieldFormat classes.

In a time-dependent problem we must have the following functions:

– timeLoop for administering the time stepping,

– solveAtThisTimeStep for solving the equations at a time step,

– setIC for calculating the initial condition, and

– solveProblem, a trivial function just calling timeLoop.

The solveAtThisTimeStep function is similar to the solveProblem function
in the stationary solver SteadyHeating. Actually, the function in our class
TransientHeating is identical to the one in class Heat2 (and in Heat1, mod-
ulo the dumping of fields, which we in TransientHeating perform in the
saveResults function). We basically perform the steps

3.13. A Transient Heat Transfer Application 443

fillEssBC (); // set boundary conditions

makeSystem (*dof, *lineq); // compute linear system

dof->field2vec (*T, linsol); // use most recent T as start vector

lineq->solve(); // solve linear system

dof->vec2field (linsol, *T); // copy linear system sol. to T

// optional step:

FEM::makeFlux (*heat_flux, *T, FEM::GLOBAL_LS, tip->time());

The “heart” of the simulator, i.e., the integrands and integrands4side

functions, are listed next. Note that the code is specialized for two spatial
dimensions.

void TransientHeating:: integrands

(ElmMatVec& elmat, const FiniteElement& fe)

{

const real kappa_value = k(fe);

const real rho_C_value = rho(fe) * C(fe);

const real source_value = source (fe);

real dudt_factor, dt, t;

if (steady) {

dt = 1.0; t = DUMMY; dudt_factor = 0; theta = 1;

} else {

dt = tip->Delta(); t = tip->time(); dudt_factor = rho_C_value;

}

int i,j;

const int nbf = fe.getNoBasisFunc(); // no of nodes

real detJxW = fe.detJxW();

// T and grad(T) at the prev. time level at the current itg.pt:

real Tp_pt = T_prev->valueFEM (fe);

Ptv(real) gradTp_pt; T_prev->derivativeFEM (gradTp_pt, fe);

for (i = 1; i <= nbf; i++) {

for (j = 1; j <= nbf; j++) {

elmat.A(i,j) += (dudt_factor*fe.N(i)*fe.N(j) +

dt*theta*kappa_value*(fe.dN(i,1)*fe.dN(j,1) +

fe.dN(i,2)*fe.dN(j,2)))*detJxW;

}

elmat.b(i) += (fe.N(i)*dudt_factor*Tp_pt -

dt*(1-theta)*kappa_value*(fe.dN(i,1)*gradTp_pt(1) +

fe.dN(i,2)*gradTp_pt(2)) +

fe.N(i)*source_value)*detJxW;

}

}

void TransientHeating:: integrands4side

444 3. Programming of Finite Element Solvers

(int /*side*/, int boind, ElmMatVec& elmat, const FiniteElement& fe)

{

const real T_B_value = temp_B (fe);

const real T_C_value = temp_C (fe);

const int nbf = fe.getNoBasisFunc();

real detSideJxW = fe.detSideJxW();

const real Tp_pt = T_prev->valueFEM(fe);

real dt; int i,j;

if (steady) { dt = 1.0; theta = 1; }

else { dt = tip->Delta(); }

if (boind == 2) {

for (i = 1; i <= nbf; i++) {

elmat.b(i) += dt*fe.N(i)*h_B*(-(1-theta)*Tp_pt +

T_B_value)*detSideJxW;

for (j = 1; j <= nbf; j++)

elmat.A(i,j) += dt*theta*h_B*fe.N(i)*fe.N(j)*detSideJxW;

}

}

else if (boind == 3) {

for (i = 1; i <= nbf; i++) {

elmat.b(i) += dt*fe.N(i)*h_C*(-(1-theta)*Tp_pt +

T_C_value)*detSideJxW;

for (j = 1; j <= nbf; j++)

elmat.A(i,j) += dt*theta*h_C*fe.N(i)*fe.N(j)*detSideJxW;

}

}

}

We have introduced a parameter bool water flow for indicating whether
the water flow is on or off. This parameter then governs whether we have
conditions T = TA in material 4 or not. The scan function marks all nodes
in material 4 with boundary indicator 1 (for T = TA), but the fillEssBC

function turns on the essential condition only if water flow is ON:

dof->initEssBC ();

const int nno = grid->getNoNodes ();

for (int i = 1; i <= nno; i++) {

if (grid->boNode (i, 1)) { // essential cond. at node i?

// should set essential condition only when water is flowing:

if (water_flow == ON) {

dof->fillEssBC (i, T_A);

}

}

}

3.13. A Transient Heat Transfer Application 445

The most demanding function to write is setIC for computing the initial
condition f(x, y). In this function, we want to run a stationary problem with
all nodal values in material 4 fixed at TA. The stationary problem is defined
and coded in Chapter 3.6. We introduce a boolean variable steady in the
TransientHeating class to indicate whether we shall solve the stationary or
the time-dependent version of the problem. In integrands we could test on
steady and have two different code segments, or we could use an integrand
functor (see Appendix B.6.2). However, we realize, as noted in Chapter 3.11.3,
that the time-dependent expressions for the integrands contain the stationary
expressions as a special case if we set θ = 1, ∆t = 1, and omit the time-
derivative term. This latter strategy is adopted here.

The setIC function can then be sketched as follows:

1. Set water flow = ON to ensure that the essential condition T = TA is
applied in material 4.

2. Set steady = true and call the solveAtThisTimeStep function to solve the
stationary version of the problem.

3. The initial solution is now available in the field T, which we need to copy
to the field at the previous time level (T prev) before continuing with the
time integration.

4. Set water flow = OFF for turning off the condition T = TA in the subse-
quent simulation.

The source code of the setIC function is listed below.

void TransientHeating:: setIC ()

{

water_flow = ON; // turn on T=T_A in fillEssBC

steady = true;

solveAtThisTimeStep ();

steady = false;

*T_prev = *T;

// associated heat flux vector field:

FEM::makeFlux (*heat_flux, *T, FEM::GLOBAL_LS, tip->time());

water_flow = OFF; // turn off T=T_A

}

The core of the timeLoop function is standard (see Chapter 3.10.2). We add
the possibility to include time series plots at selected spatial points (see Chap-
ter 3.12.3). We also include a time series plot of the integrated heat flux at
boundary B: −

∫
B
κ∂T

∂y dx. The integration of the heat flux takes place in the
function computeBoundaryFlux, which makes use of the IntegrateOverGridFE

utility as described in Appendix B.6.3. The option to turn the water flow on
or off is also included in the timeLoop function.

446 3. Programming of Finite Element Solvers

void TransientHeating:: timeLoop ()

{

tip->initTimeLoop();

database->initTimeSeriesPlot (*T); // enable time series of T

top_flux_timeseries.initPair // CurvePlot: boundary flux

("time series of heat flux at the top boundary",

"flux", "t", "no comment");

setIC ();

saveResults ();

real local_t = 0; // time since last water on/off

while (!tip->finished())

{

tip->increaseTime(); // t = t + dt

s_o << "t=" << tip->time() << "\n";

local_t += tip->Delta ();

solveAtThisTimeStep (); // find new T (and flux)

saveResults (); // store u and flux in simres database

computeBoundaryFlux (); // integrate the heat flux

*T_prev = *T; // update for next step

if (water_flow == ON) {

if (local_t >= water_on_time) {

water_flow = OFF; local_t = 0;

}

} else { // water_flow is OFF

if (local_t >= water_off_time) {

water_flow = ON; local_t = 0;

}

}

}

database->finishTimeSeriesPlot ();

top_flux_timeseries.finish();

tip->plotTimeSteps(database->cplotfile); // graph of dt if it varies

}

Initially, the water flow is turned off, so if Woff is larger than the stopping
time tstop of the simulation, the water flow will never be turned on again.

Remark about Efficiency. The efficiency of the outlined implementation can
be improved significantly, as the coefficients in the PDE and boundary condi-
tions are time independent. It is then possible to avoid repeated calculations
of the linear system by a full finite element assembly process at each time
level. The necessary modifications are explained in Appendix B.7.3. It turns

3.13. A Transient Heat Transfer Application 447

out that the Heat2eff class, for speeding up the Heat2 solver, can be applied in
the present context as well. The only obvious change is to replace u and u prev

by T and T prev, as the unknown has another name. In addition, the compiler
notifies us about a couple of other minor adjustments. A less obvious modi-
fication is that our setIC function requires use of a standard makeSystem and
linear solve procedure, and not the specialized ones from the Heat2eff class.
We therefore need to call FEM::makeSystem explicitly in solveAtThisTimeStep

in class TransientHeating (instead of the default makeSystem, which will be
the optimized version in class Heat2eff). Of the same reason we must use the
explicit call TransientHeating::solveAtThisTimeStep in setIC. This requires
a small edit of class TransientHeating, so we have placed the two-line edited
version together with the optimized subclass (a trivial adaption of Heat2eff)
in the subdirectory TransientHeating/eff. In this optimized application we
introduce in main.cpp a command-line argument --class for choosing whether
we want to run the original slow code or the optimized version, the value of
the option being TransientHeating and TransientHeatingEff in the two cases,
respectively. We remark that one should never think of implementing such
optimizations before the simpler and safer code outlined previously is thor-
oughly tested. The present small-size 2D problem probably run sufficiently
fast with the original TransientHeating class unless there are many different
time scales present in the problem (which is the case on page 454).

Scaling. It is advantageous to introduce a scaling as in Chapter 3.6.5:

T̄ =
T − TA

TA
, x̄ =

x

L
, ȳ =

y

L
, κ̄(i) =

κ(i)

κ(1)
.

Here we also need to scale the time coordinate and the % and C functions:

%̄(i) =
%(i)

%(1)
, C̄(i) =

C(i)

C(1)
, t̄ = tL2 %

(1)C(1)

κ(1)
.

As in the SteadyHeating simulator, we implement the equations in their orig-
inal form, but when running simulations, we work with dimensionless quan-
tities. This means that we are forced to set TA = 0 (since the scaled primary
unknown, T̄ , is 0 at the boundary A), κ(1) = 1, %(1) = 1, etc. For a homoge-
neous medium we obtain the PDE

∂T

∂t
= ∇2T

with this scaling (dropping the bars as usual). The time and space scales
are of order unity, meaning that the grid must have a size about unity, and
significant changes in time take place on a time interval with unit length.

3.13.3 Testing and Debugging the Initial State

Testing of the TransientHeating solver should follow the stepwise progression
from simple to more complicated problems as emphasized in Chapters 3.6.3
and 3.6.5.

448 3. Programming of Finite Element Solvers

Initial Tests. Class TransientHeating was developed as a straightforward edit
of the files for the SteadyHeating solver. The latter code is well tested. There-
fore, it is tempting to start the verification of the TransientHeating solver by
comparing the computed initial condition f(x, y) with the identical station-
ary solution produced by the SteadyHeating solver. The author followed this
approach, using the case1.grid file from Chapter 3.6.4 (see Figure 3.18b on
page 367). This grid contains three materials only, so we cannot test the suc-
cess of turning on and off boundary indicator 1 in material 4. Nevertheless,
we can test the rest of the numerical computations.

We copy the file SteadyHeating/Verify/case1.grid to the Verify subdi-
rectory of TransientHeating. The author’s two first tests were

1. constant solution T (x, y, 0) = TA (enabled by setting hB = hC = 0),

2. (almost) symmetric solution T (x, y, 0) (enabled by setting TA = 0, TB =
TC = −1, and hB = hC = 1).

The input files test1 steady const.i and test1 steady symm.i in the Verify

directory realize these tests. The time interval for simulation is set to [0,0],
meaning that we only compute the initial field T (x, y, 0). As mentioned in
Chapter 3.6.5, the zero value in the physically correct scaled boundary con-
dition TA = 0 is not well suited for testing the implementation. To “allow”
TA 6= 0, we can imagine that we apply a slightly different scaling, whose de-
tails are of no interest, during the testing. The principal idea is to work with
“simple” values in some scaled model rather than physically relevant values
with dimension.

Debugging. When the author tested the TransientHeating implementation,
the constant initial solution computation worked well, but some strange peaks
appeared in what should be the almost symmetric solution. It can be instruc-
tive to review the debugging process that followed this observation.

Since the T (x, y, 0) solution is supposed to equal the T (x, y) field pro-
duced by the SteadyHeating simulator with the same input data, we have a
code that performs the correct numerics. This allows us to compare interme-
diate results in the two codes. The case1.grid has no material 4 so the error
cannot be related to the T = TA on/off switching. The error must thus be
in the creation of the linear system, which implies the functions integrands

and/or integrands4side. The first natural choice of comparison is the ele-
ment matrices and vectors. Both the SteadyHeating and TransientHeating

codes have a dump of the element matrices and vectors in the calcElmMatVec

functions: elmat.print(s o). The statement is enclosed in a #ifdef DP DEBUG

directive, so we either need to remove this directive or compile the code with
Make CXXUF=-DDP DEBUG (see Chapter 3.5.5 and Appendix B.2.1). The element
matrices and vectors will be printed before boundary conditions are inserted.
Therefore, if the output of the element data is equal in the two codes, the
errors are most likely connected to setting Dirichlet boundary conditions.

3.13. A Transient Heat Transfer Application 449

It turned out that the element matrices were different in the two codes.
The next step was therefore to inspect the calculations in the integrands and
integrands4side functions. In integrands, the quantity added to elmat.A(i,j)

appeared to be wrong. To find exactly what was wrong, it was necessary to
write out all the quantities that build up this expression. One can either write
out the values with, e.g., the DBP macro (see Chapter 3.5.5), or one can invoke
a debugger. Any approach would in this case quickly uncover a strange value
of theta. Searching for theta in the files showed that it was forgotten in the
define and scan function, hence its value was undefined.

The most common errors among Diffpack programmers arise in the func-
tions integrands or integrands4side, in the input files, or in functions eval-
uating an exact solution. Careful inspection of the mathematical expressions
in integrands or integrands4side, checking that all variables have expected
or reasonable content, constitutes an important part of debugging.

3.13.4 Creating the Grid

The time-dependent version of the problem requires a grid that also covers
the pipe with fluid flow, i.e., the white circle in the center of the sketch of the
domain in Figure 3.15 on page 350. This requires an extension of the super
element grid in Figure 3.18b on page 367, since we also need to fill the circular
fluid area with super elements. We still utilize symmetry and discretize only
the right-symmetric part of the domain.

The supported 2D super element types are quadrilaterals. Therefore, we
need to divide the semi-circle geometry of material 4 into quadrilateral super
elements. This can be achieved as shown in Figure 3.34a, see super element
no. 10–15. A new parameter g is introduced to adjust the size of the square
in the center of the semi-circular area.

To create the super element grid, we just copy the Python script supel.py
from Chapter 3.13.4 (i.e., from the SteadingHeating application directory)
and name it supel1.py. Then we add the data for all the new super elements.
The code should be easy to understand if you have the sketch in Figure 3.34a
in front of you when reading the statements. Running the script results in
the grid displayed in Figure 3.34b. The corresponding grid file is named
square1.grid and resides in the TransientHeating/Verify directory. We shall
use this file for transient heat transfer simulations in the next section.

3.13.5 Running Time-Dependent Simulations

We now have confidence in the stationary version of the integrands and
integrands4side functions. It now remains to test the code for a real time-
dependent problem. To this end, we start with a simple test example for which
the qualitative behavior of the solution is well known. In the forthcoming test
examples, we do not take the on/off behavior of T = TA in material 4 into
account, i.e., Woff →∞.

450 3. Programming of Finite Element Solvers

b

c

1

2

3

4

5

6

7

8

d e

f

9

s

P5a

P5b

P6

P7b

P8a

P8b

P9a

P9b

P12

P16a

P14P15

P13a

P13bP16b

P10b

P11b

P11a

P7a

P10a

a
P3a

P3b

P17

P18a

P18b

P20a

P19
12

P1

P4a

P4b

P2a

P2b

13

10

15

14

11

P20b

g

(a)

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

0 1 2 2.5
−2.6

−2

−1

0

1

2

2.3

(b)

Fig. 3.34. (a) Division of the symmetric part of the domain in Figure 3.15
into 15 super elements. The geometry is parameterized in terms of the length
measures a–g. (b) Example on a grid generated from the super element mesh.

3.13. A Transient Heat Transfer Application 451

A Simple Test Example. Choosing a homogeneous medium with constant κ,
%, and C, together with hB = hC and TB = TC , corresponds to a case where
the solution is (almost) symmetric with respect to the line y = 0. Such a
test is addressed with the TransientHeating simulator on page 448 and the
SteadyHeating simulator on page 371. Now we turn off the condition T = TA

in the fluid area for t > 0. We then have identical Robin conditions on the
upper and lower boundaries, in addition to no-flux conditions ∂T/∂n = 0 on
the left and right boundaries. We can easily establish that T = TB = TC is
the solution as t→∞. The transient development of T will hence start with
the stationary solution at t = 0, which we are familiar with, and diffuse into
a constant value as time increases. The typical time scale of this evolution is
addressed in the next paragraph.

In Example A.7 on page 681 we analyze the typical behavior of solutions
of the homogeneous heat equation and show that the transient part of the
solution is a factor exp (−αt), where α depends on the coefficients in the PDE
and the wave characteristics of the spatial part of the solution. Assuming a
smooth initial state (which is reasonable when the κ field is constant), we
expect the dominating part of a spatial Fourier series representation of the
solution to have a wave length twice the size L of the domain. The solution
is then of the form T ∼ exp (−αt+ ikx), with k = π/L (i.e., something like
T ∼ e−αt sinxπ/L). With constant κ, ρ, and C, the (implemented, unscaled)
PDE is of the form

∂T

∂t
=

κ

%C
∇2T .

Inserting the proposed form of T results in α = k2κ/(%C). The length L of
the domain is in our case 5, implying k = π/5 ≈ 0.6 and α = 0.36κ/(%C). In
a scaled problem, κ/(%C) = 1, so we have α = 0.36. (It might be tempting to
just perform a rough order-based analysis and say that in the scaled problem,
all quantities are of order unity, including the time scale. The result is that
α = O(1), which is too rough to be of great practical value for choosing ∆t
and estimating “infinite” time.)

The solution field T (x, y, t) will approach a steady state, which is the
solution of ∇2T = 0 in the rectangular domain with the mentioned boundary
conditions. It is trivial to verify that T (x, y, t) = TB = TC is a solution of
this stationary problem. With the rough analysis in the previous paragraph,
we expect the T (x, y, t) to vary like

T ∼ e−0.36κt/(%C)g(x, y) + TB ,

where g(x, y) + TB corresponds to the initial state. For testing purposes we
choose κ/(%C) = 1. The time behavior becomes exp (−0.36t), and we expect
the constant solution T = TB to be reached after 15 time units (the amplitude
of the initial state is then reduced by a factor exp (−0.36 · 15) ≈ 0.005).

We construct an input file test2.i (in the Verify directory), where we can
test the qualitative behavior just stated. Appropriate parameters are κ = 2,

452 3. Programming of Finite Element Solvers

% = 1/2, C = 4, hB = hC = 10, and TB = TC = −2 (note that we avoid 0
and 1 values). Figure 3.35 shows the solution along a line through the grid
for various time levels. The plot in Figure 3.35a corresponds to a constant
time step size of 0.5. This might be a suitable time step for large times when
the solution changes slowly, but the significant change from t = 0 to t = 2
is resolved by only four time steps. As explained in Chapter 3.11.2, we can
easily assign different time steps in different time intervals. Increasing to 40
steps (∆t = 0.05) for 0 ≤ t ≤ 2 and thereafter using ∆t = 0.5, gives the plot
in Figure 3.35b. There are visible differences between the solution curves at
t = 2 in the two plots, so increased resolution in time for t ≤ 2 is important.

-2

-1.5

-1

-0.5

0

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Cross Section Plot, (0.2,-2.6) to (0.2,2.3)

T(s2,t=0)
T(s2,t=2)
T(s2,t=4)
T(s2,t=6)
T(s2,t=8)

T(s2,t=10)
T(s2,t=12)
T(s2,t=14)

(a)

-2

-1.5

-1

-0.5

0

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Cross Section Plot, (0.2,-2.6) to (0.2,2.3)

T(s2,t=0)
T(s2,t=2)
T(s2,t=4)
T(s2,t=6)
T(s2,t=8)

T(s2,t=10)
T(s2,t=12)
T(s2,t=14)

(b)

Fig. 3.35. Plot of the T function along the line y = 0 at various time levels.
Input file TransientHeating/Verify/test2.i. Computations with θ = 1/2 and
(a) ∆t = 0.5; (b) ∆t = 0.05 for t ≤ 2, ∆t = 0.5 for t > 2.

Creating Visualizations. Appropriate visualizations in this problem consists
of

– sequence of contour plots of T at some time levels,

– animation of the T field,

– sequence of curve plots of T along a line in the grid, at some time levels.

The storage of T fields and curves is controlled by items on the SaveSimRes

submenu. The menu item time points for plot is used for setting the time
levels when the dump function is active (see page 424). Note that we need more
time levels for animations than for a sequence of snapshot plots. How to set

3.13. A Transient Heat Transfer Application 453

time levels for dumping plots and create animations is explained in Chap-
ter 3.12. Here we just provide the relevant actions for a particular simulation
case.

Suppose we have run a case with the default casename SIMULATION. The
first step in the visualization process is to find the range of field values
throughout the simulation, using the simres2summary program:

simres2summary -f SIMULATION -n T

Suppose the overall minimum and maximum values are −2 and 0, respec-
tively. We need these values to ensure that we use the same color scale or
contour line values for all plots from the simulation.

The next step in the visualization process is to filter the simres data to a
format suitable for our target plotting program. If we want to use the Plotmtv
program, we run

simres2mtv -f SIMULATION -n T -A -s -a \

-o ’%cmin=-2 cmax=0 zmin=-2 zmax=2’

to extract all (-A) the stored T field in the database, fix the color scale, and
(in case of elevated surface plots) fix the scale on the z axis. The resulting
files have names SIMULATION.T f*.mtv (seen on the output from simres2mtv)
and can easily be shown in Plotmtv:

plotmtv SIMULATION.T_f*.mtv

In case we have stored lots of time levels for animations and want to plot just
a few of these, we can explicitly prescribe the time levels to be extracted in
the simres2mtv command, e.g.,

simres2mtv -f SIMULATION -n T -s -a -t ’0 5 10;’ \

-o ’%cmin=-2 cmax=0 zmin=-2 zmax=2’

The Plotmtv files now have names reflecting the time level values (t =
0, 5, 10). The relevant files are then plotted using the command

plotmtv SIMULATION.T_t*.mtv

Note that the filenames have embedded time values, with extensions of the
form t*.mtv, when specific time points are given by the -t option. Extract-
ing all files with the -A option leads to filenames with field numbers and
extensions f*.mtv.

Visualizing the data in another plotting program is about equally simple,
see Chapter 3.12 for details.

Animations are easy to create, following the recipes from Chapter 3.12.
For example,

454 3. Programming of Finite Element Solvers

simres2mpeg -s "-f SIMULATION -n T -A -s -a \

-o ’%cmin=-2 cmax=0 zmin=-2 zmax=2’" \

-p "-scale 1 -3D"

All the stored T fields are here plotted by Plotmtv and combined into an
MPEG movie file with the name movie.mpeg.

Curve plots of T along a line through the grid are made as explained in
Chapter 3.3.8. First we look up the mapfile .SIMULATION.curve.map, or use
the

cmappr .SIMULATION.curve.map

command for a nice printout (see page 744), to see the curve titles, names,
and comments. For example, curves specified by the line2 family of menu
items on the SaveSimRes submenu are recognized by the string line2 in their
comments. A minimum curveplot command for plotting these curves is

curveplot gnuplot -f .SIMULATION.curve.map -r ’.’ ’.’ ’line2’

The above mentioned steps are automated in the script run.py in the
Verify subdirectory of TransientHeating. The reader is encouraged to study
this script and apply similar automation scripts in the practical work with
running Diffpack simulators.

A Physically Relevant Simulation. We have now tested the TransientHeating

simulator and gone through relevant visualization commands, which makes
us ready for attacking the real physical problem. This is basically a matter of
setting some menu items in the input file. The file Verify/test3.i contains
an example, with different κ, %, and C values in each material as well as
TB 6= TC and hB 6= hC . We need to estimate the time scale since it governs
the time interval for simulation and the choice of ∆t. We have previously
reasoned that the time scale depends on %C/κ, which varies with the type
of material. We will therefore experience different time scales in the different
materials. For example, the test3.i input data lead to a unit time scale in
material 1, 100 in material 2, 150 in material 3, and 5 in material 4. Our
previous estimate of “infinite” time is the time scale multiplied by a factor
10-15. The time interval for simulation is based on the longest scale (here
150) and set to [0, 2000] in the input file test3.i. A time step ∆t = 0.5 is a
rough compromise between the long time scales in material 2 and 3 and the
unit time scale in material 1 around the pipe.

The simulation can be run by

../app --verbose 1 < test3.i

if we stand in the TransientHeating/Verify directory. The --verbose 1 option
is convenient in the experimental stage of testing a code. The option triggers

3.13. A Transient Heat Transfer Application 455

the Diffpack libraries to report basic numerical steps (finite element assembly,
linear system solution, smoothing of fields, etc.) and the associated CPU time.

Figure 3.36 shows curves of T along x = 0.2 and y = 0 when we use input
data from test3.i.

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Cross Section Plot, (0.2,-2.6) to (0.2,2.3)

T(s2,t=0)
T(s2,t=1)
T(s2,t=2)
T(s2,t=5)

T(s2,t=10)
T(s2,t=50)

T(s2,t=100)
T(s2,t=150)
T(s2,t=500)

T(s2,t=1000)
T(s2,t=1500)
T(s2,t=2000)

(a)

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0 0.5 1 1.5 2 2.5

Cross Section Plot, (0,0) to (2.5,0)

T(s1,t=0)
T(s1,t=1)
T(s1,t=2)
T(s1,t=5)

T(s1,t=10)
T(s1,t=50)

T(s1,t=100)
T(s1,t=150)
T(s1,t=500)

T(s1,t=1000)
T(s1,t=1500)
T(s1,t=2000)

(b)

Fig. 3.36. Plot of the T function along lines through the grid at various time
levels, resulting from a simulation with empTransientHeating/Verify/test3.i
as input file. T is plotted along the two lines: (a) x = 0.2; (b) y = 0.

Testing Periodically Heating. Our final test example concerns testing the
feature where the water flow (i.e. T = TA i material 4) is turned on and
off periodically in time. We choose a homogeneous material throughout the
domain and the same boundary conditions at B and C. The parameters
Won and Woff are both set equal to 2. The rest of the input data can be
found in the test5.i file. Figure 3.37a shows how the boundary condition
T = TA is turned on and off in time (the curve with label T(0,0), i.e., T
sampled as a time series at the origin) and the corresponding T value at
the upper boundary (T(0,2.3)). The integrated heat flux out of boundary B
is displayed in Figure 3.37b. We observe that the solution is periodically in
time. Moreover, the T (0, 0, t) curve has jumps each time the water flow is
turned on, followed by a smooth reduction in temperature after the water is
turned off. This is the expected behavior.

3.13.6 A Scripting Interface for Automating Simulations

Chapter 3.13.5 covers the basic steps in running a Diffpack simulation:

1. setting input parameters (in a file or in a GUI),

456 3. Programming of Finite Element Solvers

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0 5 10 15 20 25

T(0,0)
T(0,2.3)

(a)

0.35

0.4

0.45

0.5

0.55

0.6

0 5 10 15 20 25

flux

(b)

Fig. 3.37. Plot of the T function as a function of time at fixed spatial points,
computed with TransientHeating/Verify/test5.i as input file. (a) Time se-
ries at two spatial points, (0,0) inside the water area and (0,2.3) at boundary
B; (b) integrated heat flux at boundary B.

2. running appropriate simres2xxx- and curveplot-type commands,

3. invoking a visualization system.

Quite some decisions of parameter settings have to be taken during this
process. Several parameters are dependent on each other, so changing one
requires changing many others. For example, changing a material parameter
may influence the time scale, and thereby ∆t and the time interval for sim-
ulation, the minimum and maximum values of T , and thereby the setting of
color scales and axis in the visualization program.

We have mainly illustrated the use of command-line driven tools in the
present section, but the amount of user-provided information does not de-
crease if you use the GUI-versions of the Diffpack tools (i.e., running app

--GUI and simresgui, or the graphical Windows interface); you end up with
much writing or clicking for each simulation case.

The complicated interplay between parameters and different programs
can be simplified dramatically if you let a script set up input files and run
programs. We shall in a step-by-step fashion show how to develop a Python
script for the present heat transfer application. Hopefully, this will illustrate
how powerful scripting techniques can be as a companion tool to Diffpack.
The exposition assumes that the reader has some basic knowledge about
scripting with Python. A particularly relevant reference is [68, Ch. 2], where
a similar script (called simviz1classv2.py) is explained in detail. It will also
be advantageous to have read Chapter 3.12.9.

3.13. A Transient Heat Transfer Application 457

A Command-Line Based Interface. The purpose of a script for automating
simulation and visualization is to reduce the manual work with the com-
puter. Thus, an efficient user interface is crucial. Deciding upon the details
of the user interface is always a good idea before starting the programming
work. Because command-line driven scripts are easy to call up from other
scripts later, we concentrate on a user interface consisting of command-line
arguments. Adding a GUI is easy, as we show later.

The typical input parameters we will frequently change are

– the “free” material properties in material 2–4 (recall that κ(1) = C(1) =
%(1) = 1 in the scaled model),

– the grid,

– the “free” boundary conditions TB and TC (TA = 0 in the scaled model),

– the heat transfer coefficients hB and hC .

Each of these parameters can be represented by a Python class InputPrmDp43

(from $NOR/bin/dplib.py), which holds the name of the parameter, its cur-
rent value, its type, and the corresponding Diffpack menu command and
command-line argument for setting the parameter’s value. An outline of this
Python class reads

class InputPrmDp:

def __init__(self,

Diffpack_menu_command=None,

default=None, # default value

str2type=float, # function from string to type

name=None, # parameter name

):

"""

The arguments to this constructor are stored in

self.v : parameter value (=default)

self.str2type : conversion from string to right type

self.name : name of the parameter

self.Dp_menu_command : Diffpack menu command

"""

def get(self):

"""return the value of the parameter"""

return self.v

def set(self, value):

"""set the value of the parameter"""

43 Class InputPrmDp is just the class InputPrm from [68] augmented with extra data
members holding the Diffpack menu command and corresponding command-line
argument.

458 3. Programming of Finite Element Solvers

def inputfileline(self):

"""return a Diffpack menu file command for this prm."""

To create a parameter h B with default value 1.0, you can write

InputPrmDp("h_B", 1.0, float)

The first argument is the name of the Diffpack menu item for the parameter.
The argument float is the Python function for converting a string to the
right numerical type for this parameter (other choices are int for integers
and str for strings). Normally we store InputPrmDp objects in a dictionary
self.p (assuming that a class performs the main tasks in the script and that
the dictionary is a member of this class),

self.p["h_B"] = InputPrmDp("h_B", 1.0, float)

Assigning and fetching values of the parameter is done with the set and get

functions:

self.p["h_B"].set(3.2)

print "h_B=%g" % self.p["h_B"].get()

A parameter has a name, a menu item name, and a key (in self.p). The
name of the parameter is usually identical to the key (which here also equals
the menu command). Hence, we can automatically set the names when the
whole self.p dictionary is declared:

for n in self.p: # run through all keys

self.p[n].name = n

The name can also be the fourth parameter in the constructor call, but we
prefer to set it equal to the self.p keys automatically as shown above.

A feature of the InputPrmDp class is that it can return a line with correct
Diffpack menu syntax for initializing the parameter. For example, in the
example involving the h B parameter, calling

self.["h_B"].inputfileline()

returns the string

set h_B = 3.2

This feature makes it easy to build input files to Diffpack simulators in a
script.

The core of the script is class SimViz for creating the input file, running
the simulation, and visualizing the result. Class SimViz has the outline

3.13. A Transient Heat Transfer Application 459

class SimViz:

def __init__(self):

self.default_values()

def default_values(self):

"""set default values for all input parameters"""

self.p = {}

self.p["T_B"] = InputPrmDp("T_B", -1.0, float)

self.p["T_C"] = InputPrmDp("T_C", -1.0, float)

...

def dependent_parameters(self):

"""compute parameters that depend on self.p"""

def inputfile(self):

"""return input file for the Diffpack menu system"""

def simulate(self):

"""run app with a suitable input file"""

def visualize(self):

"""find min/max of T and launch visualization tools"""

if __name__ == ’__main__’:

adm = SimViz()

commandline2dict(sys.argv[1:], adm.p)

adm.simulate()

adm.visualize()

The commandline2dict function is imported from the dplib module and used
for parsing the command-line arguments and filling in values in the InputPrmDp
objects. A command-line option is assumed to be the name of the associ-
ated parameter (i.e., the associated key in self.p) preceded by a double
hyphen. For example, if we have --h B 2.3 on the command line, the shown
commandline2dict call performs the action

adm.p[’h_B’].set(2.3)

Writing a list of all the available command-line options to the script is
easy:

def usage(self):

s = "Usage: %s \n [" % sys.argv[0]

write out options in sorted order:

names = self.p.keys(); names.sort()

for name in names: s += " --" + name

460 3. Programming of Finite Element Solvers

s += "]"

return s

The returned string from usage shows that the following options to our
present script are valid:

--C_2 --C_3 --C_4 --T_B --T_C --gridfile --h_B --h_C

--kappa_2 --kappa_3 --kappa_4 --rho_2 --rho_3 --rho_4

--water_off --water_on

Each option must have a value, which is a real number, except for the
--gridfile option, whose value is a string (filename). The names of the op-
tions should be self-explanatory.

The time step and tstop parameters depend on the time scales in the phys-
ical problem, which depend on the coefficients in the PDE, i.e., the material
properties. The typical time scale in material i is

t(i)s = β
%(i)C(i)L2

κ(i)
,

where L is the typical length scale and β is an adjustment factor. Assuming
that we work with scaled quantities, all material parameters in material 1
have unit values. In the present grid, L ≈ 5, but the arguments and estimates
in Chapter 3.13.5 points to a time scale corresponding to using L/π as length
scale. Since this latter estimate is close to what we observe, we use that, which
means setting β = π−2.

A natural choice for ∆t is to let it be a fraction of the smallest time scale,
e.g.,

∆t = 0.1 min
i
t(i)s .

The total simulation time tstop can be based on the largest time scale, e.g.,

tstop = 5 max
i
t(i)s .

In case the water is turned on and off, we can let tstop be a certain number
of on/off periods, e.g.,

tstop = 15(Woff +Won) .

We need some convention for storing fields for visualization. Storing all
the computed fields increases the simulation time dramatically, so we go for
picking out (say) three time points for each time scale. If the water is turned
on and off periodically, it is better to store fields at (say) three equally spaced
time points in each period Woff +Won.

The tolerance εr for the residual in convergence criteria for iterative
solvers must be chosen such that the iteration error is less than the dis-
cretization error. That is, εr = Ch2 for some constant C and element size h,

3.13. A Transient Heat Transfer Application 461

if first-order elements are used (second-order elements have an h3 behavior
of the spatial discretization error). Having determined a reasonable value of
εr for a grid with element size h, C is known, and the formula can be used
for another value of h. In practice it is convenient to link h roughly to the
number of nodes. With a unit interval, rectangle, or cube, h is the element
length in one direction. The number of nodes in one space direction is ap-
proximately n1/d, d being the number of space dimensions as usual and n
the total number of nodes. Therefore, h ∼ n−1/d and εr = Cn−2/d (assum-
ing first-order elements). We decide to use this formula beyond the case for
which it was derived, i.e., we apply it also to unstructured meshes. Note that
the formula can be misleading when local grid refinements are used, because
reducing n might also reduce the discretization error if the element sizes are
redistributed in a more favorable fashion.

The dependent parameters function in class SimViz computes ∆t, tstop, εr,
time points for saving T , etc. The function is simple, but lengthy, so it is
omitted here in the text.

The next step in the script is to construct a valid Diffpack menu file
with all the fetched and computed input data. This is done in the inputfile

function:

def inputfile(self):

"""return input file for the Diffpack menu system"""

compute the rest of the parameters (dependent on the input):

self.dependent_parameters()

s = "! automatically generated input file\n"

s += """

set time parameters = dt=%g t in [0,%g]""" % (self.dt, self.tstop)

s += """

set T_A = 0.0

set kappa 1 = 1.0

set rho 1 = 1.0

set heat capacity 1 = 1.0

! parameters that could be set through the

! %s

! script:

""" % sys.argv[0]

dump all the parameters that we can set in this script:

for name in self.p:

s += self.p[name].inputfileline()

s += """

sub LinEqAdmFE

462 3. Programming of Finite Element Solvers

sub Matrix_prm

set matrix type = MatSparse

ok

sub LinEqSolver_prm

set basic method = ConjGrad

set use default convergence criterion = false

set no of additional convergence monitors = 1

set max iterations = 300

ok

sub Precond_prm

set preconditioning type = PrecRILU

set RILU relaxation parameter = 0.0

ok

sub ConvMonitorList_prm

sub Define ConvMonitor #1

set #1: convergence monitor name = CMAbsResidual

set #1: convergence tolerance = %(eps_r)g

ok

ok

ok

""" % vars(self)

(could use GaussElim for small grids)

s += """

sub SaveSimRes

set time points for plot = %s

set line1: start = 0 0

set line1: stop = 2.5 0

set line1: resolution = 61

set line2: start = 0.2 -2.6

set line2: stop = 0.2 2.3

set line2: resolution = 61

set time series points = d=2 n=2 (0,0) (0,2.3)

""" % (string.join(map(str,self.saveres), " "))

if self.nno > 1000:

format = "BINARY"

else:

format = "ASCII"

s += """

set field storage format = %s

set grid storage format = %s

ok

ok

""" % (format, format)

return s

3.13. A Transient Heat Transfer Application 463

The simulate function in class SimViz runs the simulator:

def simulate(self):

"""run app with a suitable input file"""

self.casename = "SIMULATION"

os.system("RmCase " + self.casename) # clean up old files

f = open(self.casename+".i", "w")

f.write(self.inputfile())

f.close()

cmd = "../app --casename %s --Default %s.i --batch" % \

(self.casename, self.casename)

print cmd

failure = os.system(cmd)

if failure:

print "Could not run", cmd

sys.exit(1)

The results can be visualized in various ways. The visualize function is
quite technical and omitted here. The principal constructions are shown in
the src/Heat2/Verify/embed2.py script in Chapter 3.12.9. One feature we
might mention is the minmax simres2summary function in the module dplib; it
returns the minimum and maximum values of a field (obtained by running
simres2summary). This function is convenient in Python scripts when con-
structing visualization commands or options that include extreme values of
a field for fixing the color scale or an axis.

Regarding the visualization of T , we display time series at (0, 0) (inside
the water area) and (0, 2.3) (at the boundary B), as well as the integrated
heat flux out of the boundary B. When the water is not turned on and off we
also display curve plots of T (0.2, y, ti) and T (x, 0, ti) in addition to Plotmtv
field plots of T (x, y, ti), for some selected time points ti.

You are encouraged to test the script. Go to the TransientHeating/Verify

directory. The name of the script is simviz.py. Run, for example,

python simviz.py --kappa_3 0.1 --h_B 100

This compact command executes the simulator with sensible input values,
based on the given κ(3) and hB values, and displays the results. Another
illustrating introductory example turns the water flow on and off:

python simviz.py --water_off 2 --water_on 2

The simviz.py script is of course indispensable for numerical experimentation.

Exercise 3.21. .
Extend the simviz.py script such that it shows a plot of the number of

iterations, for solving the linear system, as a function of time. To accomplish

464 3. Programming of Finite Element Solvers

this, grab the output from the simulator in the script, use regular expressions
or split each line to extract the number of iterations, and store data pairs in
a two-column file. The visualize function must thereafter create a suitable
input file for Gnuplot and display the plot. Run a case where the water is
turned on and off. Observe how the number of iterations increases when the
temperature in the water area varies discontinuously. (Hint: Relevant Python
constructions are found in the author’s book [68]; see the introductory section
on regular expressions and the simviz1.py script.) �

A Graphical User Interface. We can quite easily extend the simviz.py script
with a graphical user interface. The following text assumes that you have
basic knowledge about Python GUI programming with the Tkinter and Pmw
modules [68, Ch. 3].

Class InputPrmDp has a subclass extension InputPrmDpGUI, which creates a
widget for the input parameter and makes the get function return the value
from the widget. Another useful class in the dplib module is SimVizPrmGUI

[68]. This class sets up a GUI consisting of input parameters and buttons.
The input parameters are normally arranged in three groups, depending on
the relevant widget type: sliders, entry fields, and option menus. The groups
are displayed in three columns of aligned widgets in the GUI. Scrollbars are
automatically inserted if a column of widgets does not fit within the main
GUI window. The buttons in the GUI enable running the simulator and
visualizing the results.

The simviz.py script with a GUI is basically realized as a subclass exten-
sion SimVizGUI of SimViz. The tasks to be performed in class SimVizGUI are
basically

– initialization of self.p as a dictionary of InputPrmDpGUI objects,

– grouping of the InputPrmDpGUI objects in self.p into three lists: sequence
of sliders, sequence of entry fields, and sequence of option menus,

– declaration of a SimVizPrmGUI object, to which we send (i) the self.p

dictionary and the lists of sliders, entry fields, and option menus spec-
ifications, and (ii) the simulate and visualize functions to be tied to
buttons.

In the present application we make only use of entry field widgets. The com-
plete script is found in the file simvizGUI.py and looks as follows.

from dplib import InputPrmDpGUI, SimVizPrmGUI

class SimVizGUI(SimViz):

"""Add a GUI to the SimViz class"""

def __init__(self, parent):

self.sliders_sequence = None # init

self.entries_sequence = None # init

3.13. A Transient Heat Transfer Application 465

self.options_sequence = None # init

create dictionary of parameters (self.p) and group

InputPrmDpGUI objects in self.p into three groups:

sliders, entry fields and option menus

self.initialize()

self.prmGUI = SimVizPrmGUI()

self.prmGUI.make_prmGUI(parent,

self.p,

sliders_sequence=self.sliders_sequence,

entries_sequence=self.entries_sequence,

options_sequence=self.options_sequence,

height=300)

self.prmGUI.make_buttonGUI(parent,

simulate_function=self.simulate,

visualize_function=self.visualize,

logo=os.path.join(os.environ[’NOR’],’etc’,’images’,

’diffpack-clogo-small.gif’),

help="Not much yet")

def initialize(self):

"""create and sort InputPrmGUI objects for input parameters"""

self.p = {}

self.p["T_B"] = InputPrmDpGUI("T_B",-1.0, float)

self.p["T_C"] = InputPrmDpGUI("T_C",-1.0, float)

self.p["h_B"] = InputPrmDpGUI("h_B", 1.0, float)

self.p["h_C"] = InputPrmDpGUI("h_C", 1.0, float)

self.p["kappa_2"] = InputPrmDpGUI("kappa 2", 1.0, float)

self.p["kappa_3"] = InputPrmDpGUI("kappa 3", 1.0, float)

self.p["kappa_4"] = InputPrmDpGUI("kappa 4", 1.0, float)

self.p["C_2"] = InputPrmDpGUI("heat capacity 2", 1.0, float)

self.p["C_3"] = InputPrmDpGUI("heat capacity 3", 1.0, float)

self.p["C_4"] = InputPrmDpGUI("heat capacity 4", 1.0, float)

self.p["rho_2"] = InputPrmDpGUI("rho 2", 1.0, float)

self.p["rho_3"] = InputPrmDpGUI("rho 3", 1.0, float)

self.p["rho_4"] = InputPrmDpGUI("rho 4", 1.0, float)

self.p["gridfile"] = InputPrmDpGUI("gridfile",

"square1.grid", str)

self.p["water_on"] = InputPrmDpGUI("water on interval",

1.0, float)

self.p["water_off"] = InputPrmDpGUI("water off interval",

1.0E+10, float)

the correct sequence of entry fields:

466 3. Programming of Finite Element Solvers

self.entries_sequence = \

[self.p["T_B"], self.p["T_C"], self.p["h_B"], self.p["h_C"],

self.p["kappa_2"], self.p["kappa_3"], self.p["kappa_4"],

self.p["C_2"], self.p["C_3"], self.p["C_4"],

self.p["rho_2"], self.p["rho_3"], self.p["rho_4"],

self.p["gridfile"], self.p["water_on"], self.p["water_off"]]

no sequences of sliders or option menus

if __name__ == ’__main__’:

from Tkinter import *; import Pmw

root = Tk()

Pmw.initialise(root)

root.title(’TransientHeating GUI’)

widget = SimVizGUI(root)

root.mainloop()

Hopefully, the script should be easy to adapt to other applications. A snap-
shot of the resulting GUI is displayed in Figure 3.38. Since the layout is taken
care of in the SimVizPrmGUI class in the dplib module, the layout may look
different in future releases of Diffpack. You can, of course, make a copy of
the SimVizPrmGUI class and tailor the layout according to your own taste.

Fig. 3.38. GUI created by the TransientHeating/Verify/simvizGUI.py script.

3.14 Projects

3.14.1 Transient Heat Transfer in a Two-Material Structure

Mathematical Problem. This project concerns heat transfer in a solid hetero-
geneous structure, consisting of two materials with different properties, see

3.14. Projects 467

Figure 3.39. The governing partial differential equation reads

%(x)C(x)
∂T

∂t
= ∇ · (κ(x)∇T) . (3.64)

The density %, heat capacity C, and heat conduction coefficient κ have in
this physical application constant values %i, Ci, and κi in material i, i = 1, 2.
Material 1 is the gray area in Figure 3.39, whereas the surrounding structure
is referred to as material 2.

At t = 0 we assume a constant temperature T0 throughout the domain.
Then the temperature is suddenly increased to T1 > T0 at the black segment
on the left boundary. At the right boundary, the temperature is fixed at T0.
The other boundaries are insulated (no-flux condition).

Numerical Method. A Galerkin finite element method in space, combined
with a θ–rule in time, is suitable for solving the problem numerically. Sym-
metry should be utilized to reduce the size of the domain. Moreover, one
should scale the problem,

%̄ =
%

%1
, C̄ =

C

C1
, κ̄ =

κ

κ1
, T̄ =

T − T0

T0
.

Applying the time scale tc = %1C1L
2/κ1, where L is the length scale, results

in the scaled equation

%̄C̄
∂T̄

∂t̄
= ∇ · (κ̄∇T̄) . (3.65)

Initially we have T̄ = 0. On the part of the boundary where T = T0, we
get the scaled Dirichlet condition T̄ = 0. Where we have T = T1, we get
T̄ = (T1 − T0)/T0 = T1/T0 − 1. This means that only the fractions %2/%1,
C2/C1, κ2/κ1, and T1/T0−1 are the physical input parameters of significance
in the problem.

Implementation. Equation (3.65) can be solved by creating a subclass of
Heat2, ReportHeat2, or Heat2eff (the latter is described in Appendix B.7.2).
Specifying the variable coefficients is a critical issue. One method, hereafter
called method 1, is to test whether x is inside the boundaries of material 1
or not. The other approach, method 2, is to apply the material concept and
test if the element, in which the current evaluation point lies, is a member
of material 1 or not. Method 1 is simplest to implement. Method 2 requires
definition of two materials in the grid (see page 313), but the advantage is that
the boundary between material 1 and 2 always coincides with the element
boundaries. The importance of this feature was addressed in Chapter 2.8.2
and is to be investigated further in the present project.

Computer Experiments. Construct a sequence of grids, with different refine-
ments, for testing method 1 and method 2. The grids for method 1 should

468 3. Programming of Finite Element Solvers

T1 T0

2

1 1

2 2

1

C

C

ρ

ρ

κ

κ

Fig. 3.39. Sketch of the heat conduction problem to be solved in
Project 3.14.1. The domain consists of two materials with differing heat con-
duction properties. The temperature is kept at T1 and T0 at certain parts of
the boundaries.

have the boundary between material 1 and 2 (in Figure 3.39) located in the
middle of elements. The grids for method 2 should have (approximately) the
same element sizes, but the element boundaries should be aligned with the
material boundaries. One can then use these grids for testing the importance
of such alignment. Do this for some values of %2/%1, C2/C1, and κ2/κ1, say 10,
100, 104, and 108. Make MPEG movies for each test case. Automatic report
generation (Chapters 3.5.6 and 3.11.1), multiple loops (Chapter 3.4.2), and
scripts (Chapters 1.4.5, 3.12.9, and 3.13.6) are important tools for enhancing
your productivity and increasing the reliability of the numerical experiments.

3.14.2 Transient Flow with Non-Circular Cross Section

Mathematical Problem. The initial-boundary value problem to be solved in
this project reads

%
∂u

∂t
= µ∇2u(x) + β(t), x ∈ Ω, t > 0, (3.66)

u(x, t) = 0, x ∈ ∂Ω, t > 0, (3.67)

u(x, 0) = 0, x ∈ Ω . (3.68)

The parameters % and µ are positive constants, andΩ can be a one-dimensional
or two-dimensional domain.

Physical Model. This project concerns transient incompressible viscous fluid
flow in a straight pipe. The domain Ω is the cross section of the pipe. In case
Ω is a one-dimensional domain, we have flow in either a pipe with circular
cross section (and ∇2 must be expressed in the radial coordinate) or flow in a
channel (u = u(x), where x is a coordinate perpendicular to the channel walls
of infinite extent). The flow is driven by a transient pressure gradient β(t).
One can view this problem as a time-dependent extension of Problem 3.8.1.

3.14. Projects 469

Fig. 3.40. Sketch of a cross section of a pipe. This is the domain Ω to be
used as simulation case in Problem 3.14.2.

Explain how (3.66) arises from the Navier-Stokes equations for viscous
incompressible flow in a straight pipe.

Numerical Method. The problem (3.66)–(3.68) is to be solved by a Galerkin
finite element method in space and a θ rule in time.

Implementation. Create a standard Diffpack finite element solver for the
problem, where the number of space dimensions is parameterized as usual.
(Recall that only 1D and 2D cases make sense in the current physical con-
text.) You can utilize the Heat2 or ReportHeat2 class, but you need to derive
a subclass and implement the driving term β(t) as the virtual function f.
Choose β(t) = β0 sin2n ωt, where n is an integer (this corresponds to a pul-
satile flow). Scale the problem (hint: use 2π/ω as time scale and a velocity
scale 2πβ0/(%ω)). This results in two dimensionless constants, n (in the scaled
β) and (say) α in the scaled PDE:

∂u

∂t
= α∇2u+ sin2n 2πt . (3.69)

Computer Experiments. As t → ∞, the solution approaches a steady state,
influenced solely by the β(t) function and not the initial condition. Choose
Ω = (−1, 1). Assume that 40 time steps during a period of oscillations repre-
sent a sufficient temporal resolution (the period in the scaled PDE is unity).
Experiment with different values of n and α, and measure how large t must
be when the solution has reached a steady state.

The 2D domain for simulations is shown in Figure 3.40. Utilize symmetry
to make the domain smaller and formulate the proper boundary conditions
in the reduced domain. Make movies of the u(x, y, t) function corresponding
to different values of n and α.

3.14.3 Transient Groundwater Flow

Mathematical Problem. We shall address the following initial-boundary value
problem:

Ss
∂u

∂t
= ∇ ·

[
K

µ
∇u
]

+ f(x, t), x ∈ Ω, t > 0, (3.70)

470 3. Programming of Finite Element Solvers

∂u

∂n
= 0, x ∈ ∂ΩN1 , t > 0, (3.71)

−K
µ

∂u

∂n
= q(x), x ∈ ∂ΩN1 , t > 0, (3.72)

u = g(x), x ∈ ∂ΩE, t > 0, (3.73)

u(x, 0) = I(x), x ∈ Ω . (3.74)

The parameters Ss and µ are positive constants, whereas K is a d× d sym-
metric tensor when the problem is posed in Ω ∈ IRd (d = 1, 2, 3).

Physical Model. The problem (3.70)–(3.74) models groundwater flow in a
porous medium (soil, rock). The function u is called the head (fluid pres-
sure incorporating gravity effects), µ is a coefficient of viscosity, K is the
permeability tensor, and Ss is a specific storage coefficient, which accounts
for elastic storage in the porous medium resulting from compressibility of the
solid matrix, the fluid, and the medium. The function f represents fluid injec-
tion and production. A common model for f is to set f(x) =

∑
j Qjδ(x−xj),

where Qj > 0 are injection well strengths, Qj < 0 are production well
strengths, xj are well locations, and δ(y) is a function that is different from
zero in a small neighborhood of y = 0 (to simulate the localized nature of a
well).

At ∂ΩE the fluid pressure is known. The boundary ∂ΩN1 is impermeable,
or it represents a symmetry line, and ∂ΩN2 is a boundary where the fluid nor-
mal velocity is prescribed as q. The fluid velocity is given as v = −µ−1K∇u.
Initially, the head is known (u = I).

Numerical Method. A standard approach to the problem (3.70)–(3.74) is to
use a Galerkin finite element method in space and a θ-rule in time.

Implementation. Create a subclass of Heat2 that can be used to solve this
problem. Choose the f(x, t) function to be different from zero in a small
region to simulate a production well. Let the production be periodic in time,
i.e., on for a time interval ∆on and then off for a time interval ∆off . Work
with a quadrilateral 2D domain and specify a stationary in-flow −K

µ ∂p/∂n
at one of the boundaries that balances the production described by f in
a time interval ∆on +∆off . Introduce a low-permeable region in the domain
(using the material concept) to study the effect of “obstacles” in the flow. The
tensor K should be diagonal, with K22 as the value in the vertical direction
and K11 as the value in the horizontal direction. Choose K22 � K11. Create
visualizations of u and the flow field v.

Discuss how you can optimize the computations by utilizing constant
matrices as in the Heat2eff and Heat2eff2 solvers from Appendix B.7.2. (Note
that we have a time-dependent source term in the present application.)

3.15. Efficient Solution of the Wave Equation 471

3.15 Efficient Solution of the Wave Equation

This section describes how the multi-dimensional wave equation can be solved
efficiently using finite element tools in Diffpack. The reader is probably able
to modify, e.g., the Heat1 solver from Chapter 3.10 such that it solves the wave
equation instead of the heat equation. Nevertheless, if the coefficients in the
PDE are independent of time, the repeated assembly procedures at every
time level, as performed in Chapter 3.10, are inefficient. One should rather
compute the matrices that enter the discrete finite element equations only
once and thereafter update the linear system at each time level by efficient
matrix-vector operations. For the wave equation we can devise an explicit
scheme such that also the solution of the linear system is computed with
optimal efficiency. The result is a fast solver for the wave equation in arbitrary
1D, 2D, and 3D geometries.

Our model problem is the linear wave equation with some simple initial
and boundary conditions:

∂2u

∂t2
= c2∇2u, x ∈ Ω ⊂ IRd, t > 0, (3.75)

u(x, 0) = I(x), x ∈ Ω, (3.76)

∂

∂t
u(x, 0) = 0, x ∈ Ω, (3.77)

∂u

∂n
= 0, x ∈ ∂ΩN , t > 0 . (3.78)

Here, u(x, t) is the primary unknown, c is the (constant) wave velocity, and
d is the number of space dimensions. Moreover, x is a global point, t denotes
time, and ∇2 is the standard Laplacian operator in Cartesian coordinates.
For simplicity, we assume that all the boundary conditions are of the homo-
geneous Neumann type, i.e., ∂ΩN is the complete boundary of Ω. Extensions
to a variable wave velocity c(x) and other initial and boundary conditions
are outlined in Chapter 3.15.3.

3.15.1 Discretization

We introduce a standard Galerkin finite element method in space and use the
standard finite difference approximation to the second-order time derivative.
See Chapter 2.2 for the basic ideas of the numerics. These procedures lead
to a system of linear equations at each time step:

Mu`+1 = 2Mu` −Mu`−1 −∆t2Ku` . (3.79)

In this expression, M and K are matrices, the superscript ` denotes the
time level of the unknown discrete field values u of u, and ∆t is the constant
time step size. With a finite difference spatial discretization, the mass matrix
M would be diagonal and the scheme becomes fully explicit. Using the finite

472 3. Programming of Finite Element Solvers

element method, M is not diagonal, but it will be convenient to use a lumped
(diagonal) mass matrix to increase the efficiency.

Equation (3.79) can be written on the computationally more attractive
form

u`+1 = 2u` − u`−1 −∆t2M−1Ku`. (3.80)

With a lumped M , the term M−1Ku` is efficiently computed as simple
matrix-vector updates. We shall now give the explicit formulas for the entries
in these matrices. Let

u(x, t) ≈ u`(x) =
∑̀

j=1

u`
jNj(x)

and u` = (u`
1, . . . u

`
n)T . The contributions to the various matrices and vectors

at the element level can be given as

M̃
(e)
i,j =

∫

Ω̃

NiNj det J dΩ (3.81)

≈
{∑

j

∫
Ω̃
NiNj det J dΩ, i = j

0, i 6= j,
(3.82)

K̃
(e)
i,j =

∫

Ω̃

c2∇Ni · ∇Nj det JdΩ . (3.83)

The matrix
{
M̃

(e)
i,j

}
is the contribution from element number e to the global

matrix M . Furthermore,
{
K̃

(e)
i,j

}
is the similar contribution to K. Here, Ω̃

denotes a reference element in local coordinates.

3.15.2 Implementation

Data Structures for the Linear System. By constructing M and K initially
and lumping M, the solution at each time level can be computed by simple
and highly efficient matrix-vector operations. Instead of a LinEqAdmFE object
to hold the linear system and associated solvers, we now use two matrix
objects: a MatDiag diagonal matrix to hold M and a MatSparse sparse matrix
to hold K44. The mass matrix M is computed by a special FEM function
makeMassMatrix, while K can be calculated in the ordinary way using an
overloaded FEM::makeSystem function.

44 Instead of having K explicitly as a sparse matrix object MatSparse, one can
let K be a general Matrix handle, such that the user at run time can choose
the matrix format freely. However, we have tried to keep the class as simple as
possible.

3.15. Efficient Solution of the Wave Equation 473

The Computational Algorithm. The recursive scheme (3.80) is trivial to code
for ` > 0. For ` = 0 we need to take the initial condition ∂u/∂t = 0 into
account. The discrete form of ∂u/∂t = 0 results in u−1 = u1. Elimination
of u−1 in (3.80) for ` = 0 then gives a special formula for u1 that must be
used for the first time step. However, in Chapters 1.4.2 we suggested to apply
(3.80) directly also for ` = 0, but with a special definition of u−1 to obtain
the right u1. Here we find that this fictitious u−1 should be defined as

u−1 = u0 − 1

2
∆t2M−1Ku0 . (3.84)

The computation of u0 stems from a Galerkin method applied to the equation
u = I :

n∑

j=1

∫

Ω

NiNjdΩu
0
j =

∫

Ω

INidΩ .

If we represent I as a finite element field,
∑n

j=1 IjNj , the mass matrix also

appear on the right-hand side (
∑

j

∫
Ω
NiNjdΩIj) and multiplying by M−1

in the matrix equations gives u0
j = Ij , that is, the nodal values of the discrete

u at t = 0 is simply set equal to the nodal values of I(x). This is the technique
that we shall apply for the finite element wave equation solver.

The algorithm now becomes:

1. Set u0 equal to the nodal values of I(x).

2. Evaluate u−1 from (3.84).

3. Apply (3.80) for ` = 0, 1, 2, . . . to compute u1,u2,u3, . . .

The particular form of initial u values, I(x), to be used in our test solvers
reads

I(x) =
1

2
− arctan

(σ
π

(||x|| − 2)
)
, (3.85)

where σ is an adjustable parameter that governs the steepness of the initial
u profile. The impact of σ on the quality of the numerical approximation of
the wave equation is discussed in Appendix A.4.8.

In d space dimensions, the stability criterion for the suggested method
reads

∆t ≤ c−1

(
d∑

i=1

1

∆x2
i

)−1/2

.

Stability of finite element methods for wave equations is treated in Chap-
ter 2.4.3.

The Source Code of the Simulator. As usual, we represent the wave equation
simulator as a class. We can follow the recipe from Chapter 3.10, with the
main difference that the LinEqAdmFE object is replaced by matrix objects for
M and K and a scratch vector. Only the key data members are shown; the

474 3. Programming of Finite Element Solvers

rest of the class declares only the standard functions that should be familiar
from the previous header file examples in this chapter.

class Wave0 : public FEM

{

protected:

Handle(GridFE) grid;

Handle(FieldFE) u; // u at current time level

Handle(FieldFE) u_prev; // u at previous time level, t-dt

Handle(FieldFE) u_prev2; // u at time level t-2*dt

Handle(DegFreeFE) dof; // mapping: field <-> equation system

real c2; // square of wave velocity

Handle(TimePrm) tip; // time interval, time step length etc

MatDiag(real) M; // mass matrix

MatSparse(real) K; // global matrix (the Laplacian term)

Vec(real) scratch; // used in the updating formula for u

The implementational details of the functions that deviate significantly from
the corresponding ones in the Heat1 and Heat2 solvers are listed next. The
non-standard parts of the scan function consist of initializing the M and K

matrices:

// special initialization of M and K:

const int nno = grid->getNoNodes();

scratch.redim (nno);

M.redim (nno);

// make sparsity pattern for the sparse matrix K:

Handle(SparseDS) sparse_ds (new SparseDS());

makeSparsityPattern (*sparse_ds, *dof);

K.redim (*sparse_ds);

The initialization of M, K, and u prev2 (u−1) is coded like this:

void Wave0:: solveProblem ()

{

setIC (); // initial conditions

makeMassMatrix (*grid, M, true); // diagonal mass matrix M

M.factLU(); // factorize M (trivial!)

makeSystem (*dof, (Matrix(NUMT)&) K); // make matrix K

// special u_prev2 (see the Wave1D solvers for explanation)

prod (scratch, K, u_prev->values()); // scratch = K*u^0

M.forwBack (scratch, scratch); // scratch = M^{-1}*Ku^0

add (u_prev2->values(), u_prev->values(),

3.15. Efficient Solution of the Wave Equation 475

-0.5*sqr(tip->Delta()), scratch); // artificial u_prev2

timeLoop ();

}

The numerical operations at a specific time step are as usual collected in a
function solveAtThisTimeStep:

void Wave0:: solveAtThisTimeStep ()

{

fillEssBC ();

prod (scratch, K, u_prev->values()); // scratch = K*u^n

M.forwBack (scratch, scratch); // scratch = M^{-1}*K*u^n

// scratch = u^{n-1} + dt^2*M^{-1}*K*u^n

add (scratch, u_prev2->values(), sqr(tip->Delta()), scratch);

// u^{n+1} = 2u^n - u^{n-1} - dt^2*M^{-1}*K*u^n

add (u->values(), 2, u_prev->values(), -1, scratch);

}

The integrands function is used for computing K so it should simply evaluate
c2∇Ni · ∇Nj det J times the weight at the current integration point. The
complete source code of the Wave0 solver is located in src/fem/Wave0.

A One-Dimensional Test Problem. The input file test1.i in the Verify di-
rectory defines a 1D test case with 40 linear elements in the domain Ω =
(−10, 10). Run this case and make an animation of the solution using the ani-
mation tools for curves as described in Chapter 1.4.4 (see also Appendix B.5.1).
Here are two equivalent examples, with cn as the casename of the run, just
to get you started:

curveplot gnuplot -f .cn.curve.map -fps 1 -r . u .

-o ’set yrange [-1.1:1.1];’ -animate

curveplot matlab -f .cn.curve.map -fps 1 -r . u .

-o ’axis([min(x1) max(x1) -1.1 1.1]);’ -animate

The -fps option controls the number of frames per second in the movie (if
the value is greater than unity when using Gnuplot, the movie is shown in
maximum speed). By substituting -animate by -psanimate in the plotting
commands, we can automatically make MPEG movies of the wave motion.

The nice thing about this test case is that the Courant number is unity
everywhere such that the numerical solution is exact at all the nodal points.
By looking at an animation, it is fairly easy to convince oneself that the
results are correct: The initial pulse is split into two waves of the same box
shape, but with half the amplitude of the initial wave. These two waves are
moving in opposite directions and reflected by the walls. There is no damping
in the system. A similar solution, obtained by finite difference discretization,
was demonstrated in Chapter 1.4.4.

476 3. Programming of Finite Element Solvers

A Two-Dimensional Test Problem. Since the Wave0 solver takes the number
of space dimensions as an input parameter, we can easily solve a 2D wave
equation on, for instance, the spatial domain Ω = (−10, 10) × (0, 10). The
initial condition implemented in class Wave0 is given in (3.85). When σ is large,
the inital circular plug will propagate in both space directions and y = 0 is a
symmetry line of the problem. With a partition [400, 200], the largest possible
∆t is 0.05/

√
2. Run the application with the input file Verify/test2.i, export

all the stored fields to Plotmtv format45 and take a look at the plots.
The initial step function in this example can be represented by a two-

dimensional Fourier series, with significant contribution from high frequen-
cies. When the problem is solved numerically, the various Fourier components
will move with different velocity. Therefore, after a while we can see waves
with very short wave lengths as ripples on the plot. Choosing a smoother ini-
tial profile, reduces the contribution from high-frequency Fourier components
and the numerical solution will look smoother. The reader is encouraged to
experiment with this. A similar 1D problem is analyzed on page 691. The
numerical noise is not damped when solving the wave equation. The heat
equation, on the contrary, damps high-frequency waves very efficiently, see
Figure A.1 on page 682.

Exercise 3.22. .
In the 2D test case described above (corresponding to the file test2.i),

x = 0 is also a symmetry line. Modify the input file test2.i such that we
can reduce the number of elements by a factor of two, utilizing that x = 0
and y = 0 are symmetry lines. (Hint: If u = 0 is symmetric about a line,
∂u/∂n = 0 at the line, where n denotes the direction perpendicular to the
line.) �

3.15.3 Extensions of the Model Problem

We consider the slightly generalized model problem

∂2u

∂t2
= ∇ · (c2(x)∇u), x ∈ Ω ⊂ IRd, t > 0, (3.86)

u = g(x, t), x ∈ ∂ΩE , t > 0, (3.87)

∂u

∂n
= 0, x ∈ ∂ΩN , t > 0, (3.88)

u(x, 0) = I(x), x ∈ Ω, (3.89)

∂

∂t
u(x, 0) = Î(x), x ∈ Ω . (3.90)

Here the boundary ∂Ω of Ω is split into two non-overlapping parts, ∂Ω =
∂ΩE ∪ ∂ΩN . In addition, the wave velocity c(x) is space dependent. The

45 See Verify/test2.sh for the correct statement on Unix systems.

3.15. Efficient Solution of the Wave Equation 477

nonzero “velocity” at the initial time level, i.e., the condition (3.90), will
only affect the formula (3.84) for our fictitious u−1 value.

The Dirichlet boundary condition is straightforwardly implemented, but
the technique is different from the method used in Chapter 3, mainly be-
cause the situation is much simpler in the present case. From (3.80) we see
that the equation for u`+1 is u`+1 = b, where the contents of b should be
evident from (3.80). We can compute u`+1 = b without paying attention to
the essential boundary conditions. Afterwards, we only need to adjust u`+1

such that it is in accordance with the Dirichlet conditions. This is possible
since none of the new nodal values that disobey the boundary conditions can
affect the computation of the others (a property of all explicit schemes). The
implementation is realized as a loop over all nodal points:

const int nno = grid->getNoNodes();

for (int i = 1; i <= nno; i++) {

if (grid->boNode (i,1)) // assume Dirichlet cond. 1 at indicator 1

u->values()(i) =some formula or function....

else if (grid->boNode (i,2)) // another Dirichlet cond at ind. 2

u->values()(i) =some formula or function....

}

Exercise 3.23. .
Modify class Wave0 such that it solves the initial-boundary value problem

(3.86)–(3.90). Test the simulator on the same problem as in Verify/test2.i,
but with u = 0 on the boundary and a variable phase velocity: c = 1 for
x <= 0 and c = c0 for x ≥ 0. Is x = 0 now a symmetry line (cf. Exercise 3.22)?
�

3.15.4 Flexible Representation of Variable Coefficients

A User-Friendly Interface for Prescribing Variable Coefficients. The ex-
tended model problem in Chapter 3.15.3 with a spatially varying wave veloc-
ity needs a representation of the variable coefficient. In Chapter 3 we mainly
used virtual functions for the coefficients and hardcoded particular formulas
in subclass solvers. As an alternative, it is convenient at run time to decide
among the following particular representations of variable coefficients like c2:

1. a constant,

2. an explicit formula, realized as a functor,

3. a piecewise constant field over material subdomains,

4. a finite element or finite difference field on file.

On the menu we can indicate these representations as follows.

478 3. Programming of Finite Element Solvers

1. set c2 format = CONSTANT=3.2

The c2 field is here prescribed to be the constant value 3.2.

2. set c2 format = FUNCTOR=myc2

In this case the wave velocity field should be computed from a user-
programmed functor46 with the name myc2. The functor must have class
FieldFunc as base class, and the member function valuePt evaluates the
field at a space(-time) point.

3. set c2 format = MATERIAL CONSTANTS= 2.4 6.2 1 ;

This menu answer assigns the constant values 2.4, 6.2, and 1 to material47

number 1, 2 and 3, respectively. The number of values listed in the answer
must correspond to the number of materials.

4. set c2 format = FIELD ON FILE=mycase("c2")

The c2 field is now to be read from a simres48 file with casename mycase.
The name of the field on file is c2. One can also load a field from a time-
dependent series of fields on file, using the syntax mycase("c2",t=4.2) to
indicate the field with name c2 at time 4.2.

This type of flexible assignment of various types of variable coefficients in a
PDE solver is demonstrated in several codes associated with this text: the
present wave equation solver Wave1, the elasticity solvers in Chapter 5, and
the convection-diffusion solvers in Chapter 6.1.

Diffpack’s Handling of Various Types of Fields. The implementation of this
high degree of flexibility in specifying the c2 field in the simulator class is
straightforward. We represent the c2 field by a Handle(Field) object. Class
Field is the base class for all scalar fields in Diffpack. Special field formats are
realized as subclasses: FieldConst for constant fields, FieldFunc for functors
(i.e. explicit formulas), FieldLattice for fields over regular GridLattice grids,
FieldFE for finite element fields, and FieldPiWisConst for piecewise constant
fields over material subdomains. Similarly, class Fields is a base class for vec-
tor fields. Its subclasses have the same names as in the scalar field subclasses,
except that the word Field is replaced by Fields. To hold the user’s choice
of field format, we use class FieldFormat. This class also offers functionality
for allocating the proper subclass object and binding it to a Field (or Fields)
handle as explained next.

Implementation. A revised version of class Wave0, simply called Wave1, im-
plements a more flexible wave equation solver, using the Handle(Field) and
FieldFormat tools. In the definition of class Wave1 we include

Handle(Field) c2;

FieldFormat c2_format;

46 See Chapter 3.4.4 for basic information about the functor concept.
47 See page 313 for basic information about the material concept.
48 See Chapter 3.3 and Appendix B.5.2 for basic information about simres files.

3.15. Efficient Solution of the Wave Equation 479

To put the field format object on the menu, we first prescribe the field name
and then call its define function with a suitable default value49:

c2_format.setFieldname("c2").define(menu,"CONSTANT=2.0",level);

This default answer leads to a representation of c2 in terms of a FieldConst

object, such that c2 equals 2.0 throughout the domain. To read the user’s
field format answer, we simply call

c2_format.scan (menu);

Having the field format available, we can allocate the proper field object by
calling

c2_format.allocateAndInit (c2, grid.getPtr());

Notice that we transfer the handle c2 to this function and that we also must
provide a grid pointer50. If c2 is specified as a functor on the menu, the
allocateAndInit function cannot create any of the functors provided by the
programmer and returns a false value. In this case, the programmer must
take care of the allocation. Here is a suitable set of statements illustrating
these points.

if (!c2_format.allocateAndInit (c2, grid.getPtr()))

{

// FieldFormat::allocateAndInit could not initialize,

// perhaps a FUNCTOR format?

if (c2_format.format == FieldFormat::FUNCTOR) {

if (c2_format.function_name == "StepAtx0")

// declare functor c=1, x<0 and c=10, x>0

c2.rebind (new StepAtx0 (10.0));

// else if (c2_format.function_name == "SomethingElse")

// c2.rebind (new ...);

else

errorFP("Wave1::scan",

"c2_format.function_name=\"%s\" not implemented",

c2_format.function_name.c_str());

}

}

Finally, we need to evaluate the c2 field inside the integrands routine. This
is efficiently done by calling the virtual valueFEM function in the Field hier-
archy:

49 The setFieldname function returns a FieldFormat& reference, and that is why
we can merge two calls into one statement.

50 This pointer is used only in case c2 becomes a handle to a FieldPiWisConst

object.

480 3. Programming of Finite Element Solvers

const real c2_pt = c2->valueFEM(fe); // fe is a FiniteElement obj.

The subclasses of Field have optimal implementations of the valueFEM func-
tion. For example, FieldConst::valueFEM just returns a constant, whereas the
implementation in FieldFE::valueFEM runs through a standard finite interpo-
lation procedure in an element (

∑
j ujNj).

The reader should notice that the valuePt function, taking a space-time
point as argument, is also a virtual function in the Field hierarchy that
could be used for evaluating the c2 field at a point. However, the valuePt

function is extremely inefficient if c2 is represented as a FieldFE object, since
one has to find the element and the local coordinates of the spatial point
prior to interpolating the finite element field. On the contrary, the valuePt

function exhibits comparable efficiency with valueFEM in many other field
classes, like FieldConst, FieldFunc, and FieldLattice, but the all-round choice
for evaluating a Field, having a FiniteElement object at disposal, should
always be the valueFEM function.

Prescribing Initial Conditions. The software tools we used for flexible rep-
resentation of the variable coefficient c2(x) are also useful for representing,
for instance, the initial condition I(x). In this case we know that the initial
field must be represented as a FieldFE object, but we can use a FieldFormat

object for flexible assignment of the initial values; I can be constant, I can
be given in terms of a functor, or the I values can be read from file. We typ-
ically insert a FieldFormat u0 format statement in the class definition, put
the field format object on the menu and read the answer. The initial condi-
tion is set in the function setIC. We can follow the same basic ideas as when
we initialized the c2 field, but now we have already forced the field (u prev)
to be of type FieldFE. An overloaded allocateAndInit in class FieldFormat

takes a Handle(FieldFE) argument and initializes its nodal values. Again, if
the user prescribes a functor for I , allocateAndInit does not know about the
user’s functor names so the routine returns a false value, and the programmer
must explicitly deal with various types of functor names and corresponding
actions.

void Wave1:: setIC ()

{

// fill u_prev from the prescribed initial condition for u

if (!u0_format.allocateAndInit (u_prev))

{

// u0_format.allocateAndInit did not initialize u_prev,

// perhaps u0_format indicates a FUNCTOR format?

if (u0_format.format == FieldFormat::FUNCTOR) {

if (u0_format.function_name == "plug") {

// declare Plug0 functor and use FieldFE::fill

// (u_prev is already allocated in scan - ready for use)

3.15. Efficient Solution of the Wave Equation 481

Plug0 plug (sigma);

u_prev->fill (plug, 0.0); // values = plug for t=0.0

}

else

errorFP("Wave1::setIC",

"u0_format.function_name=\"%s\" not implemented",

u0_format.function_name.c_str());

}

}

// else: u0_format has allocated and initialized u_prev,

*u = *u_prev; // make u ready for plotting at t=0

}

The Plug0 functor implements the formula (3.85). Notice that we now fill
u prev with functor values instead of letting a general Field handle point to
a functor object as we did for the c2 field, because u prev is forced to be a
field of known type. The FieldFE::fill function is explained on page 414.

Continuing Previous Simulations. The reader should observe that the flexible
assignment of initial conditions automatically allows for restarting a previous
simulation. Suppose you have run a case with casename mycase1 and that the
simulation was terminated, by some reason, with the last dump of the solution
to the simres database at time 6.2. To continue this simulation, we can specify
the u field at time 6.2 in the mycase1 simres database as initial condition:

set u0 format = FIELD_ON_FILE("mycase1",t=6.2)

The setIC function will load this field into u prev, or more precisely, the call
u0 format.allocateAndInit will do the job. For a PDE with only a first-order
time derivative, and hence only one initial conditon, this single adjustment
in the input file is sufficient to continue simulation.

In the present application, however, we also need the solution at t =
6.2 − ∆t. This requires that the previous simulation dumped u at all time
points. The necessary adjustments in the code have been performed in the
Wave1r simulator, located in the subdirectory restart of src/fem/Wave1. The
basic code segment for reading in two fields from a simres database reads

SimResFile simres_file;

simres_file.open(restart_database);

real time_found;

time_found = restart_time;

simres_file.readField(*u_prev, simres_file, "u", time_found);

u_prev->setFieldname("u_prev");

time_found = restart_time-(tip->Delta());

simres_file.readField(*u_prev2, simres_file, "u", time_found);

u_prev2->setFieldname("u_prev2");

482 3. Programming of Finite Element Solvers

The restart database string holds the name of the simres database with the
previous simulation (mycase1 in our example), and restart time is the restart
time (6.2 in our example).

Remarks. In Chapter 3.5 we advocated a representation of coefficients in a
PDE in terms of virtual functions, which could be specified in compact sub-
classes. The representation of variable coefficients in terms of field objects in
the Field hierarchy is another approach to flexible handling of coefficients
in the equation. An advantage of the latter approach is that a range of for-
mats and assignment possibilities are already available, such that deriving
a subclass, defining a function, and then compiling the application, is not
necessary. The ultimate flexibility is of course to apply the field representa-
tion in the base class, but perform the evaluation of the field in a virtual
function. Subclasses can then reimplement the virtual function and, e.g., not
make use of the field representation. The simulator in Chapter 6.1 applies
such a flexible implementation.

We should here remark that the combination of a virtual function calling
a Field’s virtual valueFEM function decreases the computational efficiency. If
the formula to be evaluated is comprehensive, the overhead of virtual function
calls may not be important. Also, if the integrands routine involves compli-
cated expressions inside the double loop over the nodes, the extra work for
calling virtual functions outside the loop may not be significant. From a pro-
file of the code (see page 721 for how to turn on profiling), one can quickly
determine if flexible representation of coefficients is a critical efficiency factor
or not. In the present application we call the evaluation of coefficients only
at the first time step. Thus, avoiding the overhead of virtual functions only
contribute to decreasing the flexibility of the simulator, with negligible effect
on the efficiency in long simulations.

Chapter 4

Nonlinear Problems

This chapter extends the numerical methods and software tools from Chap-
ters 1–3 to nonlinear partial differential equations. Chapter 4.1 deals with
discretization techniques for nonlinear terms in PDEs and algorithms for
solving systems of nonlinear algebraic equations. Software tools supporting
the implementation of the methods in Chapter 4.1 are described in Chap-
ter 4.2. The application areas are limited to scalar PDEs, but the methodol-
ogy in this chapter is straightforwardly applied to systems of PDEs and more
challenging applications in Chapters 5.2, 6.3, and 7.

4.1 Discretization and Solution of Nonlinear PDEs

The present section concerns numerical methods for nonlinear PDEs. A brief
introduction to this topic was given in Chapter 1.3.7. We start with demon-
strating general finite difference and finite element discretization techniques
through some specific examples. The discretization processes lead to systems
of nonlinear algebraic equations. Such systems can be solved iteratively as a
sequence of linear systems. The present chapter deals with two popular it-
eration techniques: Successive Substitutions, also known as Picard iteration,
and the Newton-Raphson method. These methods can also be used at the
PDE level to transform a nonlinear PDE into a sequence of linear PDEs.
In addition, we outline how to embed the Newton-Raphson and Successive
Substitution iterations in continuation methods for solving PDEs with severe
nonlinearities.

4.1.1 Finite Difference Discretization

Let us start with two simple model problems on the unit interval Ω = (0, 1),

d2u

dx2
+ f(u) = 0, u(0) = uL, u(1) = uR, (4.1)

d

dx

(
λ(u)

du

dx

)
= 0, u(0) = uL, u(1) = uR . (4.2)

The functions f(u) and λ(u) are assumed to be nonlinear in u. We shall
discretize these two boundary-value problems by standard finite difference
and finite element methods.

484 4. Nonlinear Problems

The standard finite difference method, as outlined in Chapters 1.3 and
1.3.6, gives rise to schemes of the form

1

h2
(ui−1 − 2ui + ui+1) + f(ui) = 0, (4.3)

1

h2

(
λi+ 1

2
(ui+1 − ui)− λi− 1

2
(ui − ui−1)

)
= 0 . (4.4)

Here, and in other equations, ui is the numerical approximation to u at node i.
A basic problem is that λi+ 1

2
≡ λ(ui+ 1

2
), but ui+ 1

2
is not a primary unknown.

We therefore approximate λi+ 1
2

by, for example, an arithmetic average,

λi+ 1
2

=
1

2
[λ(ui+1) + λ(ui)] . (4.5)

Alternatively, we could employ

λi+ 1
2

= λ(
1

2
(ui + ui+1)) . (4.6)

Due to the appearance of f(ui) and λ(ui), the algebraic equations become
nonlinear.

4.1.2 Finite Element Discretization

We can apply the standard Galerkin finite element method from Chapter 2
to the model problems (4.1) and (4.2). The solution is approximated by a
sum as usual,

u(x) ≈ û(x) =

n∑

j=1

ujNj(x) .

Multiplying the PDEs by weighting functionsNi, i = 1, . . . , n, and integrating
over the domain, utilizing integration by parts of second-order derivatives,
result in a system of algebraic equations. However, the equations are now
nonlinear due to the nonlinear functions λ(u) and f(u). The model problem
(4.1) results in

n∑

j=1

(∫ 1

0

N ′
i(x)N

′
j(x)dx

)
uj =

∫ 1

0

f(

n∑

s=1

usNs(x))Ni(x)dx i = 1, . . . , n .

(4.7)
The essential boundary conditions become u1 = uL and un = uR. The term
on the left-hand side is similar to numerous examples from Chapter 2, but
the integral ∫ 1

0

f(
∑

s

usNs)Nidx,

arising from the nonlinear term f(u) in the PDE, is difficult to treat by
analytical means. Normally, the integral must be computed by numerical

4.1. Discretization and Solution of Nonlinear PDEs 485

integration methods. Let us employ linear finite elements and the trapezoidal
rule (two-point Gauss-Lobatto rule). The contribution from the local nodes
r = 1, 2 in element e becomes

∫ 1

−1

f(

2∑

s=1

ũsÑs(ξ))Ñr(ξ)
h

2
dξ

which is approximated by

h

2

(
f(
∑

s

ũsÑs(−1))Ñr(−1) + f(
∑

s

ũsÑs(1))Ñr(1)

)
=
h

2

{
f(ũ1), r = 1
f(ũ2), r = 2

Notice that ũr here refers to the value of û at local node r. As usual, h is the
element length, which is assumed constant here for simplicity. Assembling
the element contributions gives the following set of global discrete equations:

u1 = uL, (4.8)

1

h
(ui−1 − 2ui + ui+1) + hf(ui) = 0, i = 2, . . . , n− 1, (4.9)

un = uR . (4.10)

This is the same result as we achieved by the finite difference method. If
we use a more accurate integration rule than the trapezoidal rule, the term
hf(ui) becomes more complicated.

Example 4.1. As an illustrative example on the complexity arising from the
nonlinear term f(u) in a finite element context, we choose f(u) = u2 and
evaluate the integral analytically, using linear elements. A useful formula is

∫

Ωe

Np
i N

q
j dx =

p!q!

(p+ q + 1)!
he, p, q ∈ IR, (4.11)

with Ωe being a one-dimensional element (cf. (2.139) and (2.146)). On the

element, û =
∑2

s=1 ũsÑs.

∫

Ωe

f(û)Nrdx =
h

2

∫ 1

−1

(
ũ2

1Ñ
2
1 + 2ũ1ũ2Ñ1Ñ2 + ũ2

2Ñ
2
2

)
Ñrdξ

= h

{
ũ2

1
3!0!

(3+0+1)! + 2ũ1ũ2
2!1!

(2+1+1)! + ũ2
2

1!2!
(1+2+1)! , r = 1

ũ2
1

2!1!
(2+1+1)! + 2ũ1ũ2

1!2!
(1+2+1)! + ũ2

2
0!3!

(0+3+1)! , r = 2

=
h

12

{
3ũ2

1 + 2ũ1ũ2 + ũ2
2, r = 1

ũ2
1 + 2ũ1ũ2 + 3ũ2

2, r = 2

Assembling the contributions gives

h

12

(
3u2

i−1 + 2ui(ui−1 + ui + ui+1) + 3u2
i+1

)
,

486 4. Nonlinear Problems

which can be interpreted as a smoothing of (u2)i according to

h

4

(
u2

i−1 + 2uiūi + u2
i+1

)
, ūi =

1

3
(ui−1 + ui + ui+1) .

�

Turning the attention to the model problem (4.2), the appropriate weighted
residual formulation using a Galerkin approach now reads

n∑

j=1

(∫ 1

0

λ(û)N ′
iN

′
jdx

)
uj = 0, i = 1, . . . , n, (4.12)

with essential conditions u1 = uL and un = uR. The integral involving λ(û)
requires in general numerical integration. Employing linear elements and the
trapezoidal rule, the following analytical formula for the element matrix can
be derived:

λ(ũ1) + λ(ũ2)

2h

(
1 −1
−1 1

)
. (4.13)

Assembling these contributions, we see that the finite element method and
the finite difference method give identical global equations.

Exercise 4.1. .
Derive the expression (4.13) for the element matrix corresponding to finite

element discretization with linear elements and nodal-point integration in
model problem (4.2). Show that the global discrete equations take the form
(4.4), with λi+ 1

2
= (λ(ui) + λ(ui+1))/2. The various steps in the calculations

should be evident from the material on finite element discretization of (4.1).
�

4.1.3 The Group Finite Element Method

We have just seen that when the finite element method is applied to nonlinear
PDEs, the trapezoidal rule is a convenient tool for obtaining analytically
tractable expressions and discrete equations that are similar to those of the
finite difference method. Alternatively, one can apply the group finite element
method, also called the product approximation method. A nonlinear function
f is then represented like this:

f(û) ≈
n∑

j=1

f(uj)Nj .

Such expressions simplify the hand calculation of integrals significantly. For
instance, ∫

Ω

(
∑

j

f(uj)Nj)Nidx =
∑

j

f(uj)

∫

Ω

NiNjdx .

4.1. Discretization and Solution of Nonlinear PDEs 487

At the element level, we recall that the integral
∫

Ω
NiNjdx results in the

mass matrix in (2.93) on page 186. The element vector corresponding to∫
Ω f(û)Nidx therefore becomes

h

6

(
2 1
1 2

)(
f(ũ1)
f(ũ2)

)
=
h

6

(
2f(ũ1) + f(ũ2)
f(ũ1) + 2f(ũ2)

)
.

Using the trapezoidal rule, or other means for lumping the mass matrix,
yields an element vector (f(ũ1), f(ũ2))

Th/2.

Exercise 4.2. .
Use the group finite element representation for λ in (4.12) and derive the

corresponding element matrix. �

By assembling element contributions, we find that the group finite element
method leads to the following system of nonlinear equations in our two model
problems:

1

h
(ui−1 − 2ui + ui+1) +

h

6
(f(ui−1) + 4f(ui) + f(ui+1)) = 0, (4.14)

1

h
(λi+ 1

2
(ui+1 − ui)− λi− 1

2
(ui − ui−1)) = 0 . (4.15)

In the last equation, λi+ 1
2

means exactly 1
2 (λ(ui) + λ(ui+1)). The group fi-

nite element method and nodal-point integration are two features in the finite
element framework that enable us to reproduce certain finite difference ex-
pressions, or alternatively, simplify the “default” finite element equations.

Summary. From the previous examples on finite difference and finite element
discretization of nonlinear PDEs, we observe that model problem (4.2) leads
to a nonlinear system on the special form

A(u)u = b, (4.16)

whereas model problem (4.1) results in a system

Au = b(u) . (4.17)

For a general nonlinear PDE, the nonlinear algebraic equations can be written
in the generic form

F (u) = 0, (4.18)

with F (u) = A(u)u− b and F (u) = Au− b(u) in our two model problems.
In all these expressions, u = (u1, u2, . . . , un)T , with a similar definition of F

and b. Vectors without argument are considered as constant, i.e., independent
of u. The next sections are devoted to solution algorithms for systems of
nonlinear algebraic equations.

488 4. Nonlinear Problems

4.1.4 Successive Substitutions

Nonlinear algebraic systems written as

A(u)u = b

can be solved by a simple iteration technique:

A(uk)uk+1 = b, k = 0, 1, 2, . . .

until ||uk+1−uk|| is sufficiently small. The iteration requires a start vector u0,
and a frequent choice is u0 = 0. The direct application of this scheme to (4.4)
is trivial. The present iteration strategy is often referred to as Picard iteration
or the method of Successive Substitutions. Another name is simple iterations
[43]. We will stick to the term Successive Substitutions in the following.

Similar equations, like Au = b(u), are of course also good candidates for
the Successive Substitution technique:

Auk+1 = b(uk), k = 0, 1, 2,

The convergence of such iterations can be studied in terms of contraction
mappings [63,33], but the direct practical applicability of the results to spe-
cific PDEs seems somewhat limited.

If the Successive Substitution method has problems with convergence, one
can try a relaxation technique. This consists in first computing a tentative
new approximation u∗ from A(uk)u∗ = b or Au∗ = b(uk) and then set
uk+1 as a weighted mean of the previous value uk and the new u∗:

uk+1 = ωu∗ + (1− ω)uk,

where ω ∈ (0, 1] is a prescribed relaxation parameter.

4.1.5 Newton-Raphson’s Method

One Nonlinear Equation with One Unknown. Let us describe the famous and
widely used Newton-Raphson method first for a single nonlinear equation
F (u) = 0 in one scalar variable u. We assume that an approximation uk to
u is available, and our aim is to compute an improved approximation. The
idea consists of approximating F (u) in the vicinity of uk, F (u) ≈ M(u;uk),
such that M(u;uk) = 0 is an equation that is simple to solve. Its solution
is taken as an improved approximation uk+1 to the root u of F (u) = 0. We
may take M(u;uk) as the linear part of a Taylor-series approximation to F
at the point u = uk:

M(u;uk) = F (uk) +
dF

du
(uk)(u− uk) .

4.1. Discretization and Solution of Nonlinear PDEs 489

We then let uk+1 be the solution of M(u;uk) = 0, that is, we solve the
equation M(uk+1;uk) = 0 with respect to uk+1 and get

uk+1 = uk − F (uk)
dF
du (uk)

.

This is the Newton-Raphson iteration scheme for solving F (u) = 0. The
convergence rate is quadratic, i.e.,

|u− uk+1| ≤ C|u− uk|2

for a constant C, if u0 is sufficiently close to the solution u [33].

Systems of Nonlinear Equations. The Newton-Raphson procedure can easily
be extended to multi-dimensional problems F (u) = 0. We approximate F (u)
by a linear function M(u; uk) in the vicinity of an existing approximation
uk to u:

M(u; uk) = F (uk) + J(uk) · (u− uk),

where J ≡ ∇F is the Jacobian of F . If F = (F1, . . . , Fn)T and u =
(u1, . . . , un)T , entry (i, j) in J equals ∂Fi/∂uj. In order to find the next ap-
proximation uk+1 from M(uk+1; uk) = 0, we have to solve a linear system
with J as coefficient matrix. The idea of relaxation as we explained for the
Successive Substitution method can be applied to Newton-Raphson iteration
as well; the new solution uk+1 is set equal to weighted mean of the previous
solution uk and the solution u∗ found from the equation M(u∗; uk) = 0. The
computational steps are summarized in Algorithm 4.1. We have introduced
the notation δuk+1 = uk+1−ukl, since this is usual in the Newton-Raphson
method.

Algorithm 4.1.

Newton-Raphson’s method with relaxation.

given a guess u0 for the solution of F (u) = 0,
for k = 0, 1, 2, . . ., until termination criterion is fulfilled

solve the linear system J(uk)δuk+1 = −F (uk) wrt. δuk+1

set uk+1 = uk + ωδuk+1

In the following examples we will mostly apply the Newton-Raphson method
with ω = 1. Relevant termination criteria for the method are

||uk+1 − uk|| ≤ εu or ||F (uk+1)|| ≤ εr,
or variants where ratios are used instead, for example,

||uk+1 − uk||
||uk|| ≤ εu or

||F (uk+1)||
||F (u0)|| ≤ εr .

490 4. Nonlinear Problems

The reader should discuss how to work with these criteria and choose toler-
ances εu and εr when u is a very small quantity, when u is of order unity,
and when u0 is sufficiently close to u to make F (u0) very small.

Example 4.2. The finite difference approximation to −u′′ = f(u) leads to the
nonlinear algebraic equations (4.3), where

Fi ≡
1

h2
(ui−1 − 2ui + ui+1) + f(ui) = 0 .

Calculation of J is normally done by analytic differentiation of the discrete
nonlinear equations. The only nontrivial term to differentiate is the term
f(ui). The contribution to entry (i, j) in J from f(ui) then becomes

∂

∂uj
f(ui) =

{
f ′(ui), i = j
0, i 6= j

(4.19)

We can now set up the coefficient matrix of the linear system in each Newton-
Raphson iteration:

Ji,j ≡
∂Fi

∂uj
=

1

h2

1, j = i− 1
−2 + h2f ′(ui), j = i
1, j = i+ 1
0, j < i− 1 or j > i+ 1

The equations to be solved in each iteration,
∑n

j=1 Ji,jδu
k+1
j = −Fi, for the

indices i = 2, . . . , n− 1, then reduce to

1

h2

(
δuk+1

i−1 + (−2 + h2f ′(uk
i))δuk+1

i + δuk+1
i+1

)
=

− 1

h2
(uk

i−1 − 2uk
i + uk

i+1)− f(uk
i), (4.20)

where δui is component i in the solution vector δu in the system Jδu = −F .
For i = 1, n we have the equation δuk+1

i = 0 if u0
1 = uL and u0

n = uR. �

Example 4.3. The standard finite element representation of the nonlinear
term f(u) appears as

Si ≡
∫

Ω

f(
∑

s

usNs)Nidx .

For calculating the (i, j) entry in J we need

∂

∂uj
f(
∑

s

usNs) =
df

dû

∂û

∂uj
= f ′(û)

∂

∂uj

∑

s

usNs = f ′(
∑

s

usNs)Nj .

Thus,
∂Si

∂uj
=

∫

Ω

f ′(
∑

s

usNs)NjNidx . (4.21)

4.1. Discretization and Solution of Nonlinear PDEs 491

Alternatively, we can apply the group finite element approximation to the
nonlinear term f(u). The associated finite element form reads

S̄i ≡
∫

Ω

∑

s

Nsf(us)Nidx .

The (i, j) entry in J now becomes

∂S̄i

∂uj
=

∫

Ω

f ′(uj)NjNidx = f ′(uj)

∫

Ω

NiNjdx .

Employing nodal-point integration gives the same results as in the finite
difference case (the details are left for Exercise 4.3), otherwise we get a mass
matrix-like contribution from the f(u) term as we showed in the derivation
of (4.14). �

Example 4.4. Let us consider a multi-dimensional nonlinear problem,

−∇ · (λ(u)∇u) = f(x),

with homogeneous Neumann conditions on the boundary of a domain Ω ⊂
IRd and

∫
Ω fdΩ = 0 for consistency. The Galerkin formulation leads to the

nonlinear equations

Fi ≡
∫

Ω

(λ(û)∇Ni · ∇û− fNi) dΩ = 0 .

The associated (i, j) entry in J becomes

Ji,j ≡
∂Fi

∂uj
=

∫

Ω

(λ′(û)Nj∇Ni · ∇û+ λ(û)∇Ni · ∇Nj) dΩ .

�

More generally, we can think of nonlinear terms written as

λ = λ(û, û,1, û,2, û,3),

where û,r is a short form for differentiation with respect to xr, that is, û,r ≡
∂û/∂xr (cf. Appendix A.2). When û =

∑
j ujNj we now get

∂λ

∂uj
=
∂λ

∂û
Nj +

d∑

r=1

∂λ

∂û,r

∂û,r

∂uj

=
∂λ

∂û
Nj +

d∑

r=1

∂λ

∂û,r

∂Nj

∂xr
.

One relevant example is λ = ||∇û||q , see Exercise 4.7.

492 4. Nonlinear Problems

Example 4.5. As shown in Example 4.4, the concepts for solving 1D problems
are readily extended to 2D and 3D in the finite element framework. The finite
difference method, however, involves some additional technical details when
extending the 1D techniques to higher dimensions. Consider, for instance,
−∇2u = f(u) with u = 0 on the boundary. In 2D we can use the scheme
[δxδxu+ δyδyu = −f(u)]i,j . The equations and unknowns are now naturally
numbered by double indices, like (i, j). Equation no. (i, j) is written as Fi,j =
0, where

Fi,j ≡
1

h2
(ui,j−1 + ui−1,j + ui+1,j + ui,j+1 − 4ui,j) + f(ui,j), (4.22)

when ∆x = ∆y = h. The equation system in each Newton-Raphson iteration
can be written ∑

`

∑

m

∂Fi,j

∂u`,m
δu`,m = −Fi,j .

We realize that ∂Fi,j/∂u`,m vanishes if not (`,m) are “close to” (i, j). More
precisely, from (4.22) we see that

∂Fi,j

∂u`,m
= 0 if ` 6= i− 1, i, i+ 1 or m 6= j − 1, j, j + 1 .

We can calculate the individual nonvanishing derivatives:

∂Fi,j

∂ui−1,j
=

1

h2
,

with an identical result for the derivatives with respect to ui+1,j , ui,j−1, and
ui,j+1. Furthermore,

∂Fi,j

∂ui,j
= − 4

h2
+ f ′(ui,j) .

The linear equations to be solved in an iteration can be written as follows:

1

h2

(
δuk+1

i,j−1 + δuk+1
i−1,j + δuk+1

i+1,j + δuk+1
i,j+1 − 4δuk+1

i,j

)
+ f ′(ui,j)δui,j =

− 1

h2

(
uk

i,j−1 + uk
i−1,j + uk

i+1,j + uk
i,j+1 − 4uk

i,j

)
− f(uk

i,j) (4.23)

If we want to apply Neumann conditions at the boundary, we must modify
the equations where the indices (i, j) correspond to a boundary point. Since
δui,j is a correction vector, its Neumann conditions should also vanish if u
has prescribed (possibly nonhomogeneous) Neumann conditions and these
are incorporated in the initial guess for the iteration1.

In a certain sense the finite element method in Example 4.4 involves fewer
technical details for calculating J in the problem corresponding to (4.23). The

1 See Example C.1 on page 791 and the associated software for implementational
details.

4.1. Discretization and Solution of Nonlinear PDEs 493

main reason for this is that the finite element method applies a single index
for numbering the equations and the unknowns, regardless of the number of
space dimensions.

The resulting coupled system of equations for δui,j can be solved by the
same type of methods that are relevant for the corresponding linear equation
−∇2u = f(x), see Appendix C. �
Exercise 4.3. .

Express the integral in (4.21) over one element in the reference coordinate
system. Assume linear Ñi(ξ) and evaluate the integral by the trapezoidal rule.
Interpret thereafter (4.21) as a general integral over a global domain Ω ∈ IRd

and employ a trapezoidal rule directly:
∫

Ω
g(x)Ω ≈ ∑n

q=1 q(x
[q])wq , where

wq are the weights in the trapezoidal rule. Compare the results for ∂Si/∂uj

with the expression (4.19) arising in a finite difference context. �
Exercise 4.4. .

Identify F in (4.4) and the J matrix. Specialize the formulas for the
entries in J to the case λ(u) = 1 + u2. �
Exercise 4.5. .

Explain why discretization of nonlinear PDEs by finite difference and
finite element methods normally leads to a J matrix with the same sparsity
pattern as one would encounter in an associated linear problem. �
Exercise 4.6. .

Show that if F (u) = 0 is a linear system of equations, Newton-Raphson’s
method (with ω = 1) finds the correct solution in the first iteration. �
Exercise 4.7. .

The operator ∇ · (λ∇u), with λ = ||∇u||q , q ∈ IR, and || · || being the
Eucledian norm, appears in several physical problems, especially flow of non-
Newtonian fluids (see Chapter 7.2). The quantity ∂λ/∂uj is central when
formulating a Newton-Raphson method, where uj is the coefficient in the
finite element approximation u ≈ û =

∑
j ujNj . Show that

∂

∂uj
||∇û||q = q||∇û||q−2∇û · ∇Nj .

�
Exercise 4.8. .

Consider the 3D equation −∇ · (λ(u)∇u) = f(u), with u known on the
boundary. Formulate a second-order accurate finite difference method for dis-
cretizing the equation, with Newton-Raphson’s method for solving systems
of nonlinear algebraic equations. Apply for simplicity Gauss-Seidel or SOR
iteration, described in Appendix C.1, for solving the linear system in each
Newton-Raphson iteration. Write the complete algorithm on implementa-
tional form. (The algorithm can be implemented as a small extension of the
program associated with Example C.1 on page 791.) �

494 4. Nonlinear Problems

4.1.6 A Transient Nonlinear Heat Conduction Problem

We shall now work through a complete nonlinear and time-dependent PDE
case. The model problem of current interest is

%C
∂u

∂t
= ∇ · [κ(u)∇u] , x ∈ Ω ⊂ IRd, t > 0, (4.24)

u(x, t) = g(x, t), x ∈ ∂ΩE , t > 0, (4.25)

u(x, 0) = I(x), x ∈ Ω, t = 0 . (4.26)

This mathematical model describes heat conduction in a body Ω, with κ(u)
being the heat conduction coefficient, which depends on the temperature
level, % is the density of the body, and C is the heat capacity. The primary
unknown u(x, t) is the temperature in the body. To simplify the PDE, we can
divide by %C and introduce λ(u) = κ(u)/(%C). At the complete boundary
∂ΩE of Ω, the temperature is prescribed, according to the function g, while
for t = 0 the temperature distribution is described by I(x).

Equation (4.24) is discretized using the weighted residual method in space
and the finite difference method in time. The time-discrete function u`(x) will
be used to denote the approximation to u(x, t`), where t` is the time level.

A fully implicit backward Euler scheme is used for the time discretization
and results in a sequence of nonlinear spatial problems:

u` − u`−1

∆t
= ∇ ·

[
λ(u`)∇u`

]
, x ∈ Ω ⊂ IRd, ` = 1, 2, . . . , (4.27)

u`(x) = g(x), x ∈ ∂ΩE , (4.28)

u0(x) = I(x), x ∈ Ω . (4.29)

We then seek

u`(x) ≈ û`(x) =

n∑

j=1

u`
jNj(x) .

Inserting û in the time-discrete governing equations (4.27)–(4.29), requiring
the residual to be orthogonal to n weighting functions Wi, i = 1, . . . , n, and
integrating the

∫
Ω
∇ · [λ(u)∇u]WidΩ term by parts, lead to a system of

nonlinear algebraic equations at each time level:

Fi(u
`
1, . . . , u

`
n) = 0, i = 1, . . . , n,

where

Fi ≡
∫

Ω

[(
û` − û`−1

)
Wi +∆tλ(û`)∇û` · ∇Wi

]
dΩ . (4.30)

The quantity û`−1 is considered as known and û` is to be determined by
solving the nonlinear equations Fi = 0 with respect to u`

1, . . . , u
`
n.

Let us first use Newton-Raphson’s method to solve the system of nonlinear
algebraic equations at each time level. Let u`,k

j denote the approximation

4.1. Discretization and Solution of Nonlinear PDEs 495

to u`
j in the kth iteration of the Newton-Raphson method, and let û`,k be

the corresponding approximation to û`, that is, û`,k =
∑

j u
`,k
j Nj . In each

iteration of the Newton-Raphson method, a linear system must be solved for
the correction δu`,k+1

1 , . . . , δu`,k+1
n . Observe that when evaluating Ji,j and

−Fi, we use u values from the previous iteration (u`,k
j). The entries in the

Jacobian take the form

Ji,j ≡
∂Fi

∂u`
j

=

∫

Ω

[
WiNj + ∆t

dλ

dû
(û`,k)Nj∇Wi · ∇û`,k

+ ∆tλ(û`,k)∇Wi · ∇Nj

]
dΩ . (4.31)

The formula for the right-hand side is simply −Fi with û` replaced by û`,k

in (4.30).

Exercise 4.9. .
When solving Fi = 0 by Successive Substitutions, we end up with a linear

system in each iteration that can be written as

n∑

j=1

Ki,j(u
`,k
1 , . . . , u`,k

n)u`,k+1
j = bi .

Derive formulas for Ki,j and bi. �

Exercise 4.10. .
Replace (4.25) by the cooling law

−κ(u)∂u
∂n

= α(u− US),

where α is a constant heat transfer coefficient and US is the surrounding
(constant) temperature. How are (4.30) and (4.31) modified by this boundary
condition? �

Exercise 4.11. .
Extend Exercise 4.10 to the case where the cooling law is nonlinear:

−κ(u)∂u
∂n

= α(u)(u− US) .

�

Exercise 4.12. .
Many heat conduction applications involve large temperature variations

such that the density % and heat capacity C, which in principle depend on the
temperature, can no longer be considered as constant. The governing PDE
for the temperature u then takes the form

%(u)C(u)
∂u

∂t
= ∇ · (κ(u)∇u), x ∈ Ω ⊂ IRd . (4.32)

496 4. Nonlinear Problems

Formulate a finite element method for this PDE (choose appropriate bound-
ary conditions). Derive formulas for the element matrix and vector in the
linear system to be solved in each iteration of a Newton-Raphson method for
this problem. �

Exercise 4.13. .
As a continuation of Exercise 4.12, we shall use a group finite element

method for the nonlinear coefficients:

%(u)C(u) ≈
n∑

q=1

%(uq)C(uq)Nq,

with a similar expansion of κ(u). Restrict the problem to one space dimension
and linear elements. Develop the expressions for the element matrix and
vector using analytical integration (hint: (4.11) is useful). �

Example 4.6. Transient nonlinear PDEs, like (4.32), can be solved by explicit
finite differences in time, thus avoiding solution of large systems of nonlinear
algebraic equations at each time level. Discretizing (4.32) by a forward Euler
method leads to

u` = u`−1 +∆t
(
%(u`−1)C(u`−1)

)−1∇ · (κ(u`−1)∇u`−1) .

This discretization has a truncation error of order ∆t, while the stabil-
ity criterion, according to Example A.18 on page 698, is roughly ∆t ≤
h2(%C)min/(2κmax), where h is a characteristic spatial mesh size. More pre-
cisely, h2 is the harmonic mean of ∆x2 and ∆y2 for a finite difference dis-
cretization on a uniform grid, see (A.42). Finite element discretization with a
consistent mass matrix reduces the critical ∆t for stability by a factor 1/

√
3,

cf. Chapter 2.4.3.
To improve the accuracy of the time discretization, we could apply a Leap-

Frog scheme (see also page 145) where we approximate (4.32) at time level `
by a second-order accurate centered time difference, involving the levels `−1
and `+ 1. That is,

%(u`)C(u`)
u`+1 − u`−1

2∆t
= ∇ · (κ(u`)∇u`),

which is an explicit scheme for u`+1. Unfortunately, stability analysis of the
linear version of the discrete equation shows that the scheme is unstable for
all choices of ∆t > 0, see [133].

�

Exercise 4.14. .
Consider the 1D nonlinear PDE

∂u

∂t
+

∂

∂x
f(u) = 0, (4.33)

4.1. Discretization and Solution of Nonlinear PDEs 497

on an interval (0, 1) with some initial condition u(x, 0) = I(x) and a boundary
condition u = 1 at x = 0. A backward scheme in time and centered differences
in space,

[δ−t u+ δ2xf(u)]`i = 0,

result in nonlinear algebraic equations for u`
i . Derive the nonlinear system,

apply the Newton-Raphson method, and set up the linear system to be solved
in each iteration. How can you formulate a finite element method that results
in the same discrete equations?

An alternative scheme for this PDE can use a forward difference in time
and a backward difference in space,

[δ+t u+ δ−x f(u) = 0]`i .

This scheme is explicit. How can such a scheme be generated by some finite
element method? (Hint: see Exercise 2.20.) Some other (and better) explicit
finite difference methods for the present PDE are listed in Project 1.8.4. We
also note that the PDE in Project 1.5.1 arises as a special case when f(u) = u.
�

Another popular technique for solving transient nonlinear PDE is operator
splitting. The original equation is then split into two or more simpler equa-
tions, often such that only linear equations need to be solved. This strategy
is exemplified in Project 4.3.1. Operator splitting is particularly convenient
when solving systems of PDEs. Examples are provided in Chapters 6.2.2,
6.2.4, 6.2.5, 6.4.1, 6.5.1, 7.1.2, and 7.2.2.

4.1.7 Iteration Methods at the PDE Level

The ideas of the Newton-Raphson method and Successive Substitutions can
be used directly at the PDE level, prior to any discretization. This means
that we formulate an iteration method that replaces a nonlinear PDE by a
sequence of linear PDEs. For each linear PDE we can apply standard dis-
cretization methods, and these will of course lead to linear systems2. Thus,
there is no need for solving systems of nonlinear algebraic equations.

Consider the model problem (4.1). The Successive Substitution strategy
can be applied at the PDE level by solving for uk+1 using the previously
computed uk in the nonlinear term:

− d2u

dx2

k+1

= f(uk), k = 0, 1, 2, . . . (4.34)

2 The more mathematically-oriented reader will of course be conserned about the
existence, uniqueness, and stability of the solutions of the linearized PDEs, or
the convergence of the sequence of solutions of the linear problems towards the
solution of the original nonlinear PDE.

498 4. Nonlinear Problems

Similarly, model problem (4.2) can be handled by the iteration

d

dx

(
λ(uk)

du

dx

k+1
)

= 0, k = 0, 1, 2, . . . (4.35)

In the Successive Substitution method the unknown function uk+1(x) must
obey the same boundary conditions as the exact solution u(x).

Exercise 4.15. .
Show that the resulting sequence of linear systems in model problem (4.1)

and (4.2) is independent of whether we first use Successive Substitution and
then discretize the linear PDEs or we first discretize the PDEs and then
apply Successive Substitutions to the resulting nonlinear algebraic equation
systems. Consider both finite difference and finite element discretization. �

To formulate a Newton-Raphson inspired method, we might proceed as
follows. We start with writing a new approximation uk+1 to u as

uk+1 = uk + δuk .

If the function uk+1(x) is close to the exact solution u(x) of the PDE, the
correction function δuk(x) is “small” in some sense, and products of δuk

quantities can be neglected. Inserting uk+1 = uk + δuk in the nonlinear term
f(u) gives, upon Taylor-series expansion and omitting higher-order terms in
δuk:

f(uk+1) = f(uk) + f ′(uk)δuk +
1

2
f ′′(uk)δukδuk + · · · ≈ f(uk) + f ′(uk)δuk .

Hence, we obtain the following PDE for the correction δuk:

−d
2u

dx2

k

− d2

dx2
δuk = f(uk) + f ′(uk)δuk,

which is more conveniently reordered as

d2

dx2
δuk + f ′(uk)δuk = −

(
d2u

dx2

k

+ f(uk)

)
. (4.36)

If uk obeys the prescribed essential boundary conditions, we realize that δuk

must vanish on the boundary. Notice that the right-hand side of (4.36) is the
residual in the PDE in interation k, in the same way as we in the discrete
Newton-Raphson method have the residual F (uk) on the right-hand side of
the equation to be solved in each iteration. The computational procedure for
(4.1) is summarized in Algorithm 4.2.

4.1. Discretization and Solution of Nonlinear PDEs 499

Algorithm 4.2.

Newton-Raphson’s method at the PDE level.

given a guess u0 for the PDE (4.1): −u′′ = f(u),
such that u0(0) = uL, u

0(1) = uL

for k = 0, 1, 2, . . . until termination criterion is fulfilled
solve (4.36), with δuk(0) = δuk(1) = 0, with respect to δuk

set uk+1 = uk + δuk+1

Let us compute the resulting discrete equations that arise from Algo-
rithm 4.2. For notational simplicity we drop the superscript k. Using the
finite difference method, a typical linear system takes the form

1

h2
(δui−1 − 2δui + δui+1) + f ′(ui)δui = − 1

h2
(ui−1 − 2ui + ui+1)− f(ui) .

Comparing this equation with (4.20) shows that the Newton-Raphson method
at the PDE level is mathematically equivalent to the Newton-Raphson method
at the algebraic equation level in this particular example. When it comes
to the finite element method, the only difference is the term f ′(uk)δuk, or
f ′(u)δu without the superscript k, which results in an integral

∫

Ω

f ′(
∑

s

usNs)δuNidx .

This is indeed equivalent to (note that δu =
∑

j Njδuj)

∑

j

∫

Ω

f ′(
∑

s

usNs)NjNidx δuj =
∑

j

∂Si

∂uj
δuj ,

where ∂Si/∂uj is the term that arose from the traditional Newton-Raphson
method in (4.21). This means that the two versions of the Newton-Raphson
method result in identical equations also in the finite element case.

Exercise 4.16. .
Use the Newton-Raphson method at the PDE level to solve the nonlinear

problem (4.2). Compare the equations of the resulting linear systems with
those generated by the traditional Newton-Raphson method. Apply both
finite element and finite difference discretization. �

Exercise 4.17. .
We consider the 2D extension of Exercise 4.16, that is, the same PDE

as addressed in Examples 4.4 and 4.5. Apply a Newton-Raphson method
at the PDE level and see if this approach is more straightforward than the
techniques in Examples 4.4 and 4.5. �

500 4. Nonlinear Problems

Exercise 4.18. .
In this exercise we shall investigate iteration methods at the PDE level

for time-dependent problems. The model equation takes the form

β(u)
∂u

∂t
+

∂

∂x
f(u) =

∂

∂x

(
k(u)

∂u

∂x

)
+ g(u) . (4.37)

Discretize this equation in time by some appropriate method, e.g., the θ–
rule. Then apply the Newton-Raphson method at the PDE level and derive
the linear system to be solved in each iteration both for finite difference
and finite element discretizations. As an alternative, discretize in space first
and thereafter apply the Newton-Raphson method to the nonlinear algebraic
systems. Compare the results of the two strategies. �

4.1.8 Continuation Methods

When solving PDEs with severe nonlinearities, the Newton-Raphson or the
Successive Substitution method may diverge. Relaxation with ω < 1 may
help, but in highly nonlinear problems it can be necessary to introduce a
continuation parameter Λ in the problem. For Λ = 0 the problem is easy to
solve, and when Λ = 1 we recover the original problem. The idea is then to
increase Λ in steps, from zero to unity, and use the solution corresponding to
the most recent Λ value as start vector for a new nonlinear iteration. This
approach is often referred to as a continuation method.

Suppose we intend to solve the equation from Exercise 4.7,

∇ · (||∇u||q∇u) = 0

with some appropriate boundary conditions. We see that when q = 0, the
problem is easy to solve. Introducing Λ ∈ [0, 1] as the continuation parameter,
we can solve the sequence of systems for the functions u0, u1, u2, . . . :

∇ ·
(
||∇ur||Λq∇ur

)
= 0, Λ = Λr, r = 0, 1, 2, ...,m,

where 0 = Λ0 < Λ1 < · · · < Λm = 1. The nonlinear problem for ur, r > 0, is
solved using ur−1 as an initial guess for the nonlinear iteration. Notice that
u0 is found from a linear PDE.

The sequence Λr, r = 1, . . . ,m− 1, depends on physical insight into the
mathematical model and should hence be given by the user. If convergence
problems are faced with a particular Λr value, one can apply a bisection-like
algorithm and try to solve the problem corresponding to Λ∗ = (Λr +Λr−1)/2.
If this Λ∗ also leads to divergence of nonlinear solvers, a new Λ value can
obtained from halving the interval [Λr−1, Λ

∗]. Algorithm 4.3 summarizes the
steps in the continuation method.

4.2. Software Tools for Nonlinear Finite Element Problems 501

Algorithm 4.3.

Continuation method for nonlinear problems.

r = 0
while r ≤ m

r ← r + 1
Λ = Λr

solve PDE problem with this Λ
if nonlinear solver diverges and r > 0

Λ̄ = Λr−1

do
Λ← (Λ+ Λ̄)/2
solve PDE problem with this Λ

while nonlinear solver diverges
r ← r − 1

Although most of Diffpack’s tools for nonlinear iteration methods are de-
scribed in the next section, the tools supporting continuation methods are
briefly described on page 650, where the severe nonlinearities in the applica-
tion demand a continuation method.

4.2 Software Tools for Nonlinear Finite Element

Problems

We shall demonstrate the software tools in Diffpack for solving nonlinear
PDEs by considering the specific model from Chapter 4.1.6. The reader
should have a thorough understanding of the numerics in Chapter 4.1.6 before
proceeding with the following text. Our purpose here is to create a simulator
class NlHeat1 for the nonlinear model problem. It will become evident that
class NlHeat1 is only a slight extension of class Heat1 from Chapter 3.10.

4.2.1 A Solver for a Nonlinear Heat Equation

A typical Diffpack simulator for nonlinear PDEs takes the following form.

class NlHeat1 : public FEM, public NonLinEqSolverUDC

{

protected:

// general data:

Handle(GridFE) grid; // finite element grid

Handle(DegFreeFE) dof; // field <-> linear system mapping

Handle(FieldFE) u; // primary unknown

Handle(FieldFE) u_prev; // u at previous time step

502 4. Nonlinear Problems

Handle(TimePrm) tip; // time step etc

Vec(real) linear_solution;

Handle(LinEqAdmFE) lineq; // linear system & solution

Handle(SaveSimRes) database;

virtual void setIC();

virtual void timeLoop();

virtual void solveAtThisTimeStep();

virtual void fillEssBC();

virtual void integrands (ElmMatVec& elmat, const FiniteElement& fe);

// extensions for nonlinear problems:

Vec(real) nonlin_solution;

Handle(NonLinEqSolver_prm) nlsolver_prm;

Handle(NonLinEqSolver) nlsolver;

virtual void makeAndSolveLinearSystem ();

virtual real lambda (real u); // nonlinear coefficient

virtual real dlambda (real u); // derivative of lambda

public:

NlHeat1 ();

~NlHeat1 () {}

virtual void adm (MenuSystem& menu);

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan ();

virtual void solveProblem ();

virtual void resultReport ();

};

The nonlin solution vector contains the solution of the system of nonlinear
algebraic equations, whereas the linear solution vector holds the solution of
the linear system that must be solved in each nonlinear iteration. Notice that
in the Successive Substitution method (Picard iteration) these two vectors
are equal, whereas they differ in the Newton-Raphson method. The nonlinear
solver has handles to nonlin solution and linear solution, such that these
vectors can be updated by the solution algorithm.

In Diffpack there is a class hierarchy for solving systems of nonlinear alge-
braic equations. The base class of this hierarchy is NonLinEqSolver. It defines
the virtual function solve, which solves the system of equations. Various sub-
classes implement specific nonlinear solvers. For instance, class NewtonRaphson
offers the Newton-Raphson method. To initialize a nonlinear solver, we use

4.2. Software Tools for Nonlinear Finite Element Problems 503

a parameter object of class NonLinEqSolver prm whose contents can be filled
from the menu.

The initialization of the new data structures related to nonlinear systems
and solvers is performed in NlHeat1::scan. Compared with, e.g., Heat1::scan,
we need the following additional statements:

// create parameter objects this way:

nlsolver_prm.rebind (NonLinEqSolver_prm::construct());

nlsolver_prm->scan (menu);

// create iteration method (subclass of NonLinEqSolver):

nlsolver.rebind (nlsolver_prm->create());

nonlin_solution.redim (dof->getTotalNoDof());

linear_solution.redim (dof->getTotalNoDof());

lineq->attach (linear_solution);

nlsolver->attachUserCode (*this);

nlsolver->attachNonLinSol (nonlin_solution);

nlsolver->attachLinSol (linear_solution);

The dof->getTotalNoDof() call returns the number of unknowns in the al-
gebraic systems. As an alternative, we could have used u->getNoValues() or
grid->getNoNodes()3 . The last three statements bind handles in the nonlin-
ear solver class to our simulator and the two central vectors in the solution
algorithm.

The solution of a system of nonlinear algebraic equations is accomplished
by a call nlsolver->solve().

Iterative methods for nonlinear systems usually require a linear system to
be solved in each iteration. The simulator class is responsible for calculating
this linear system and solving it by appropriate methods in the function

void makeAndSolveLinearSystem ();

This is a virtual function declared by the base class NonLinEqSolverUDC. The
nonlinear solver just sees the simulator class through a NonLinEqSolverUDC

interface and assumes that there exists a function makeAndSolveLinearSystem

in a subclass of NonLinEqSolverUDC. This explains why our simulator is derived
from class NonLinEqSolverUDC.

The makeAndSolveLinearSystem function must set up and solve the rele-
vant linear system and store the solution in the vector that was attached
by nlsolver->attachLinSol, i.e., linear solution. This design gives the pro-
grammer of the simulator class total control of the critical and problem de-
pendent part of nonlinear solution algorithms, namely the specification and
the solution of the linear systems. Notice that the definition of the nonlinear
equations to be solved is implicitly contained in the definition of the linear

3 This latter call cannot be used for determining the size of the linear and nonlinear
solution vectors if there is more than one unknown per node.

504 4. Nonlinear Problems

system. Below is a suitable makeAndSolveLinearSystem function for our model
problem.

void NlHeat1:: makeAndSolveLinearSystem ()

{

dof->vec2field (nonlin_solution, *u); // copy most recent guess to u

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)

// essential boundary conditions must be set to zero because

// the unknown vector in the linear system is a correction

// vector (assume that nonlin_solution has correct ess. bc.)

dof->fillEssBC2zero();

else

// normal (default) treatment of essential boundary conditions

dof->unfillEssBC2zero();

makeSystem (*dof, *lineq);

// init start vector (linear_solution) for iterative linear solver:

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)

// start for a correction vector (expected to be close to 0):

linear_solution.fill (0.0);

else

// use the most recent nonlinear solution:

linear_solution = nonlin_solution;

lineq->solve(); // invoke a linear system solver

// the solution of the linear system is now available

// in the vector linear_solution

}

The most recent nonlinear solution is contained in nonlin solution. In the
integrands function it is convenient to have the most recent values of u avail-
able in the field u. We therefore set u equal to nonlin solution. Of course,
integrands could access nonlin solution, but the code is more readable if we
use u when evaluating nonlinear coefficients in the PDE. Problems involving
systems of PDEs, solved simultaneously in a common large system of non-
linear algebraic equations, normally require loading of nonlin solution into
various fields, because the indexing in nonlin solution is then quite com-
plicated. Recall that the DegFreeFE class keeps track of the transformation
between degrees of freedom in a field (FieldFE or FieldsFE) and the ordering
of the unknowns in a linear system (where the field values are collected in a
single long vector). The switching between the field representation and the
vector representation is therefore performed by DegFreeFE and its member
functions field2vec and vec2field.

4.2. Software Tools for Nonlinear Finite Element Problems 505

If the Newton-Raphson method is used to solve the nonlinear equations,
the solution vector of each linear subsystem is a correction vector. This means
that the essential boundary conditions to be enforced in these linear subsys-
tems must be zero since it is assumed that the start vector for the nonlinear
iteration contains the correct essential boundary condition values. The call
to DegFreeFE::fillEssBC2zero ensures that nonzero essential condition values
will be treated as zero values when inserted in a linear system. To turn this
option off (default), there is a corresponding unfillEssBC2zero function.

We should emphasize a very important aspect of the linear solution

vector. If iterative solvers are used to solve the linear subsystem in each
nonlinear iteration, the contents of linear solution will affect the behavior
of the iterative solvers4. Usually, one should fill the vector with a “good
guess” of the solution. Since it is a correction vector, the expected entries
will be small and the 0-vector may be a satisfactory guess. If one forgets to
initialize the linear solution vector, it may contain undefined values which
may lead to serious run-time errors when running iterative solvers for linear
systems. Always remember to explicitly initialize vectors that are used as
solution vectors in iterative methods! If strange errors arise from iterative
methods, check both the menu choice of the start vector and the contents of
the vector.

As we see from the code segment in makeAndSolveLinearSystem,

nlsolver->getCurrentState().method

gives access to the current solution method for nonlinear equations. Since
the linear subsystem in each nonlinear iteration will depend on the type of
nonlinear solver, we need to impose appropriate tests both in the function
makeAndSolveLinearSystem and in integrands.

Inside the time loop, the spatial problem at the current time level is solved
by a call to solveAtThisTimeStep:

void NlHeat1:: solveAtThisTimeStep ()

{

fillEssBC (); // set essential boundary condition

// initialize nonlin_solution with the nonlinear solution at

// the previous time step:

dof->field2vec (*u_prev, nonlin_solution);

// if there are new BC at this time step, update the present guess:

dof->insertEssBC (nonlin_solution);

// call nonlinear solver:

4 To be more precise, the user can choose between several types of start vectors for
iterative solvers on the menu, see page 844. The default option is to apply the
solution vector as it is when the iteration starts.

506 4. Nonlinear Problems

s_o << "t=" << tip->time() << ’\n’;

bool converged = nlsolver->solve ();

// load nonlinear solution found by the solver into the u field:

dof->vec2field (nonlin_solution, *u);

To obtain a start vector for the nonlinear iteration, the u field from the
previous time step is loaded into nonlin solution. This is performed by
the DegFreeFE::field2vec function. Thereafter, essential boundary condi-
tions are inserted in the start vector (nonlin solution) to improve the qual-
ity of the initial guess. Notice that the essential boundary conditions may
in general change with time such that the filling of essential conditions in
nonlin solution must be carried out at each time step.

The integrands function is as usual the most central function in a Diff-
pack finite element simulator. A possible implementation of integrands in the
present model problem is listed next. We use a Galerkin method so Wi = Ni

in the formulas from Chapter 4.1.6.

void NlHeat1:: integrands(ElmMatVec& elmat,const FiniteElement& fe)

{

const real dt = tip->Delta(); // current time step

const int nsd = fe.getNoSpaceDim(); // no of space dims

const real u_pt = u->valueFEM (fe); // interpolate u

const real up_pt= u_prev->valueFEM (fe); // interpolate u_prev

Ptv(real) gradu_pt (nsd); // grad u at present pt.

u->derivativeFEM (gradu_pt, fe); // compute gradu_pt

Ptv(real) gradup_pt (nsd); // grad u_prev --"--

u_prev->derivativeFEM (gradup_pt, fe); // compute gradup_pt

const int nbf = fe.getNoBasisFunc(); // no of local nodes

const real detJxW = fe.detJxW();

real gradNi_gradNj, gradNi_gradu, h;

int i,j,s;

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)

{

for (i = 1; i <= nbf; i++) {

gradNi_gradu = 0;

for (s = 1; s <= nsd; s++)

gradNi_gradu += fe.dN(i,s)*gradu_pt(s);

for (j = 1; j <= nbf; j++) {

gradNi_gradNj = 0;

for (s = 1; s <= nsd; s++)

gradNi_gradNj += fe.dN(i,s)*fe.dN(j,s);

h = fe.N(i)*fe.N(j) + dt*(lambda(u_pt)*gradNi_gradNj

4.2. Software Tools for Nonlinear Finite Element Problems 507

+ dlambda(u_pt)*fe.N(j)*gradNi_gradu);

elmat.A(i,j) += h*detJxW;

}

h = fe.N(i)*(u_pt - up_pt) + dt*lambda(u_pt)*gradNi_gradu;

elmat.b(i) += -h*detJxW;

}

}

else

errorFP("NlHeat1::integrands",

"Linear subsystem for the nonlinear method %s is not impl.",

getEnumValue(nlsolver->getCurrentState().method).c_str());

// getEnumValue: returns a string of the enum and .c_str()

// transforms the string to a const char* that can be fed

// into errorFP (which applies an aform or C printf syntax)

}

The rest of the code in class NlHeat1 is similar to the statements found in
the classes Poisson1 or Heat1. The reader is strongly encouraged to study the
source code found in the src/fem/NlHeat1 directory.

As a specific test case for verifying the implementation of the general
parts of class NlHeat1, we consider λ(u) = u and a boundary function

g(x, t) = d · t+
d∑

i=1

xi, x = (x1, . . . , xd) .

It is straightforward to realize that u = g is also the analytical solution in
the interior of the domain. This solution, which is linear in xi and t, can
be exactly reproduced by linear and higher-order elements in combination
with any first- or higher-order scheme in time. Hence, we have a test problem
where the numerical solution should be exact (modulo round-off errors) at
the nodes, regardless of the mesh size. A possible input file to the program
can look like this:

set gridfile = P=PreproBox | d=2 [0,1]x[0,1] |

d=2 e_tp=ElmB4n2D partition=[5,5] grading=[1,1]

set time integration parameters = dt=0.1 t in [0,1]

sub NonLinEqSolver_prm

set nonlinear iteration method = NewtonRaphson

set max nonlinear iterations = 20

set max estimated nonlinear error = 1.0e-5 ! eps in termination crit.

set nonlinear relaxation prm = 0.8 ! omega, 1.0 is best here

ok

sub LinEqAdm

sub Matrix_prm

set matrix type = MatBand

508 4. Nonlinear Problems

ok

sub LinEqSolver_prm

set basic method = GaussElim

ok

ok

ok

Look for concrete input files and sample results in the subdirectory Verify.
The present model problem and its implementation are valid in any num-

ber of space dimensions. Try a 4D problem – all you have to do is to change
the gridfile answer in the input file to

d=4 e=ElmTensorProd1 partition=[4,4,4,4] grading=[1,1,1,1]

The ElmTensorProd1 element is a d-dimensional multi-linear element that co-
incides with ElmB2n1D for d = 1, ElmB4n2D for d = 2, and ElmB8n3D when
d = 3. Similar second-order and even higher-order elements are provided by
ElmTensorProd2, ElmTensorProd3, etc. We emphasize that the ElmTensorProd

family is implemented as tensor products of one-dimensional elements, and
that there is a significant performance penalty compared with specialized
element classes, such as ElmB4n2D.

Suppose we want to compute the heat flux −κ(u)∇u, where κ = %Cλ. For
simplicity we set %C = 1. Flux computations are conveniently implemented
by a call to the FEM::makeFlux function as explained in Chapter 3.4.5. How-
ever, the makeFlux call shown in Chapter 3.4.5 requires the k function to be
implemented as a virtual function5 k with specified arguments. In the current
context we could provide

real NlHeat1:: k (const FiniteElement& fe, real /*t*/)

{

const real u_pt = u->valueFEM(fe);

return lambda(u_pt);

}

A standard call makeFlux, as demonstrated in the Poisson1 solver, will now
compute a smooth flux −λ(u)∇u.

4.2.2 Extending the Solver

A natural improvement of the NlHeat1 simulator is to extend the solution
methods to cover the general θ-rule for time integration and enable the user
to choose between Newton-Raphson’s method and Successive Substitutions

5 You are not forced to follow this convention. An overloaded makeFlux function
takes the coefficient k as a functor argument and gives full flexibility in defining
k, see page 302.

4.2. Software Tools for Nonlinear Finite Element Problems 509

(Picard iteration) as the nonlinear solution methods. The θ-rule is defined in
Chapter 2.2.2. Recall that θ = 0 gives the explicit forward Euler scheme, a
unit value of θ gives the fully implicit backward scheme, and θ = 1/2 results
in the mid-point rule or the Crank-Nicolson scheme.

For our diffusion equation these steps result in a system of nonlinear
algebraic equations:

Fi(u
`
1, . . . , u

`
n) = 0, i = 1, . . . , n .

where

Fi ≡
∫

Ω

[(
û` − û`−1

)
Wi + θ∆tλ(û`)∇û` · ∇Wi

+(1− θ)∆tλ(û`−1)∇û`−1 · ∇Wi

]
dΩ . (4.38)

Each linear problem in the Newton-Raphson method has a coefficient matrix

Ji,j ≡
∂Fi

∂u`
j

=

∫

Ω

[WiNj + θ∆t
dλ

du
(û`,k)Nj∇Wi · ∇û`,k

+ θ∆tλ(û`,k)∇Wi · ∇Nj)
]
dΩ (4.39)

while the right-hand side is simply −Fi, with û` replaced by û`,k in (4.38).
The Successive Substitution method, which uses “old” values of u for the

diffusivity λ(u), is more straightforwardly implemented than the Newton-
Raphson method, because we avoid differentiation of the nonlinear finite el-
ement equations:

Fi ≡
∫

Ω

[
(
û` − û`−1

)
Wi + θ∆tλ

(
û`,k−1

)
∇û`,k · ∇Wi

+(1− θ)∆tλ
(
û`−1

)
∇û`−1 · ∇Wi]dΩ = 0 . (4.40)

From this equation it should be straightforward to identify the matrix, the
solution, and the right-hand side of a linear system for u`,k

j , j = 1, . . . , n.
What are the modifications to our previous class NlHeat1? We need θ as

a parameter in the class, and its value should be read from the menu. Fur-
thermore, the integrands routine must be extended. There are two types of
linear subproblems, one for the Newton-Raphson method and one for the
Successive Substitution method. How should we implement this? The most
direct approach is to take a copy of class NlHeat1 and modify it. However,
when one needs more than one version of a simulator, object-oriented pro-
gramming becomes very convenient as explained in Chapters 3.4.6 and 3.5.7.
We therefore derive a new extended class NlHeat1e from NlHeat1 and redefine
the virtual functions that are not suitable.

510 4. Nonlinear Problems

class NlHeat1e : public NlHeat1

{

protected:

real theta;

virtual void integrands (ElmMatVec& elmat, const FiniteElement& fe);

public:

NlHeat1e ();

~NlHeat1e () {}

void define (MenuSystem& menu, int level =MAIN); // add theta item

void scan (); // read theta

};

In define and scan new statements are to be added, and the implementation
conveniently becomes a call to the similar function in NlHeat1 followed by the
additional statements.

4.2. Software Tools for Nonlinear Finite Element Problems 511

void NlHeat1e:: define (MenuSystem& menu, int level)

{

NlHeat1:: define (menu, level);

menu.addItem (level, "theta", "parameter in theta-rule", "1.0");

}

void NlHeat1e:: scan ()

{

NlHeat1:: scan ();

theta = SimCase::getMenuSystem().get ("theta").getReal();

}

The integrands function from class NlHeat1 must be significantly extended
(we still use Wi = Ni in the expressions from Chapter 4.1.6).

void NlHeat1e::integrands(ElmMatVec& elmat,const FiniteElement& fe)

{

const real dt = tip->Delta(); // time step size

const int nsd = fe.getNoSpaceDim(); // no of space dim.

const real u_pt = u->valueFEM (fe); // u at present itg.pt.

const real up_pt = u_prev->valueFEM (fe);

Ptv(real) gradu_pt (nsd); // grad u at present itg.pt.

u->derivativeFEM (gradu_pt, fe);

Ptv(real) gradup_pt (nsd); // grad u_prev --- " ----

u_prev->derivativeFEM (gradup_pt, fe);

const int nbf = fe.getNoBasisFunc(); // no of nodes in this elm.

const real detJxW = fe.detJxW();

real gradNi_gradNj, gradNi_gradu, gradNi_gradup, h;

int i,j,s;

if (nlsolver->getCurrentState().method == NEWTON_RAPHSON)

{

for (i = 1; i <= nbf; i++) {

gradNi_gradu = gradNi_gradup = 0;

for (s = 1; s <= nsd; s++) {

gradNi_gradu += fe.dN(i,s)*gradu_pt(s);

gradNi_gradup += fe.dN(i,s)*gradup_pt(s);

}

for (j = 1; j <= nbf; j++) {

gradNi_gradNj = 0;

for (s = 1; s <= nsd; s++)

gradNi_gradNj += fe.dN(i,s)*fe.dN(j,s);

h = fe.N(i)*fe.N(j) + theta*dt*(

lambda (u_pt)*gradNi_gradNj +

dlambda(u_pt)*fe.N(j)*gradNi_gradu);

512 4. Nonlinear Problems

elmat.A(i,j) += h*detJxW;

}

h = fe.N(i)*(u_pt - up_pt)

+ dt*theta* lambda(u_pt)*gradNi_gradu

+ dt*(1-theta)*lambda(up_pt)*gradNi_gradup;

elmat.b(i) += -h*detJxW;

}

}

else if (nlsolver->getCurrentState().method == SUCCESSIVE_SUBST)

{

for (i = 1; i <= nbf; i++) {

gradNi_gradup = 0;

for (s = 1; s <= nsd; s++) {

gradNi_gradup += fe.dN(i,s)*gradup_pt(s);

}

for (j = 1; j <= nbf; j++) {

gradNi_gradNj = 0;

for (s = 1; s <= nsd; s++)

gradNi_gradNj += fe.dN(i,s)*fe.dN(j,s);

h = fe.N(i)*fe.N(j) + theta*dt*(lambda(u_pt)*gradNi_gradNj);

elmat.A(i,j) += h*detJxW;

}

h = fe.N(i)*up_pt - dt*(1-theta)*lambda(up_pt)*gradNi_gradup;

elmat.b(i) += h*detJxW;

}

}

else

errorFP("NlHeat1e::integrands",

"Linear subsystem for the nonlinear method %s is not implemented",

getEnumValue(nlsolver->getCurrentState().method).c_str());

}

The reader can find the program in the directory src/fem/NlHeat1/NlHeat1e.

Exercise 4.19. .
Extend class NlHeat1 to handle the heat equation with nonlinearities in

density %, heat capacity C, and conduction k:

%(u)C(u)
∂u

∂t
= ∇ · (k(u)∇u) . (4.41)

�
Exercise 4.20. .

Equip class NlHeat1 with automatic report generation functionality (see
page 420). The NonLinEqSolver class has report writing functionality (func-
tions writing to a MultipleReporter object), but the output is too compre-
hensive and limited to the last call to the solve function. In time-dependent

4.3. Projects 513

problems it is better to introduce a NonLinEqSummary object for collecting av-
erages and extremes of the nonlinear solver performance through the whole
time simulation. The NonLinEqSummary object contains functions for writing
to a MultipleReporter object. �

Exercise 4.21. .
Adapt class NlHeat1 to a stationary nonlinear PDE

∇ · (k(u)∇u) = 0,

using the approach described in Chapter 3.11.3. �

Exercise 4.22. .
Adapt class NlHeat1 to a stationary nonlinear PDE

∇2u = f(u) + g(x)

by editing the code and removing all statements related to time dependency.
Construct a suitable test problem (hint: prescribe u and f , and adjust g). �

4.3 Projects

4.3.1 Operator Splitting for a Reaction-Diffusion Model

Mathematical Problem. This project concerns numerical methods for a non-
linear reaction-diffusion equation:

∂u

∂t
= α∇2u+ f(u), x ∈ Ω ⊂ IRd, t > 0, (4.42)

u(x, 0) = I(x), x ∈ Ω, (4.43)

∂u

∂n
= 0, x ∈ ∂ΩN , t > 0 . (4.44)

Here, u(x, t) is the primary unknown, α is a dimensionless number, ∂ΩN is
the complete boundary of Ω, and f(u) is nonlinear function of u that can be
taken as f(u) = −βum, where β is a given dimensionless quantity.

Physical Model. The initial-boundary value problem (4.42)–(4.44) models
diffusion of a substance that undergoes chemical reactions. Equation (4.42)
reflects mass balance of the substance, (4.43) gives the initial distribution of
the substance, and (4.44) ensures that there is no transport of the substance
through the boundaries. The chemical reactions produce or extract mass and
can hence be modeled as a source term f(u) in the mass balance equation.
Equation (4.42) results from neglecting temperature variations in (7.69) in
the more complicated reaction-diffusion model treated in Project 7.3.4.

514 4. Nonlinear Problems

Numerical Method. Apply the Newton-Raphson method to (4.42) at the PDE
level. Discretize the resulting sequence of linear equations by a θ-rule in time
and a Galerkin finite element method in space. Develop precise formulas for
the integrand expressions to be implemented in a Diffpack solver.

An alternative to solving (4.42) as a nonlinear PDE directly is to apply
an operator-splitting technique. Starting with an approximation u` to u at
time level `, the aim is to construct u`+1 through two or more intermediate
steps, where we in each step solve a PDE involving only some of the terms
in (4.42). A possible splitting is [114, Ch. 5.7]:

u`+ 1
2 − u`

τ
= α∇2u`+ 1

2 + f(u`), (4.45)

u`+1 − u`+ 1
2

τ
= ρ

u`+ 1
2 − u`

τ
+ f(u`+1)− f(u`), (4.46)

where τ = ∆t/(1 + ρ) and ρ ∈ (−1, 1] is an adjustable parameter. For ρ = 0
and ρ = 1 we recover the so-called Douglas-Rachford and Peaceman-Rachford
splittings, respectively. For ρ = 1 (4.46) simplifies to

u`+1 − u`+ 1
2

∆t/2
= α∇2u`+ 1

2 + f(u`+1) .

By eliminating u`+ 1
2 , one can show that the splitting is second-order accurate

for ρ = 1 and first-order accurate for all other ρ values. The splitting results in
a linear problem (4.45) for u`+1/2, which can be solved by a standard Galerkin
finite element method. Although (4.46) is a nonlinear equation, it does not
involve spatial operators acting on the unknown u`+1. Applying a group finite
element approximation for the f(u) term then results in a nonlinear equation
at each node that is completely decoupled from the equations at the other
nodes (carry out the details in this derivation). Hence, one only needs to solve
a nonlinear equation in one variable at each node.

Operator-splitting methods are often also referred to as fractional-step
methods in the literature6. More sophisticated operator-splitting methods
for handling nonlinear reaction terms can be found in [32,100].

Implementation. Implement the full Newton-Raphson method for this prob-
lem as a slight modification of class NlHeat1. The solver based on operator
splitting involves a heat equation a la class Heat2, with an additional loop
over the nodes where we for each node must solve a nonlinear equation in
one unknown.

Optimization of the Code. Assume that we apply a group finite element
method for the nonlinear term f(u) in all equations involving f . The dis-
crete version of the nonlinear term can then be written as Mf , where

6 See [114, p. 155] for a discussion of the terminology.

4.3. Projects 515

f = (f(u1), . . . , f(un))T . All the matrices that are involved in the discrete
equations can now be considered as constant (time independent). This allows
for a major optimization of the Heat2 code, because the finite element assem-
bly process can be carried out only once, as explained in Appendix B.7.2.
The optimized algorithm is implemented in the subclass Heat2eff of Heat2.
Incorporate these optimizations in the solver for (4.45). The same type of
optimization also applies to the Newton-Raphson method, if we express the
Jacobian of the Mf term as Mf ′, where f ′ is a diagonal matrix with entries
f ′(u1), . . . , f

′(un). Work with a lumped mass matrix when implementing the
optimized versions of the solvers.

Computer Experiments. The operator-splitting technique is easier to imple-
ment and verify than the full Newton-Raphson method and involves less com-
putational work at each time step. However, the Newton-Raphson method
is expected to be more robust and allows for larger time steps. The relative
performance of the methods is therefore an open question and dependent on
the values of the parameters in the PDE. Set up a series of computational
experiments and try to determine which of the two techniques that has the
best overall efficiency (with respect to total CPU time). Use as large time
step as possible, ∆tmax, for stability in the operator-splitting approach and
convergence of the Newton-Raphson method. (Determination of ∆tmax for
each method must be performed through experiments. A corresponding lin-
ear diffusion equation discretized by the backward Euler scheme in time is
stable for any value of ∆t, but this does not hold when nonlinear iterations or
operator splittings are introduced.) Check if halving ∆tmax has a noticeable
influence on the numerical results, i.e., if ∆tmax leads to inaccurate results.
(In strongly nonlinear problems the size of ∆t might be dictated by stability
rather than accuracy.)

4.3.2 Compressible Potential Flow

Mathematical Problem. A frequently used mathematical model for the flow
of a compressible inviscid fluid involves the PDE

∇ · (%∇φ) = 0, (4.47)

where % is a nonlinear function of the primary unknown φ:

% = %0

(
1− γ − 1

γ + 1

1

C2
∗

|∇φ|2
) 1

γ−1

. (4.48)

The boundary conditions for (4.47) are %∂φ/∂n = 0 on a fixed body in the
flow, a symmetry line, or a wall, and %∂φ/∂n = %U∞ · n far from the body,
where U∞ is the prescribed fluid velocity far from the body and n is the
outward unit normal to this boundary. We assume that for flow around a
body the velocity field is symmetric, otherwise we need additional conditions
(the Kutta-Joukowsky condition, see Project 3.8.4).

516 4. Nonlinear Problems

Physical Model. In the model (4.47), ∇φ is the fluid velocity, i.e., φ is the
velocity potential, % is the density of the fluid, γ is the ratio of specific
heats (γ = 1.4 in air), %0 is the value of % when ∇φ = 0, and C∗ is the
critical velocity. We shall require subsonic flow, |∇φ| < C∗ everywhere in
the domain Ω ⊂ IRd, such that the factor inside the parenthesis in (4.48) is
always positive7.

Equation (4.47) is the continuity equation for stationary compressible flow
when the velocity is derived from a potential. Neglecting viscous effects, the
counterpart to Newton’s second law is the Bernoulli equation (here without
body forces): ∫

dp

%
+

1

2
|∇φ|2 = C1,

where p is the pressure and C1 is a constant. To close the model, we apply
the equation of state p = C2%

γ , C2 being another constant. The constants
C1 and C2 can be expressed by the conditions at one point, e.g., one may
set p = p0 and % = %0 at the point where ∇φ = 0. Use this information as a
starting point for deriving (4.47) and (4.48).

Show mathematically that the total integral of %∂φ/∂n along the outer
boundary must vanish. (Hint: Integrate the PDE over the domain and use
the divergence theorem.) Interpret this result physically. Note that the result
constrains the choice of U∞.

Analysis. To learn about the model and find suitable cases for testing the
implementation, we shall analyze two very simple problems. First, consider
flow in a rectangular domain Ω = [0, a] × [0, b], with x = 0 as an inflow
boundary and x = a as an outflow boundary. The remaining boundaries
(y = 0, b) are either symmetry lines or walls. Choosing U∞ = (U0, 0)T at
x = 0, a satisfies the compatibility condition that the integral of %∂φ/∂n along
the whole boundary vanishes. Demonstrate that φ(x, y) ∼ x is a possible
solution of this problem.

A second test problem involves flow in a channel with varying width:

VA(x)
x

δ

Integrating the PDE (4.47) over the volume V and using Gauss’ divergence
theorem gives

∫
∂V

%∂φ/∂ndΓ = 0. The boundary integral vanishes on the
solid walls due to the boundary condition. Hence, the only non-vanishing

7 Equation (4.47) can also be applied for transonic or supersonic flow, where |∇φ| ≥
C∗, but this requires more complicated solution procedures as the nature of the
equation then changes completely.

4.3. Projects 517

contributions come from the two dashed lines:

−
∫

x0

%
∂φ

∂x
dy +

∫

x0+δ

%
∂φ

∂x
dy = 0 .

Assuming that the variations of %∂φ/∂x over the cross section are small, we
might approximate the integral

−
∫

x0

%
∂φ

∂x
dy ≈ −A(x0)%

∂φ

∂x

∣∣∣∣
x0

.

Show that this leads to the approximate continuity equation

∂

∂x

(
A(x)%

∂φ

∂x

)
= 0 . (4.49)

Introduce u = ∂φ/∂x, set φ = φ(x) and obtain an algebraic equation for
u(x). Devise an iteration method for the numerical solution of this nonlinear
equation.

Numerical Method. For the spatial discretization we shall use the finite ele-
ment method. Since (4.47) is nonlinear, we need an outer iteration strategy.
Formulate a standard Successive Substitution scheme and a Newton-Raphson
method. In addition, we can expand ∇ · (%∇φ) = %∇2φ+∇% · ∇φ and apply
the iteration

∇2φk+1 = − 1

%k
∇%k · ∇φk , (4.50)

where k is an iteration index. This approach is known as a Poisson itera-
tion [52].

Implementation. Implement a Diffpack finite element simulator for (4.47)
that offers the three iteration procedures Successive Subsitution, Newton-
Raphson iteration, and Poisson iteration. The simulator should also compute
∇φ and the pressure p = C2%

γ , where we for simplicity impose the particular
scale C2 = 1. The two test problems sketched previously should be imple-
mented as subclasses (cf. Chapters 3.5.7 and 4.2.2). Partially verify the solver
using the very simple analytical solution on a rectangular grid.

Computer Experiments. As main test case, we take flow in a channel with
varying width, where the sides of the channel have the shape of a Gaussian
bell function. Due to symmetry, only the upper half of the channel needs to
be discretized. Apply the PreproStdGeom preprocessor and the BOX WITH BELL

option (see the man page for class PreproStdGeom) to generate a suitable grid.
The inflow and outflow velocities must be the same. On the channel wall
and the symmetry line, the normal velocity ∂φ/∂n vanishes. Let the pro-
gram compute the average velocity ū(x) over the cross section of the channel
and make plots of ū(x) and u(x) computed from the approximate analytical

518 4. Nonlinear Problems

solution (arising from solving (4.49)). Investigate through numerical experi-
ments (i) the convergence behavior of the three iteration schemes and (ii) the
quality of the approximate solution based on (4.49) for various bell shapes.
Visualize the φ field, the velocity field, and the pressure field for two channel
geometries, one that yields good agreement with the approximate analytical
solution and one where the deviation is significant.

Chapter 5

Solid Mechanics Applications

The deformation of solid materials is a subject of importance in many fields of
science and engineering. For example, the models and software in this chap-
ter have applications in structural engineering, material science, seismology,
geology, sensor technology, and bioengineering. The present chapter covers
two mathematical models: (i) elastic deformations with thermal expansion
effects and (ii) combined elastic and plastic deformations.

The mathematical modeling of elastic deformations is based on Newton’s
second law and a constitutive relation between the stresses and the deforma-
tions. Solution of the equations by the finite element method is a well estab-
lished procedure that is available in many user-friendly and flexible software
packages. The enormous success of finite element solution of elastic defor-
mation problems has played a key role in promoting mathematical modeling
and scientific computing in engineering.

We shall see that finite element methods for the elasticity equations, and
the associated Diffpack implementations, are straightforward extensions of
the concepts and techniques from scalar stationary boundary-value problems
in Chapters 2 and 3. To see the strong links between the present chapter and
Chapter 3, we use an indicial notation that is widespread in theoretical solid
mechanics. An explanation of the notation is presented in Appendix A.2.
However, the indicial notation is somewhat different from the mainstream
engineering notation frequently used in many expositions on finite elements
in solid mechanics [11,12,31,38,154]. The present text emphasizes the finite
element method as a general numerical approach for solving PDEs. For this
purpose, the indicial notation represents a suitable tool for demonstrating
the similarity between the general foundations of the finite element method
in Chapter 2, the scalar PDE examples in Chapter 3, and the elasticity prob-
lem. Nevertheless, the engineering finite element notation is dominating in
the literature and it is definitely very suitable for more complicated prob-
lems in solid mechanics, such as plasticity and viscoplasticity. We therefore
introduce the engineering notation in Chapter 5.1.3 such that the reader can
compare the two different languages of expressing the finite element equa-
tions in elasticity. The engineering notation simplifies the exposition of the
numerics in Chapter 5.2 significantly.

Elastic vibration problems require the inclusion of acceleration terms in
the governing equations and a discretization of the associated time deriva-
tives. The topic is addressed in Chapter 5.1.6 and constitute, in principle, a

520 5. Solid Mechanics Applications

simple (subclass) extension of the quasi-static elasticity simulators developed
in Chapter 5.1.4.

Many applications in solid mechanics involve permanent plastic deforma-
tions beyond the elastic range. This calls for the simulation of combined elas-
tic and plastic effects, using so-called elasto-plastic models. Herein we focus on
a generalized model, called elasto-viscoplasticity, which contains the classical
elasto-plastic model as a special case when time t → ∞. The mathematical
and numerical description of elasto-viscoplasticity fit well into our framework
with initial-boundary value problems and PDEs. This model may therefore
be easier to understand than the equations of classical elasto-plasticity. Chap-
ter 5.2 is devoted to the elasto-viscoplastic model, solution algorithms, and
a simple implementation. The corresponding simulator class is basically an
elasticity solver equipped with a time loop.

5.1 Linear Thermo-Elasticity

The present section outlines a method and its Diffpack implementation for
solving the Navier equations modeling isotropic linear elasticity with thermal
effects. A quick introduction to elasticity is provided by the first two chapters
of [140]. Readers who want a more comprehensive treatment of the physics
and mathematical modeling of elastic deformations can consult a text on
continuum mechanics, see for instance [56,61,92,97,126].

We start with presenting the equations of linear thermo-elasticity. The
details of the finite element formulation are thereafter explained. Finally, we
describe class Elasticity1, which is our Diffpack solver for stationary 2D and
3D thermo-elastic problems.

5.1.1 The Physical and Mathematical Model

We consider the deformation of an elastic continuum, where the fundamental
equation is based on Newton’s second law:

%ur,tt = σrs,s + %br . (5.1)

The indicial notation1 used in this equation is explained in Appendix A.2.
The first term represents the acceleration of the medium and is important
for elastic waves (see Chapter 5.1.6), but can be neglected for static or quasi-
static deformations, which we aim at in Chapters 5.1.1–5.1.4. The quantity
ur is the displacement vector, and % is the density. The first term on the
right-hand side reflects the internal forces in the medium due to stresses.
The final term %br represents body forces, e.g. gravity.

1 We shall here assume that r and s, and similar indices, run over 1, . . . , d (the
number of space dimensions), where d is 3 in the derivations, but d = 2 is allowed
in the final equation.

5.1. Linear Thermo-Elasticity 521

Chapters 5.1.2–5.1.5 deals with solving the vector PDE

σrs,s = −%br . (5.2)

In elastic deformation problems, the main interest is often to study the
stresses σrs. If the stresses are too large, the material may fracture, or the
elastic model is no longer valid and must be replaced by a more relevant
mathematical model.

Looking at the governing equation (5.2) we see that there are only three
scalar components, but six unknowns2 σrs (% and br are prescribed quanti-
ties). To close the system, we therefore need to introduce additional informa-
tion, reflecting the properties of elastic materials.

The stresses in elastic materials are related to deformation gradients ur,s,
represented through the strain tensor

εrs =
1

2
(ur,s + us,r) . (5.3)

This expression and the mathematical model for elasticity presented here
require that |ur,s| is small, such that products like |ur,s|2 can be neglected.
Assuming isotropic elastic properties, the relation between the stress and
strain tensors is given by Hooke’s generalized law:

σrs = λεqqδrs + 2µεrs . (5.4)

Here, λ and µ are Lamé’s elasticity constants, which actually vary in space
throughout heterogeneous materials, but are pure constants if the elastic
material is homogeneous.

Heating or cooling a material leads to isotropic expansion or contraction.
The strains associated with this deformation are referred to as thermal strains
and denoted by εT

rs. An empirical model for εT
rs is

εT
rs = α(T − T0)δrs, (5.5)

where α is a thermal expansion coefficient, T is the temperature, and T0 is
a reference temperature where thermal deformations vanish. It is common
to divide the total strain εrs into a thermal component εT

rs and an elastic
component εE

rs,
εrs = εT

rs + εE
rs, (5.6)

where the latter is related to the stresses via Hooke’s law (5.4). Combin-
ing equations (5.3)–(5.6) then yields Hooke’s generalized thermo-elastic law,
which expresses the relation between stresses, temperature, and total defor-
mation (ur):

σrs = λuq,qδrs + µ(ur,s + us,r)− α(3λ+ 2µ)(T − T0)δrs . (5.7)

2 The stress tensor is symmetric: σrs = σsr; hence only six entries can be distinct.

522 5. Solid Mechanics Applications

This expression can now be inserted in Newton’s second law (5.2), yielding
a vector equation with d (the number of space dimensions) components for
the d unknown components of the vector displacement field ui:

((λ+ µ)uq,q),r + (µur,q),q = (α(3λ+ 2µ)(T − T0)),r − %br . (5.8)

In traditional vector notation, (5.8) takes the form

∇ [(λ+ µ)∇ · u] +∇ · [µ∇u] = ∇ [α(3λ+ 2µ)(T − T0)]− %b . (5.9)

If the elasticity parameters are constant throughout the elastic medium we
get the governing equation

(λ+ µ)uq,qr + µur,qq = α(3λ+ 2µ)T,r − %br, (5.10)

or using vector notation,

(λ+ µ)∇(∇ · u) + µ∇2u = α(3λ+ 2µ)∇T − %b . (5.11)

Restricting d to 2, implies that u3 = 0, b3 = 0, and ∂/∂x3 = 0. This type of
constrained deformation is called plane strain and is used as an approximate
model for bodies having the shape of a long prismatic cylinder, where the
loads are uniformly distributed in the third dimension and act perpendicular
to the cylinder. Thin plate-like structures, with forces acting in the plane
of the plate, can be described by the plane stress model. The corresponding
governing equations are in fact (5.8) with d = 2, but then λ must be replaced
by λ′ = 2λµ/(λ+ 2µ). A precise definition of plane stress and plane strain is
given on page 526. See also a textbook on elasticity, e.g. [92,97,126].

The equations (5.8) for the displacement field are commonly known as
the Navier equations. These equations are to be solved in a domain Ω, rep-
resenting the elastic body. The boundary conditions are of two types; the
displacement ur or the stress vector σrsns (ns is the outward normal vector
to the boundary) must be prescribed at each boundary point. There must be
d boundary conditions at each point of the boundary ∂Ω. For example, at a
point one may specify no shear stress (d− 1 components of the stress vector
are known) and vanishing normal displacement (one displacement component
is known), giving a total of d conditions.

The present mathematical model is central in the field of structural anal-
ysis, but there are other important applications in soil mechanics as well. If
we interpret T − T0 to be the fluid pressure in a porous elastic medium, the
present model governs the displacement and stresses of the porous medium
caused by fluid flow. The quantity T will generally be found by solving a
Laplace- or Poisson-type equation for the temperature or pressure field. In
many cases, this equation for T is independent of the elastic deformations.
We can then solve for T first and thereafter invoke the elasticity model with
T as a prescribed quantity.

5.1. Linear Thermo-Elasticity 523

5.1.2 A Finite Element Method

We shall apply a straightforward Galerkin method to the Navier equations,
as this will be an optimal method for the present problem3. To reduce the
size of the expressions, we drop the body force term %br, which is trivial to
include in the forthcoming numerical formulation. The displacement field ur

is approximated by

ûr =
n∑

j=1

ur
jNj(x1, . . . , xd),

where Nj are prescribed finite element basis functions and ur
j are n · d coeffi-

cients to be found by the method. Inserting the expression for ûr in each of
the components in the Navier equations results in a residual. This residual
multiplied by a weighting function is required to vanish for n linearly in-
dependent weighting functions. Employing the Galerkin method, where the
weighting functions are identical to the trial functions Nj , we obtain after
integration by parts of

∫
Ω σrs,sNidΩ,

∫

Ω

σrsNi,sdΩ =

∫

∂Ω

NiσrsnsdΓ , (5.12)

where a sum over the repeated index s is implied. The generalized Hooke’s
law relates the stresses to the deformation and temperature:

σrs = λuq,qδrs + µ(ur,s + us,r)− α(3λ+ 2µ)(T − T0)δrs . (5.13)

Here δrs denotes the Kronecker delta. As usual, we get a linear system for
the unknowns ur

j , j = 1, . . . , n and r = 1, . . . , d. These unknowns can be
collected in a vector

u = (u1
1, . . . , u

d
1, u

1
2, . . . , u

d
2, . . . , u

1
n, . . . , u

d
n)T . (5.14)

The linear system of the form Ku = c can be interpreted either at the
element or the global level; n is then the number of nodes in the element or
in the grid.

Let us derive the expressions for the matrix and right-hand side vector
of the linear system. First, we insert (5.13) in (5.12). The indices i and r
indicate the equation number, while j and s are used in the summation over
the unknowns us

j , such that the system can be written as

n∑

j=1

d∑

s=1

Ars
i,ju

s
j = cri , r = 1, . . . , d, i = 1, . . . , n . (5.15)

3 The theory and main results from Chapter 2.10 can be extended to cover the
current elasticity problem [14].

524 5. Solid Mechanics Applications

In the discrete finite element equations we do not apply the summation con-
vention and insert instead explicit summation symbols. For fixed i and j
(node numbers), Ars

i,j is a d × d matrix, and K can be viewed as a dn × dn
matrix with n×n blocks Ars

i,j . To obtain the expression for Ars
i,j , we recognize

that (5.13) inserted in (5.12) gives rise to four basic terms, three of which
comprise Ars

i,j .
The integrand of the first term reads

∑

j

∑

s

∑

k

λNi,sNj,kδrsu
k
j =

∑

j

∑

k

λNi,rNj,ku
k
j

=
∑

j

∑

s

λNi,rNj,su
s
j

by using the fact that δrsvs = vr for any vector vs and replacing the dummy
summation variable k by s. The second term has the form

∑

j

∑

s

µNi,sNj,su
r
j =

∑

j

∑

s

∑

k

µNi,sNj,sδrku
k
j

=
∑

j

∑

s

(
∑

k

µNi,kNj,k

)
δrsu

s
j .

The third term is more straightforward as it takes the form of (5.15) directly:

∑

j

∑

s

µNi,sNj,ru
s
j .

The right-hand side contribution is also simple,

∑

s

α(3λ+ 2µ)(T − T0)δrsNi,s = α(3λ+ 2µ)(T − T0)Ni,r .

The general formula for block K i,j in K, representing the coupling be-
tween node i and j, can be written

Ki,j =

A11

i,j . . . A
1d
i,j

...
. . .

...
Ad1

i,j . . . A
dd
i,j

 , (5.16)

where

Ars
i,j =

∫

Ω

[
µ

(
∑

k

Ni,kNj,k

)
δrs + µNi,sNj,r + λNi,rNj,s

]
dΩ (5.17)

at the global level. The corresponding element contribution is obtained by re-
placing the whole domain Ω by element e, Ωe, restricting i and j to be nodes

5.1. Linear Thermo-Elasticity 525

in element e, and perhaps transforming the integral to the reference coordi-
nate system by including the determinant of the Jacobian of the isoparamet-
ric mapping. See Chapter 2.3 for more information about local and global
coordinates.

The partitioning of u in n blocks uj has uj = (u1
j , . . . , u

d
j)

T . Similarly,

the corresponding partitioning of c has blocks ci = (c1i , . . . , c
d
i)

T , where

cri =

∫

Ω

[(2µ+ 3λ)α(T − T0)Ni,r] dΩ +

∫

∂ΩN

NitrdΓ . (5.18)

Here, tr is the stress vector σrsns at the boundary, often referred to as the
traction, and ∂ΩN is the part of the boundary where tr is prescribed. Again,
the expressions can trivially be transformed to the element level and to inte-
grals over the reference element.

Notice that traction-free boundaries appear as natural boundary condi-
tions in the present problem. Essential boundary conditions (ui known at a
node) are incorporated in the matrix system by substituting the equation cor-
responding to the actual degree of freedom by the boundary condition. Since
K is a symmetric matrix, the incorporation of essential conditions must pre-
serve the symmetry. See Chapter 2.3 for information on the implementation
of essential boundary conditions.

The stresses are usually of more interest than the displacement field. Hav-
ing computed the latter, the stress tensor field can be computed using Hooke’s
law. Since the stresses are derivatives of the displacement components, the
computed stress tensor field will be discontinuous over the element bound-
aries. For the purposes of plotting and analysis it is desirable to have a contin-
uous stress field. It is also common to introduce a scalar stress measure which
is easier to interpret than a tensor field. In class Elasticity1, we employ the
von Mises stress [92,97], also called the equivalent stress, as a measure of the
stress level. In terms of the stress tensor, the equivalent stress m reads

m =

√
3

2
σ′

rsσ
′
rs, (5.19)

where σ′
rs is the stress deviator, σ′

rs ≡ σrs − 1
3σkkδrs.

5.1.3 Engineering Finite Element Notation

As mentioned in the introduction to this chapter, the indicial notation in the
previous section is different from what is usually found in textbooks on the
finite element method for elasticity problems. The more common engineering
notation is explained below. As we shall see, the engineering notation makes
the discrete equations very compact, and this has clear advantages in more
complicated problems from solid mechanics, for example, elasto-viscoplastic
deformations, which are treated in Chapter 5.2. The engineering notation is

526 5. Solid Mechanics Applications

based on matrix and vector symbols. The stress tensor is not written as a
tensor, but as a vector

σ = (σxx, σyy, σzz, σxy, σyz, σzx)T .

It is common in this notation to use σxy rather than σ12. The strain tensor
is written as a vector as well,

ε = (εxx, εyy, εzz, γxy, γyz, γzx)T ,

where one applies the “engineering shear strain” γxy = 2εxy. Hooke’s law can
now be expressed as

σ = Dε, (5.20)

with

D =
E(1− ν)

(1 + ν)(1− 2ν)

1 ν
1−ν

ν
1−ν 0 0 0

1 ν
1−ν 0 0 0

1 0 0 0
1−2ν

2(1−ν) 0 0

symmetric 1−2ν
2(1−ν) 0

1−2ν
2(1−ν)

(5.21)

for three-dimensional elasticity. The parametersE and ν are known as Young’s
modulus and Poisson’s ratio, respectively.

The common cases of plane strain

εxz = εyz = εzz = 0, σzz = ν(σxx + σyy)

and plane stress

σxz = σyz = σzz = 0, εzz = − ν
E

(σzz + σyy)

can be handled by a constitutive law of the form (5.20), but now with

σ = (σxx, σyy, σxy)T , ε = (εxx, εyy, γxy)
T ,

and

D =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 (5.22)

for plane stress and

D =
E(1− ν)

(1 + ν)(1− 2ν)

1 ν
1−ν 0

ν
1−ν 1 0

0 0 1−2ν
2(1−ν)

 (5.23)

for plane strain.

5.1. Linear Thermo-Elasticity 527

Let us approximate the displacement field, i.e. the primary unknown in
the elasticity problem, with

û =
n∑

j=1

ujNj(x), (5.24)

where uj is the displacement vector at node no. j.
The discrete strain vector can now be expressed by

ε =

n∑

j=1

Bjuj , (5.25)

with

Bi =

Ni,x 0 0
0 Ni,y 0
0 0 Ni,z

Ni,y Ni,x 0
0 Ni,z Ni,y

Ni,z 0 Ni,x

. (5.26)

In plane stress and strain, where only the x and y components of ui enter
the equations, the Bi matrix takes the form

Bi =

Ni,x 0
0 Ni,y

Ni,y Ni,x

 . (5.27)

Axisymmetric elasticity problems in (z, r) coordinates fits into the framework
above, using the following definitions of ε, σ, Bi, and D.

ε = (εzz, εrr, εθθ, γrz)
T , (5.28)

σ = (σzz , σrr, σθθ, σrz)
T , (5.29)

Bi =

0 Ni,z

Ni,r 0
1
rNi 0
Ni,z Ni,r

 , (5.30)

D =
E(1− ν)

(1 + ν)(1− 2ν)

1 ν
1−ν

ν
1−ν 0

ν
1−ν 1 ν

1−ν 0
ν

1−ν
ν

1−ν 1 0

0 0 0 1−2ν
2(1−ν)

 . (5.31)

All integrals
∫

Ω()dΩ are in the axisymmetric case transformed to 2π
∫

()rdrdz,
see [154, Ch. 4].

The equilibrium equation (5.2) has the weak formulation (5.12), which in
the engineering notation can be expressed as

∫

Ω

BT
i σdΩ =

∫

∂Ω

NitdΓ . (5.32)

528 5. Solid Mechanics Applications

The symbol t represents the traction tr = σrsns. Hooke’s law with tempera-
ture strains can now be written

σ = D(ε− τ), (5.33)

with τ = α(T − T0)(1, 1, 1, 0, 0, 0)T in 3D, τ = α(T − T0)(1, 1, 0)T in plane
stress, and τ = (1 + ν)α(T − T0)(1, 1, 0)T in plane strain. Inserting (5.25) in
(5.33) and then the resulting (5.33) in (5.32) yields

n∑

j=1

∫

Ω

BT
i DBjdΩ uj =

∫

Ω

BT
i DτdΩ +

∫

∂Ω

NitdΓ , (5.34)

for i = 1, . . . , n. For each i in (5.34) we have a vector equation with three
components (or two in plane stress/strain or axisymmetry). The element
matrix can be viewed as a block matrix with ne×ne blocks

∫
Ωe

BT
i DBjdΩ,

i, j = 1, . . . , ne, where ne is the number of nodes in the element. The element
vector can also be written on block form, with block no. i taking the form of
the right-hand side in (5.34). A nice feature of this formulation is that plane
stress, plane strain, axisymmetric, and general three-dimensional problems
can straightforwardly be treated in a unified notation and implementation.

Exercise 5.1. .
Show that the element matrix contribution from the coupling of local

nodes no. i and j, in a finite element formulation of −∇ · [λ∇u] = f in IRd,
can be expressed as

∫
Ωe

BT
i DBidΩ by proper definitions of Bi as a d × 1

matrix and D as a 1× 1 matrix. Much of the finite element literature works
with BT

i DBi as a generic form of symmetric element matrices. �

5.1.4 Implementation

A simulator for thermo-elastic problems, based on the formulation in Chap-
ter 5.1.2, has been implemented in a class with name Elasticity1. The cor-
responding source code is located in src/app/Elasticity1 and its subdirec-
tories. The formulation in Chapter 5.1.3 is realized in a class Elasticity2,
found in src/app/Elasticity2. The Elasticity2 solver is more general than
Elasticity1 and is the solver we recommend for solving elastic problems.
However, the Elasticity1 solver has fewer details and may therefore be easier
to understand. We start by explaining the basic contents of class Elasticity1,
and thereafter we proceed with class Elasticity2.

In principle, class Elasticity1 is very similar to class Poisson2 in Chap-
ter 3.5. The main difference is that the elasticity model involves a stationary
vector equation. Some of the details of the solver are therefore slightly differ-
ent from the scalar case.

The primary unknown in class Elasticity1 is a vector field of type FieldsFE.
Roughly speaking, a FieldsFE object is just an array of handles to FieldFE

objects for each component in the vector field. All the FieldFE functionality
is therefore immediately available for FieldsFE objects.

5.1. Linear Thermo-Elasticity 529

class Elasticity1 : public FEM

{

public:

Handle(GridFE) grid;

Handle(DegFreeFE) dof;

Handle(FieldsFE) u; // displacement field

Handle(FieldsFEatItgPt) stress_measures; // von Mises equiv. stress

Handle(FieldsFE) smooth_stress_measures;

Handle(SaveSimRes) database;

Vec(real) solution;

Handle(LinEqAdmFE) lineq;

Handle(Field) T; // temperature field

FieldFormat T_format; // info about the type of T field

Handle(Field) E, nu; // Young’s modulus, Poisson’s ratio

FieldFormat nu_format, E_format;

Handle(Field) rho; // density

FieldFormat rho_format;

Handle(Field) alpha; // thermal expansion coeff.

FieldFormat alpha_format;

Ptv(real) g_dir; // direction of gravity: x(nsd)-dir

real normal_stress1; // for boundary indicator 1

real normal_stress2; // for boundary indicator 2

enum Elasticity_type

{ PLANE_STRESS, PLANE_STRAIN, THREE_DIM, AXISYMMETRY };

Elasticity_type elasticity_tp;

real magnification; // factor for exaggerated displ.

Handle(GridFE) deformed_grid; // grid + magnification*u

Handle(FieldFE) equiv_stress2; // equiv. stress over deformed_grid

Handle(FieldFE) u_magnitude; // magnitude of displacement vector

// internal structures for avoiding time consuming reallocation:

Mat(real) matdxd; // used in integrands

Ptv(real) normal_vec; // used in integrands4side

VecSimple(Ptv(real)) gradu_pt; // used in derivedQuantitiesAtItgPt

// convert nu and E to Lame’s elasticity constants:

static void nuE2Lame (real nu, real E, real& lambda, real& mu,

Elasticity_type el_tp = THREE_DIM);

We have here only shown the most important data members of the class
for easy reference in the forthcoming discussion. One should notice that we

530 5. Solid Mechanics Applications

use the flexible FieldFormat and Handle(Field) tools from Chapter 3.15.4 for
representing variable coefficients like T , E, ν, and so on.

More than One Unknown at a Node. The fundamental difference between
a scalar and vector PDE solver is that the latter involves more than one
unknown per node. More specifically, our thermo-elastic model leads to d
unknowns per node. We must therefore treat the interaction between the
displacement vector field (FieldsFE) and the unknowns in the linear system
carefully. As usual, we have a vector in class Elasticity1 containing the
unknowns in the linear system. After this vector has been calculated by the
linear solver, we load it into the displacement field (FieldsFE) by calling the
vec2field functionality in the DegFreeFE object. Recall that class DegFreeFE

takes care of the relation between degrees of freedom in a field representation
(here a FieldsFE vector field) and the ordering of the equations and unknowns
in the linear system. The relation is quite simple in the present case: Degree
of freedom no. j in displacement component field no. i has degree of freedom
number d(j−1)+ i in the linear system, according to (5.14). This ordering of
the unknowns and the algebraic equations is used at the element level as well
and is therefore fundamental for the statements in the integrands function.

Looking at the basic expressions (5.17) and (5.18) in the integrands func-
tion, it can be wise to compute the element matrix and vector in terms of
block contributions from the nodes. In the code below, we let the integers
i and j run over the nodes, while r and s run over the d local degrees of
freedom in each block. We compute with λ and µ in the discrete equations,
but the elastic parameters on the menu are Young’s modulus E and Poisson’s
ratio ν. There is a simple formula for computing λ and µ given E and ν.

void Elasticity1::integrands(ElmMatVec& elmat,const FiniteElement& fe)

{

const int d = fe.getNoSpaceDim();

const int nbf = fe.getNoBasisFunc();

const real detJxW = fe.detJxW();

// Handle(Field) T, E, etc must be interpolated at current point:

const real T_pt = T->valueFEM (fe); // temperature

const real E_pt = E->valueFEM (fe); // Young’s modulus

const real nu_pt = nu->valueFEM (fe); // Poisson’s ratio

const real alpha_pt = alpha->valueFEM (fe); // expansion coeff.

const real rho_pt = rho->valueFEM (fe); // density

// convert to Lame’s elasticity constants:

real lambda, mu; nuE2Lame (nu_pt, E_pt, lambda, mu);

int i,j; // basis function counters

int k,r,s; // 1,..,nsd (space dimension) counters

int ig,jg; // element dof, based on i,j,r,s

5.1. Linear Thermo-Elasticity 531

real gradNi_gradNj, shear_term, volume_term, body_force_term;

// matdxd is a class member to avoid repeated local allocation

for (i = 1; i <= nbf; i++) {

for (j = 1; j <= nbf; j++) {

gradNi_gradNj = 0;

for (k = 1; k <= d; k++)

gradNi_gradNj += fe.dN(i,k)*fe.dN(j,k);

for (r = 1; r <= d; r++)

for (s = 1; s <= d; s++)

matdxd (r,s) = mu*fe.dN(i,s)*fe.dN(j,r);

for (r = 1; r <= d; r++)

matdxd (r,r) += mu*gradNi_gradNj;

// add block matrix (i,j) to elmat.A:

for (r = 1; r <= d; r++)

for (s = 1; s <= d; s++) {

shear_term = matdxd(r,s);

volume_term = lambda*fe.dN(i,r)*fe.dN(j,s);

ig = d*(i-1)+r;

jg = d*(j-1)+s;

elmat.A(ig,jg) += (shear_term + volume_term)*detJxW;

}

}

// add block matrix i to elmat.b:

for (r = 1; r <= d; r++) {

shear_term = 2*mu*alpha_pt*T_pt*fe.dN(i,r);

volume_term = 3*alpha_pt*lambda*T_pt*fe.dN(i,r);

body_force_term = rho_pt*9.81*g_dir(r)*fe.N(i);

ig = d*(i-1)+r;

elmat.b(ig) += (shear_term+volume_term+body_force_term)*detJxW;

}

}

}

The surface integral over ∂ΩN is implemented for normal tractions only.
Moreover, the implementation restricts the essential conditions to be homo-
geneous: ui = 0. Hence, the code can only be applied to problems where a
point on the boundary of the body is either prevented from being displaced or
subject to a pressure force. It is fairly straightforward to extend the code to

532 5. Solid Mechanics Applications

treat general traction vectors. Prescribed non-vanishing boundary displace-
ments are of course trivially implemented.

Boundary Indicators. Any Diffpack finite element simulator needs a conven-
tion for setting boundary conditions based on boundary indicators. In class
Elasticity1 we introduce d + 2 boundary indicators. The first two indica-
tors are used for boundaries with normal stresses (e.g., prescribed pressure).
The corresponding boundary conditions enter the finite element formulation
through a surface integral term in the weak formulation and are hence im-
plemented in the integrands4side function. Indicators 2 + i, i = 1, . . . , d,
mark boundary segments where ui = 0. These indicators are fundamental to
setting essential boundary conditions in the fillEssBC function:

dof->initEssBC ();

int nno = grid->getNoNodes();

int d = grid->getNoSpaceDim();

int i,k;

for (i = 1; i <= nno; i++)

for (k = 1; k <= d; k++) {

if (grid->boNode (i, 2+k))

dof->fillEssBC (i,k, 0.0);

}

The implementation of the surface integral terms in the weak formulation fol-
lows the recipe from Chapter 3.5.2. The calcElmMatVec function is essentially
the same as in class Poisson2, but the book-keeping of degrees of freedom
in the integrands4side is slightly more demanding due to more than one
unknown at each node.

void Elasticity1:: integrands4side

(int /*side*/, int boind, ElmMatVec& elmat, const FiniteElement& fe)

{

real pressure = DUMMY;

if (boind == 1) pressure = normal_stress1;

else if (boind == 2) pressure = normal_stress2;

const int d = fe.getNoSpaceDim();

const int nbf = fe.getNoBasisFunc();

const real JxW = fe.detSideJxW();

fe.getNormalVectorOnSide (normal_vec /*class member*/);

int i,r;

for (i = 1; i <= nbf; i++)

for (r = 1; r <= d; r++)

elmat.b (d*(i-1)+r) += fe.N(i)*pressure*normal_vec(r)*JxW;

}

5.1. Linear Thermo-Elasticity 533

Modifications of Initializing Statements. A few adjustments of the initializing
statements of a typical scalar PDE solver are necessary in the present case
to deal with d unknowns per node. When constructing vector fields, say a
Handle(FieldFE) u, the statement

u.rebind (new FieldsFE (*grid, "u"));

gives as many components in the field as there are space dimensions in the
model4.

Diffpack has a clear distinction between

– class GridFE class, which only contains geometry information about the
grid and the elements,

– classes FieldFE and FieldsFE, which contain a grid with nodal field values
and built-in evaluation at arbitrary spatial points,

– class LinEqAdmFE, which deals with linear system information only, and

– class DegFreeFE, which is the link between grid/field objects and linear
system objects.

The number of unknowns per node is of course essential to the DegFreeFE

object and must be set as an argument at construction time:

nsd = grid->getNoSpaceDim();

dof.rebind (new DegFreeFE (*grid, nsd); // nsd unknowns per node

Scalar PDE solvers from Chapter 3 could use grid->getNoNodes() for ex-
tracting the number of unknowns in the linear system, but now we need
more general tools,

u->getNoValues(); // u is Handle(FieldsFE)

dof->getTotalNoDof(); // alternative

The coefficients in the governing PDEs, like T , α, and the elasticity param-
eters, can be constants, explicit formulas, or discrete fields. The flexibility of
the elasticity solver is enhanced by using general Handle(Field) representa-
tions of the variable coefficients and allowing the user to determine the format
of each field at run time. The reader should consult Chapter 3.15.4 for an
introduction to the usage and functionality of the classes Handle(Field) and
FieldFormat for flexible field representations.

4 There is of course another FieldsFE constructor that can also take the number
of components in a vector or tensor field as argument.

534 5. Solid Mechanics Applications

Stress Computation. From (5.7) we see that the stresses are linear combi-
nations of the derivatives of the displacement field. Recall from Chapter 2.8
that the derivatives of finite element fields are in general discontinuous at
the element boundaries. For plotting or analysis purposes it is often useful
to work with a smooth stress measure. However, one should notice here that
if (λ, µ), or alternatively (E, ν), are discontinuous, the exact stresses on the
surface perpendicular to the surface of the discontinuity is in fact discontin-
uous. Smoothing can hence be physically incorrect. The optimal goal would
be to smooth the discontinuities arising from the finite element interpolation
functions, but keep the discontinuities due to layered media. This is a difficult
problem and will not be addressed here.

Computation of a smooth scalar stress measure, e.g. m from (5.19), can
be based on the outline in Chapter 3.4.5 regarding evaluation and smoothing
of derivatives of finite element fields. The derived quantity m is represented
by a FieldsFEatItgPt object, holding the values of m at the points in a
reduced Gauss-Legendre integration rule on each element (notice that the
derivatives of finite element fields have optimal accuracy at the points in a
reduced Gauss-Legendre rule, cf. page 217). The FieldsFEatItgPt object has
functionality for running through all elements and for each sampling point
calling a virtual function derivedQuantitiesAtItgPt in the solver class. This
virtual function computes the problem-dependent formulas for the derived
quantities. Here, this function is supposed to evaluate m from (5.19). The
FieldsFEatItgPt field can be reported as a set of scattered m values, or we
can smooth the field. The smoothing is carried out by a call to the utility
FEM::smoothFields.

void Elasticity1:: calcDerivedQuantities ()

{

stress_measures->derivedQuantitiesAtItgPt

(*this, *grid, 1 /* 1 derived quantity */,

GAUSS_POINTS, -1 /* reduced Gauss-Legendre sampling points */);

FEM::smoothFields (*smooth_stress_measures, *stress_measures);

}

void Elasticity1:: derivedQuantitiesAtItgPt

(VecSimple(NUMT)& quantities, const FiniteElement& fe)

{

const real T_pt = T->valueFEM (fe); // T at current point

const real alpha_pt = alpha->valueFEM (fe);

const real E_pt = E->valueFEM (fe);

const real nu_pt = nu->valueFEM (fe);

// convert to Lame’s elasticity constants:

real lambda, mu; nuE2Lame (nu_pt, E_pt, lambda, mu);

// use the scratch matrix matdxd (class member) as stress tensor:

5.1. Linear Thermo-Elasticity 535

Mat(real)& s = matdxd;

s.redim (3,3); // always 3x3, also in 2D problems

s.fill (0);

const int d = fe.getNoSpaceDim();

gradu_pt.redim (d); // (class member)

real div_u = 0; // divergence of displacement field

for (int k = 1; k <= d; k++) {

u()(k).derivativeFEM (gradu_pt(k), fe);

div_u += gradu_pt(k)(k);

}

int i,j; const real temp_term = (3*lambda+2*mu)*alpha_pt*T_pt;

for (i = 1; i <= d; i++) {

// off-diagonal terms in the stress tensor:

for (j = 1; j < i; j++) {

s(i,j) = mu * (gradu_pt(i)(j) + gradu_pt(j)(i));

s(j,i) = s(i,j);

}

// diagonal terms in the stress tensor:

s(i,i) = lambda*div_u + 2*mu*gradu_pt(i)(i) - temp_term;

}

// augment s_zz for plane strain:

if (elasticity_tp == PLANE_STRAIN)

s(3,3) = lambda*div_u - temp_term;

real e2 = 0.5*(6*(sqr(s(1,2)) + sqr(s(2,3)) + sqr(s(1,3))) +

sqr(s(1,1)-s(2,2)) + sqr(s(2,2)-s(3,3)) + sqr(s(3,3)-s(1,1)));

quantities(1) = sqrt(e2);

}

The code in class Elasticity1 can handle any number of stress measures,
e.g. all the stress tensor components in addition to several yield functions,
but the current implementation computes only one measure, namely the von
Mises equivalent stress (5.19).

Specializing Solvers in Subclasses. To verify the implementation of class
Elasticity1, we need to compare the analytical and numerical solution in
some standard test examples, such as a pressurized cylinder in plane strain
and 3D elongation of a rod. The implementation of these examples are con-
veniently done in subclasses, as we explain in Chapters 3.4.6 and 3.5.7. Class
PressurizedCyl implements a plane strained cylinder with pressure forces
on the inner and outer boundaries. Comparison with the analytical solu-
tion [140, p. 69] and estimation of convergence rates follow the ideas of class
Poisson2anal. Another subclass solver Rod simulates the elongation of a rod,

536 5. Solid Mechanics Applications

with square-shaped cross section, due to normal stresses at the ends. The dis-
placement field is in this case linear in the spatial coordinates. The analytical
solution should therefore be obtained within machine precision, regardless of
the number of elements used in the structure.

Visualizing the Deformed Body. The elasticity computations are performed
in the initial configuration of the elastic body. The primary unknown ui

describes how this body deforms under the action of loads, and the final
shape of the deformed body might be of interest to the analyst. To this
end, we can move the grid according to the displacement field and define
computed fields over the deformed grid. The scan function makes an extra
grid, deformed grid, and a special field, equiv stress2, to hold the smoothed
equivalent stress m over deformed grid.

In the saveResults function we easily move the original grid according to
ui times a magnification factor given by the user on the menu:

*deformed_grid = *grid; // original configuration

deformed_grid->move (*u, magnification);

database->dump (*equiv_stress2); // equiv_stress2 uses deformed_grid

If the magnification factor is less than zero the program will compute a
suitable value of magnification such that the deformed grid is displaced at
most a distance L/10, where L is the characteristic size of the elastic body.

The Elasticity2 Solver. The Elasticity2 solver can be viewed as an extension
of the Elasticity1 class. The finite element formulation used to compute the
element matrices and vectors is based on the notation in Chapter 5.1.3. This
enables us to treat anisotropic elastic media in an easy way. Moreover, the
boundary conditions are more general than in Elasticity1; we also allow
an arbitrary traction (stress vector) to be prescribed at the boundary. The
boundary indicators are therefore changed:

– Indicators 1 and 2 are used for two values of a prescribed normal stress
at two parts of the boundary.

– Indicators 3 and 4 are used for two constant traction vectors at two parts
of the boundary.

– Indicators 4 + 1, . . . , 4 + d are used for vanishing u1, . . . , ud.

– Indicators 4 + d+ 1, . . . , 4 + 2d are used for known displacement compo-
nents u1, . . . , ud (possibly different from zero).

We have followed the strategy from the Poisson2 solver and made virtual
functions, called displacementBC and tractionBC, for evaluating the displace-
ment (indicators 4 + d + 1, . . . , 4 + 2d) and traction (indicators 3 and 4)
at the boundary. With the presence of these functions it is easy to derive
a small subclass and reimplement the functions so they reflect any desired
displacement or traction boundary condition.

5.1. Linear Thermo-Elasticity 537

Many elasticity problems involve time-dependent loadings, although the
time scale is not sufficiently fast to require inclusion of the acceleration term
%u,tt in the governing vector PDE (5.1). That is, the term %u,tt is much
smaller than the effect of inner stresses, σrs,s, in the body. Such problems
are often referred to as quasi-static problems. Basically, a stationary elasticity
problem is solved at each time level; just the boundary conditions may change
from a time level to the next. To allow class Elasticity2 to handle quasi-static
elasticity problems, we have included a TimePrm data member to hold a time
step parameter and the time interval for simulation. We have also provided
a timeLoop function. By default, the time step is zero, signifying a stationary
problem, and the timeLoop function has only one pass (see Chapter 3.11.3 for
this feature of class TimePrm). However, a programmer can derive a subclass
of Elasticity2, implement time-dependent boundary conditions, and then
simulate a slow transient elastic phenomenon.

The input file to an Elasticity2 solver is quite similar to the Elasticity1

solver, but the boundary indicator information differs. Most of the examples
in Elasticity1/Verify are duplicated in Elasticity2/Verify.

5.1.5 Examples

Some computational examples involving linear elasticity and the Elasticity1

and Elasticity2 solvers are presented in the following. A Python script
plotmtvEL.py in the Elasticity1 and Elasticity2 directories takes the case-
name of a run as argument and makes a color plot and contour line plot
of the equivalent stress m in the deformed domain as well as a plot of the
displacement magnitude field (

√
urur) in the computational (undeformed)

domain. The plotmtv program is used for visualization, but you can easily
adapt the script to other plotting programs. There is also Perl version of the
script (plotmtvEL.pl).

L-Shaped Beam. An elasticity problem involving an L-shaped domain is de-
picted in Figure 5.1a. Let us explain how we can set up the input file for
such a simulation. First we need to define the grid. The shape of the do-
main is simple enough to make use of the built-in grid generation tools in
Diffpack. The PreproStdGeom preprocessor (from Chapter 3.5.3) can be used
for domains where a rectangle is cut out of another rectangle. The L-shaped
domain can be generated this way, and the appropriate geometry definition
becomes (cf. the caption in Figure 3.8 on page 321):

BOX_WITH_BOX_HOLE d=2 [0,1]x[0,0.5] - [0.3,1]x[0.3,0.5]

An example on the partition specification reads

d=2 elm_tp=ElmB4n2D div= [20,10] [1,1]

538 5. Solid Mechanics Applications

0 1
0

0.1

0.2

0.3

0.4

0.5

0 1
0

0.1

0.2

0.3

0.4

0.5

end

clamped

pressure force

(a)

0 1
−0.1

0

0.1

0.2

0.3

0.4

1.
27

2.53

3.79

3.79

3.79

3.79

5.04

5.04

6.3

6.3

7.55

7.55

8.81

8.81

10.1

0 1
−0.1

0

0.1

0.2

0.3

0.4

(b)

Fig. 5.1. L-shaped clamped beam under a pressure load; (a) sketch of the
problem; (b) contour lines of the equivalent stress m from (5.19). When plot-
ting the deformation in (b) we have scaled the displacement field such that
the features of the displacements are more clearly visualized.

5.1. Linear Thermo-Elasticity 539

By default, this L-shape domain gets five boundary indicators. Four corre-
spond to the original four sides of the rectangle [0,1]x[0,0.5], whereas the
5th indicator corresponds to the new (originally inner) boundary after the
rectangle [0.3,1]x[0.3,0.5] is removed. We need to map these boundary in-
dicators onto the set used by class Elasticity1. In a 2D problem, Elasticity1
works with four indicators: the first two specify boundaries with normal
stress, indicator 3 and 4 are u1 = 0 and u2 = 0. We add a 5th indicator
for marking the stress free boundaries (recall that the condition here is a
natural boundary condition, but we need the indicator for plotting the com-
plete boundary). The new indicator 1, representing normal stress, is to be
applied at the boundary marked by the old indicator 2 (top of the domain).
The new indicator 2 is not used. The indicators 3 and 4 for vanishing dis-
placement apply to the right boundary, which had indicator 1 originally. The
stress free boundary is made up of the original indicators 3 (left boundary),
4 (lower boundary), and 5 (the cut between the rectangles). With this trans-
formation from old to new indicators we can easily write the answer for the
menu item redefine boundary indicators:

n=5 names= P1 dummy u1=0 u2=0 free 1=(2) 2=() 3=(1) 4=(1) 5=(3 4 5)

We need to define some values for the elasticity parameters:

set nu format = CONSTANT=0.25

set E format = CONSTANT=100

Furthermore, we need to set the normal stress on the top of the domain:

set normal stress 1 = -1.0 ! <0: pressure load

When running a new elasticity problem, it is smart to use a coarse mesh
and Gaussian elimination as solver. For larger problems, and after the prob-
lem set-up works, the preconditioned Conjugate Gradient method is most
appropriate. The latter choice of linear solver is specified by

sub LinEqAdmFE

sub Matrix_prm

set matrix type = MatSparse

ok

sub LinEqSolver_prm

set basic method = ConjGrad

ok

sub Precond_prm

set preconditioning type = PrecRILU

set RILU relaxation parameter = 0.0

ok

ok

ok

540 5. Solid Mechanics Applications

A complete input file is found in src/app/Elasticity1/Verify/deformedL.i.
You are encouraged to run the simulator with this input and then plot the
results:

../app --casename Lbody --noreport < deformedL.i

../plotmtvEL.py Lbody

Heavy Box on an Elastic Foundation. Suppose we have an elastic layer of
wide extent and place a heavy box on it, see Figure 5.2a. The resulting
deformation and stresses are caused by gravity.

The problem can be modeled as a two-material elasticity problem. The
surfaces of the layer and the box are stress free, and at the basement of
the layer we assume no vertical deformation. The boundaries A and B at
the left and right sides of Figure 5.2a are supposed to be artificial; they are
just placed sufficiently far from the box to model a very wide layer. For an
infinite layer, there is no horizontal deformation at infinity. Hence, we set
u1 = 0 at A and B. The other condition we need here is vanishing shear
stress, but this is a natural boundary condition so no special actions are
necessary in a finite element simulator. At the bottom, u2 = 0 is paired
with vanishing shear stress (i.e., no friction). At the rest of the boundary,
the two components of the stress vector vanish. We now have two conditions
at each point on the boundary, which is required when solving 2D elasticity
problems. The boundary between the box and the layer is an internal surface,
where no conditions need to be specified when we treat the layer and box
as one heterogeneous (two-material) elastic domain; the interface conditions
of continuous displacement and stress vector are automatically built into the
governing partial differential equations.

Inspection of Figure 5.2a reveals that the input data (domain, loading,
physical properties) are symmetric about the dashed vertical line. Hence, we
may take advantage of symmetry and formulate the problem in a domain
of half the size of the original domain. We choose to work with the right
part of the domain (Figure 5.2b). At the symmetry boundary, appropriate
conditions must be assigned. Symmetry of a vector field implies that the
normal component vanishes (it is anti-symmetric) and the remaining part of
the vector is symmetric. For a displacement field these conditions translate
to vanishing normal displacement (here u1 = 0) and vanishing shear stress
(natural condition).

Let us set up an input file for the Elasticity2 simulator (class Elasticity1
could be used as well, the only difference here is in the boundary indicator
numbering convention). The specification of the geometry can utilize the
PreproStdGeom tool:

BOX_WITH_BOX_HOLE d=2 [0,4]x[0,2] - [1,4]x[1,2]

with a partition

5.1. Linear Thermo-Elasticity 541

A B

g

(a)

0 1 2 3 4
0

1

2

17.2

180

342

505

668

830

993

1.16e+03

1.32e+03

1.48e+03

1.64e+03

0 1 2 3 4
0

1

2

(b)

Fig. 5.2. Heavy box on an elastic layer: (a) sketch of the problem; (b) defor-
mation and stress (m).

542 5. Solid Mechanics Applications

d=2 elm_tp=ElmB4n2D div= [40,20] [1,1]

Mapping of boundary indicators must be done carefully, as always. There are
eight indicators in class Elasticity2 when solving 2D problems: Two normal
stress and two traction indicators, two indicators for u1 = 0 and u2 = 0,
and two indicators for u1 6= 0 and u2 6= 0. In addition, we introduce a 9th
indicator for marking the stress free boundary; we need this indicator to be
able to mark the whole boundary for plotting. The appropriate mapping can
be written as follows using the syntax required in an input file:

1=() 2=() 3=() 4=() 5=(3 1) 6=(4) 7=() 8=() 9=(2 5)

Gravity is the loading so we must remember to define its direction properly
in the input file. By default this direction is the vector (0, 0), i.e. no gravity
loading. Now we want (0,−1), i.e. gravity acting downwards:

set gravity direction = 0 -1 ! acting in negative y direction

Since the box and the layer have different physical properties, it is natural to
use the material concept (see page 313) to define two materials. By default,
the whole grid is material 1. We then need to redefine the part [0, 1]× [1, 2],
i.e. the box, as material 2. The elasticity solvers have a menu item whose
answer is sent to grid->addMaterial such that we can specify material 2 on
the input as follows:

set add material = no=2 [0,1]x[1,2]

The physical properties like %, E, and ν are represented as general Field

objects in the solver. Piecewise constant values in each material is obtained
by specifying menu items as shown next for the % quantity:

set rho format = MATERIAL_CONSTANTS= 1 100;

This means that rho is set to 1 unit in material 1 (the layer) and 100 units
in material 2 (the box). Similarly, we can set

set E format = MATERIAL_CONSTANTS= 10000 100000;

and thereby simulate a soft layer and a hard box. We refer to Chapter 3.15.4
for more information on specifying scalar fields in this flexible way.

Finally, we add menu items for the linear solver, see the syntax in the
deformedL.i file from the previous example. The input file for the box-on-
layer case is found in src/app/Elasticity2/Verify/heavybox.i. Running the
simulator Elasticity2 with this input results in deformations as depicted in
Figure 5.2b.

5.1. Linear Thermo-Elasticity 543

pressure load

(a)

6.1×10−17 1.0×100 2.0×100 3.0×100
0

1

2

3

0.0195

0.161

0.302

0.443

0.584

0.725

0.866

1.01

1.15

1.29

1.43

6.1×10−17 1.0×100 2.0×100 3.0×100
0

1

2

3

(b)

Fig. 5.3. Deformation of an arch with a load; (a) sketch of the problem;
(b) gray-tone plot of the equivalent stress m from (5.19) over the magnified
deformed grid (the boundary of the initial configuration is included in the
plot). Biquadratic nine-node elements were used in the simulation. When
plotting the deformation in (b) we have scaled the displacement field such
that the features of the displacements are more clearly visualized.

544 5. Solid Mechanics Applications

Load on an Arch. The next example concerns the deformation of an arch as
depicted in Figure 5.3. In this problem we need to assign a pressure load,
i.e. boundary indicator 1, over a portion of a side. The grid is first generated
by the DISK WITH HOLE feature in the PreproStdGeom preprocessor. Thereafter
we apply redefinition of boundary indicators and add boundary nodes to
model the load and symmetry constraints. The file Verify/arch1.i contains
explanations of our usage of basic Diffpack functionality. This example shows
that the preprocessing capabilities covered in the text have some flexibility.
However, for real engineering applications, one would probably need a pro-
fessional preprocessor software and import the grid in the elasticity solver.

Run the simulator with the Verify/arch1.i input file and visualize the
results by plotmtvEL.py script. Figure 5.3b shows the deformations and the
stress state (m). The amount of deformation is exaggerated as usual for
visualization purposes. A plot of the u magnitude field reveals the correct
scales of the displacements.

Exercise 5.2. .
Consider the geometry in Figure 5.2a, but neglect gravity and assume

instead that the two elastic bodies are heated from a temperature T0 to
the temperature T . With different thermal expansion properties in the two
materials, stress concentrations will result from the heating. Simulate this
physical phenomenon. Assume that the elastic layer is glued to the basement
(no displacements) and that the ends A and B are free of any stress. �
Exercise 5.3. .

Figure 5.4 displays two thin plates in tension, where one of the plates has a
crack and the other has an elliptic hole. First reduce the size of the computa-
tional domains by utilizing symmetry and formulate the boundary conditions
to be applied on the symmetry boundaries. Then construct appropriate input
files for the two geometries. The elliptic hole can be modeled as in Figure 3.9
on page 322. The grid for the crack problem is obtained by PreproBox and
manipulating conditions at boundary nodes. However, the displacement gra-
dients will be very large close to the crack tip so one should use local mesh
refinements (see e.g. Figure 5.7 on page 564). Running the makegrid utility
with crackedPlate-makegrid.i as input (see the Verify directory) generates
a possible mesh with refinements around the crack tip. Study the ratio stress
concentration as the shape of the elliptic hole varies from a circle to an ap-
proximation of the crack. The stress concentration can be expressed as the
maximum value of the stress measure m, divided by the stress as if there
were no crack or hole in the plate. (It can be interesting to know that for
an infinite plate, the maximum tension stress σxx at the point of the ellipse
that corresponds to the crack tip equals [56] σ(1 + 2b/a). Here, x is in the
direction of the external stress field σ, a is the half-axis in the x-direction,
and b is the other half-axis of the ellipse.) The experiments are conveniently
carried out by modifying a copy of the plotmtvEL.py script in the Elasticity1

directory, where you supply the width of the elliptic hole as input, run the

5.1. Linear Thermo-Elasticity 545

simulator, visualize the results, and use the minmax simres2summary function5

to find min/max values for the color scale. �

σ σσ σ

Fig. 5.4. Tension of a thin plate with a crack (left) and an elliptic hole (right).

Exercise 5.4. .
Consider the geometry in Figure 3.33 on page 439. Assume that the white

portion of the domain is an elastic material and that the inner hole is filled
with a gas at temperature Tg. Outside the elastic material the scaled tem-
perature is held constant at T0 (i.e. the temperature that corresponds to no
thermal deformations in the material). There are no applied stresses at the
boundaries, but temperature variations will lead to internal stresses. Com-
pute first the temperature field with the Poisson2 solver. Utilize symmetry
to reduce the size of the computational domain (the grid can then be gener-
ated using the PreproStdGeom tool and the BOX WITH ELLIPTIC HOLE option, see
page 321). The temperature field is now stored in simres format on a datafile
and can be loaded into the Elasticity1 solver by specifying the field format
FIELD ON FILE as explained on page 478. Neglect pressures on the physical
boundaries in the elasticity problem, i.e., the only load stems from the spa-
tial temperature variations. Extend the plotmtvEL.py or plotmtvEL.pl script
such that it visualizes the temperature field as well. Study the maximum
stresses as the radius of the inner hole is varied. �

5.1.6 Elastic Vibrations

Suppose you want to make a solver capable of simulating elastic vibrations.
In this case, the term %u,tt is essential in the PDE (5.1), and it cannot be
neglected as we did in Chapters 5.1.1–5.1.4. Let us show in a step-by-step
fashion how we can extend the Elasticity2 solver to handle a fully time-
dependent elasticity problem.

5 See src/fem/Heat2/Verify/embed2.py (cf. Chapter 3.12.9) for an example.

546 5. Solid Mechanics Applications

The Finite Element Formulation. The governing equation to be solved is
(5.1). Following the approach for time-dependent finite element problems
in Chapter 2.2, we first discretize in time by finite differences. A simple
choice is to employ a centered three-point difference for u,tt. Introducing
the superscript ` for the time level, the time-discrete version of (5.1) becomes

%
u`−1 − 2u` + u`+1

∆t2
= σ`

rs,s + %b`r, (5.35)

where ∆t is the time step length and quantities with the ` superscript are
functions of space only.

The finite element equations corresponding to (5.35) are derived by the
same methods as in Chapters 5.1.2 and 5.1.3, except that we must introduce
three new terms,

%u`−1, −2%u`, %u`+1

in the book-keeping. These terms are simple to handle; there are no spatial
derivatives, and their discrete form can be written as

Mu`−1, −2Mu`, Mu`+1,

where u` is the vector of nodal displacement components at time level `, and
M is the mass matrix with entries

M̃rs
ij =

∫

Ω̃

%NiNjdΩ

at the element level. In the computations, we will lump this mass matrix,
either by a row-sum technique or by nodal point integration.

The terms σ`
rs,s + %b`r in (5.35) are the same terms as discussed in detail

in Chapters 5.1.2 and 5.1.3 so we here just write the corresponding discrete
form as −Ku` + b`. The total discrete scheme can then be written as

Mu`+1 = 2Mu` −Mu`−1 +∆t2(−Ku` + b`),

if we solve with respect to the unknown term Mu`+1 (in the time stepping
we assume, as usual, that u` and u`−1 are already computed). With a lumped
mass matrix, we can form its inverse M−1, resulting in the scheme

u`+1 = 2u` − u`−1 +∆t2M−1(−Ku` + b`) . (5.36)

Observe that this time-stepping scheme is explicit: the new value u`+1 is
found by just performing the matrix-vector products, the vector additions,
and the scalar multiplication of known quantities at the right-hand side.

At time t = 0 we assume that we apply forces to obtain some initial
displacement u0. This displacement is the solution of a standard stationary
elasticity problem: Ku0 = b0. We also assume that the structure is initially

5.1. Linear Thermo-Elasticity 547

at rest, i.e., u,t = 0. Note that we need two initial conditions in this problem
since the time derivative in (5.35) is of second order. The condition u,t = 0
at t = 0 implies u1 = u−1 (by a centered difference approximation). Using
(5.36) for ` = 0 and eliminating u−1 yields a special formula for u1, where
the initial conditions are incorporated:

u1 = u0 +
1

2
∆t2M−1(−Ku0 + b0) = u0, Ku0 = b0 . (5.37)

The scheme (5.37) produces this u1 if we define

u−1 = u0 . (5.38)

From (5.37) it follows that any u` equals u0, i.e., the problem is stationary
unless b` changes, which is reasonable. To get a motion, we might apply a
b0 to get u0 and the remove the load, i.e., b` = 0 for ` > 0. We assume that
this is the case in our simulator.

Computational Algorithm. The algorithm goes as follows. At time t = 0
we solve a standard elasticity problem Ku0 = b with the given boundary
conditions. We set u−1 = u0. Thereafter we turn off the loadings, but keep the
displacement boundary conditions. This means that without stress loadings
at t = 0, which we then remove, nothing will vary in time. After the traction
and normal stress loadings are set to zero, we calculate b1. At the next time
levels we assume b` = b1, ` > 1. The new u`+1, ` > 0, is found from (5.36).
Essential boundary conditions can be inserted directly in u`+1, right after the
formula (5.36) is applied (the function DegFreeFE::insertEssBC is convenient
for this purpose). Chapter 3.15 describes a wave equation problem, which
has, from a mathematical and numerical point of view, the same nature as
the present problem.

Implementation. We can use class Elasticity2 for computing K, b0, u0,
and b1. What we need in addition, is basically some extra data structures
for holding the displacement field at three different time levels, a function
for setting up the initial conditions and associated computations (setIC),
and a time stepping function (timeLoop). This is just an extension of class
Elasticity2, so it makes sense to implement the transient elasticity solver
as a subclass of Elasticity2. Much of what we do here is a straightforward
generalization of the Wave1 solver from Chapter 3.15.

We call the solver class ElasticVib1. The additional data members to be
declared are

Handle(FieldsFE) u_prev; // solution at time t-dt

Handle(FieldsFE) u_prev2; // the solution at time t-2*dt

Vec(real) scratch1, scratch2; // used in the updating formula for u

Vec(real) u_prev_values; // holds u_prev’s nodal values

Vec(real) u_prev2_values; // holds u_prev2’s nodal values

MatDiag(real) M; // a lumped mass matrix

548 5. Solid Mechanics Applications

Since the updating formula (5.36) is a matrix-vector equation, we need
to work with the displacement fields u, u prev, and u prev2 at the vector (or
linear algebra) level. For a scalar FieldFE field we can extract the underlying
vector of nodal unknowns by the FieldFE::values() function. This is not pos-
sible for a vector field FieldsFE, because it is not obvious how the component
fields of FieldsFE are stacked together in a long vector. The DegFreeFE class
holds information about the mapping between the FieldsFE vector field rep-
resentation like u prev and the associated single long array of nodal values,
here called u prev values. Throughout the solver class we need to ask the
DegFreeFE object to shuffle data between array and field representations.

The outline of the class reads

class ElasticVib1 : public Elasticity2

{

protected:

Handle(FieldsFE) u_prev; // solution at time t-dt

Handle(FieldsFE) u_prev2; // the solution at time t-2*dt

Vec(real) scratch1, scratch2; // used in the updating formula for u

Vec(real) u_prev_values; // holds u_prev’s nodal values

Vec(real) u_prev2_values; // holds u_prev2’s nodal values

// (note: we use Elasticity2::solution to hold u_prev’s values)

MatDiag(real) M; // a lumped mass matrix

public:

ElasticVib1 ();

~ElasticVib1() {}

virtual void scan();

virtual void solveProblem() { setIC(); timeLoop(); }

virtual void resultReport();

virtual void setIC();

virtual void timeLoop();

virtual void solveAtThisTimeStep();

virtual void updateDataStructures();

};

No new menu items are necessary, but we provide a scan function for allo-
cating memory for the additional data structures.

The initial work is performed in setIC:

void ElasticVib1::setIC()

{

// first we solve Ku = b at t=0:

Elasticity2::solveStationaryProblem();

*u_prev = *u;

// make the mass matrix (we need it already here)

makeMassMatrix(*grid, M, true, u->getNoFields(), rho.getPtr());

5.1. Linear Thermo-Elasticity 549

M.factLU(); // factorize M

*u_prev2 = *u_prev;

// remove loads (cannot simply set lineq->b()=0 since gravity

// may affect this term):

traction1 = 0; traction2 = 0;

normal_stress1 = 0; normal_stress2 = 0;

// we need a new lineq->b() and lineq->A() without B.C.s

fillEssBC ();

makeSystem (*dof, *lineq); // calculate linear system

// now lineq->A() holds K and lineq->b() holds b

Class Elasticity2 has a timeLoop function, but this is useless here since we
are not solving a stationary elasticity problem at each time level; we are just
evaluating the formula (5.36), which does not involve finite element assembly
or linear systems solution. The ElasticVib1::timeLoop function is a standard
timeLoop function of the type found in the Heat1/Heat2 and Wave1 solvers.
Inside the loop, we call solveAtThisTimeStep, which implements the basic
scheme (5.36):

void ElasticVib1:: solveAtThisTimeStep()

{

dof->field2vec (*u_prev, u_prev_values);

dof->field2vec (*u_prev2, u_prev2_values);

prod(scratch1, lineq->A(), u_prev_values); // scratch1 = K*u^n

// scratch2 = -K*u^n + b^n

add(scratch2, -1.0, scratch1, 1.0, lineq->b());

// scratch2 = M^{-1}*scratch2 = M^{-1}*(-K*u^n + b^n)

M.forwBack (scratch2, scratch2);

// scratch1 = -u^{n-1} + dt^{2}*scratch2:

add(scratch1, -1.0, u_prev2_values, 0.5*sqr(tip->Delta()), scratch2);

// u = 2*u_prev + scratch1:

add(solution, scratch1, 2.0, u_prev_values);

// insert ess. B.C.

dof->insertEssBC (solution, false);

dof->vec2field (solution, *u);

}

The reader can look up the complete code in src/app/ElasticVib1 and see
how compact the transient elasticity solver is, simply because it inherits most
of the functionality from its base class Elasticity2.

Examples. We can easily run any of the stationary elasticity examples as a
vibration problem; the stationary configuration is the initial condition, then

550 5. Solid Mechanics Applications

we remove the loads, and the structure begins to vibrate. This process can
be automated by loading menu answers from an input file for a station-
ary case and adding an appropriate TimePrm data specification through the
--time parameters command-line option. A script run.py in the ElasticVib1

directory implements this idea. The script performs the simulation and pre-
pares a movie of the stress and structure movements. A name of the input
file for the Elasticity2 solver is the first command-line argument, followed
by ∆t, the stop time of the simulation, and min/max coordinate values of the
axis (such that the axis are fixed and not adjusted as the deformed domain
is moving). The ElasticVib1 solver is run and a movie with approximately
20 frames is made (using plotmtv for creating the frames). You can try

./run.py $NOR/doc/Book/src/app/Elasticity2/Verify/coarseBeam.i \

0.04 12 0 11 -3.5 7

5.2 Elasto-Viscoplasticity

The deformation of solid materials is usually purely elastic when the stresses
are below a certain critical level, called the yield stress. When the stresses
are above this threshold, a combination of elastic and plastic deformation
occur, where the latter type of deformation is recognized by being permanent.
Simulation of elasto-plastic deformation is fundamental in many engineering
disciplines, and the finite element method has been successfully applied to
this problem area during three decades [154]. From a numerical point of view,
it might be easier to deal with a time-dependent extension of the classical
elasto-plastic model, namely the elasto-viscoplasticity model, which recovers
the elasto-plastic solution as time approaches infinity.

5.2.1 Basic Physical Features of Elasto-Viscoplasticity

The basic physical features of the elasto-viscoplastic model are best intro-
duced by means of a one-dimensional mechanical system as depicted in Fig-
ure 5.5. The system consists of a spring with elastic properties, serially cou-
pled to a friction slider and a dashpot, which comprise the viscoplastic part.
The friction slider is inactive if the stress is below the yield point, resulting in
no viscoplastic deformations. The dashpot reflects the viscous properties of
viscoplasticity when the slider is active. The total deformation then consists
of the elastic displacement in the spring plus the displacement of the viscous
dashpot.

Equilibrium of any part of the structure implies that the sum of the normal
stresses is σ everywhere. The onset of viscoplastic deformation occurs when
σ = CY , where CY is the yield stress. For σ < CY the deformation is purely

5.2. Elasto-Viscoplasticity 551

σ

dashpot friction slider

spring

ε

εE

P

Fig. 5.5. Sketch of a mechanical model that reflects the basics physics of
elasto-viscoplastic deformation.

elastic, whereas for σ ≥ CY the material is in a combined elasto-viscoplastic
state. The friction slider develops an internal stress

σP =

{
CY , σ ≥ CY

σ, σ < CY
(5.39)

When the friction slider is active (σ > CY) the dashpot experiences a stress

σD = σ − σP , (5.40)

which is related to the viscoplastic strain rate ε̇P by the constitutive relation

σD = µε̇P . (5.41)

In analogy with viscous fluid flow, µ is a viscosity coefficient.
The viscoplastic strain vanishes if the friction slider is inactive. The no-

tation

〈Φ(F)〉 =

{
Φ(F), F > 0
0, F ≤ 0

is then convenient, since it enables us to express the constitutive law for the
viscoplastic part of the structure as

ε̇P = 〈Φ(F)〉 1
µ
σD . (5.42)

552 5. Solid Mechanics Applications

Here, F = σ − CY . When discussing the model in Figure 5.5, we simply set
Φ(F) = F .

Normally, the material exhibits strain hardening. That is, after unloading
from a viscoplastic state and then reloading again, it appears that the yield
point has increased to

CY = CY0 + f(εP), (5.43)

where CY0 is the yield point for an originally unstrained material (provided
f(0) = 0). We should hence treat CY as a function of the total viscoplastic
strain εP . The precise form of CY must be determined from physical experi-
ments.

The elastic spring is characterized by a linear relation between stress and
strain:

σ = EεE, (5.44)

where the coefficient E is Young’s modulus. Let ε be the total strain in the
system. Obviously, ε is the sum of the strain in the spring, εE , and the strain
in the viscoplastic part of the system, εP ,

ε = εE + εP . (5.45)

Our aim now is to develop a relationship between the total stress and strain
in the two cases σ < CY and σ ≥ CY . In the purely elastic case, σ < CY and
εP = 0, we get

σ = Eε, (5.46)

whereas

ε̇ =
1

E
σ̇ + γ(σ − CY (εP)) (5.47)

in the combined elasto-viscoplastic state. We have introduced the fluidity
parameter γ = 1/µ.

Exercise 5.5. .
Derive (5.47). �

Let us study the simple case where CY is a linear function of εP , with
slope c: CY = CY0 + cεP = CY0 + c(ε−E−1σ). Equation (5.47) can then be
expressed as

ε̇+ γcε =
1

E
σ̇ + γ

(c
E

+ 1
)
σ − γCY0 . (5.48)

The solution becomes

ε(t) = e−γct

∫ t

−∞

eγcτ

(
1

E
σ̇(τ) + γ

(c
E

+ 1
)
σ(τ) − γCY0

)
dτ . (5.49)

Consider now a suddenly applied load q at time t = 0: σ(t) = qH(t), where
H(t) is the Heaviside function, defined as H(t) = 1 for t > 0 and H(t) = 0

5.2. Elasto-Viscoplasticity 553

for t < 0. The delta function is the derivative of H(t): H ′(t) = δ(t). Using
the general properties that

∫ t

−∞

f(x)δ(x − t0)dx = f(t0)H(t− t0)

and ∫ t

∞

f(x)H(x − t0)dx = H(t− t0)
∫ t

t0

f(x)dx,

one finds that

ε(t) =
q

E
+
q − CY0

c

[
1− e−γct

]
, t > 0 . (5.50)

We see that the immediate response is purely elastic (q/E). Thereafter, a
viscous deformation develops. The total deformation approaches a finite value
as t → 0. In the case of an ideally plastic material, CY is a constant, and
letting c→ 0 reveals that ε increases linearly in time.

5.2.2 A Three-Dimensional Elasto-Viscoplastic Model

We shall write the equations of 2D and 3D elasto-viscoplasticity using the
engineering notation from Chapter 5.1.3, because this notation simplifies the
manipulations of the expressions considerably. The brief text below is an
combination of the expositions in Zienkiewicz and Taylor [154, Ch. 7.11-7.12]
and Owen and Hinton [108, Ch. 8], tailored to the numerical background
from Chapters 2, 4.1, and 5.1. Another useful reference, also with emphasis
on implementational aspects, is Smith and Griffiths [129]. We refer to these
books and the references therein for more information about the broad topic
of plasticity and viscoplasticity.

Basic Equations. The fundamental assumption of elastic-viscoplasticity is
that the total deformation can be separated into elastic and viscoplastic parts.
More specifically, one can express the total rate of strain, ε̇, according to

ε̇ = ε̇E + ε̇P , (5.51)

where ε̇P is the viscoplastic strain rate, and ε̇E is the elastic strain rate. The
dot denotes partial differentiation in time.

The strain rate is related to the stresses through the time-differentiated
version of Hooke’s generalized law,

σ̇ = Dε̇E . (5.52)

The viscoplastic strain rate vanishes if the stress intensity is below a critical
level. In three-dimensional theory, this is more precisely expressed in terms
of the yield function f(σij). The deformation is purely elastic (ε̇P = 0) when

554 5. Solid Mechanics Applications

f(σij) ≤ CY , where CY is generally given as in (5.43). No special numerical
attention is paid to hardening in the following. Instead we refer to [154,
Ch. 7.8, vol II] for more information. There are numerous choices of the yield
function f , some of which are briefly described in the next section.

One can write the constitutive law for the viscoplastic strains as

ε̇P = γ〈Φ(F)〉∂Q
∂σ

, (5.53)

where F = f(σij)−CY , γ is the fluidity parameter (inverse “viscosity”), which
influences the time scale only, and Q is a plastic potential. The common case
of associated plasticity corresponds to taking Q = F . A widespread choice of
the Φ(F) function is Φ(F) = (F/CY)N , for some prescribed constant N .

The equation of motion, in terms of stresses and accelerations, is the same
for all continua. Therefore, (5.1) is also valid here. Neglecting accelerations
and employing Galerkin’s method results in the same weak form (5.32) as in
the elastic case:

∫

Ω

BT
i σdΩ + f i = 0, i = 1, . . . , n, (5.54)

where f i contains body forces and surface integrals of the tractions. Recall
from Chapter 5.1.2 that the latter quantities appear as natural boundary
conditions. Finally, we have the relation between the total strain and the
displacement field u ≈ û =

∑
j Njuj , which we need in the following time-

differentiated and spatially discrete form:

ε̇ =

n∑

j=1

Bju̇j . (5.55)

Recall that quantities like Bj , uj , and D are defined in Chapter 5.1.3.
In the elasticity problem, we can easily eliminate the stress and strain

quantities and obtain a vector equation for the displacement field. This is
more complicated in the present elasto-viscoplastic problem, because of the
nonlinearities introduced by the ε̇P term. By proper discretizations we can,
however, derive an iterative procedure where we in each iteration solve a
linear system with respect to the displacement field. In its simplest form, the
linear system appearing in this numerical method has a coefficient matrix
identical to that of the elasticity problem.

Combining (5.51), (5.52), and (5.55) yields

σ̇ = D(
∑

j

Bju̇j − ε̇P) . (5.56)

According to the derivation of the elasticity equations, the next step would
now be to eliminate σ, by inserting the constitutive law, here (5.56), in (5.54)
and thereby achieve a vector equation for the displacement. However, ε̇P

5.2. Elasto-Viscoplasticity 555

depends nonlinearly on σ, making (5.56) a nonlinear ordinary differential
equation for σ. Hence, we cannot eliminate σ and must work with essentially
two types of spatially discrete equations governing σ and uj :

∫

Ω

BT
i σdΩ + f i = 0, i = 1, . . . , n, (5.57)

σ̇ −D

n∑

j=1

Bju̇j + Dε̇P = 0 . (5.58)

The time derivatives can be approximated by a θ-rule (cf. Chapter 2.2.2):

∆σ

∆t
−D

n∑

j=1

Bj
∆uj

∆t
+ θε̇P,` + (1− θ)ε̇P,`−1 = 0 .

We have here made use of the notation

∆σ ≡ σ` − σ`−1, ∆uj ≡ u`
j − u`−1

j .

Utilizing these approximations in (5.57)–(5.58), gives the following nonlinear
discrete problem:

∫

Ω

BT
i σ`dΩ + f `

i = 0, i = 1, . . . , n,

∆σ −D
∑

j

Bj∆uj +∆tDθε̇P,` +∆tD(1− θ)ε̇P,`−1 = 0 .

A Newton-Raphson-Based Iteration Method. The current nonlinear problem
can be treated by a Newton-Raphson-like procedure, and the nature of the re-
sulting approximations enables us to eliminate ∆σ and derive a linear system
for ∆uj (j = 1, . . . , n).

Define

Ψ `
i ≡

∫

Ω

BT
i σ`dΩ + f `

i , (5.59)

R` ≡ ∆σ −D
∑

j

Bj∆uj +∆tDθε̇P,` +∆tD(1− θ)ε̇P,`−1 . (5.60)

We now consider Ψ `
i = 0 and R` = 0 as a simultaneous nonlinear system

of algebraic equations for σ` and u`, i = 1, . . . , n. A Newton-Raphson ap-
proach consists in making first-order Taylor-series expansions of Ψ `

i and R`

around an approximation σ`,k and u`,k in iteration k. Enforcing the linear
Taylor-series expansion to vanish, results in linear equations for the incre-
ments δσ`,k+1 and δu`,k+1

j :

Ψ
`,k+1
i ≈ Ψ

`,k
i +

∫

Ω

BT
i δσ

`,k+1dΩ = 0, (5.61)

556 5. Solid Mechanics Applications

R`,k+1 ≈ R`,k +

(
∂R

∂σ`

)`,k

δσ`,k+1 +
n∑

j=1

(
∂R

∂u`
j

)`,k

δu`,k+1
j

= R`,k + δσ`,k+1 −D

n∑

j=1

Bjδu
`,k+1
j

+∆tDθCδσ`,k+1 = 0, (5.62)

with

C =

(
∂ε̇P

∂σ

)`,k

. (5.63)

We can solve (5.62) with respect to the stress increment, resulting in

δσ`,k+1 = D̂
∑

j

Bjδu
`,k+1
j −QR`,k, (5.64)

where

D̂ = (D−1 + θ∆tC)−1, (5.65)

Q = (I + θ∆tDC)−1 . (5.66)

Inserting this δσ`,k+1 in (5.61) yields a linear system for δu`,k+1
j :

∑

j

∫

Ω

BT
i D̂BjdΩ

 δu`,k+1

j =

∫

Ω

BT
i QR`,kdΩ − Ψ

`,k
i . (5.67)

The Computational Procedure. Let us summarize the equations from the
previous section in a computational algorithm.

Initial Conditions. At time t = 0, ε̇P,0 = 0, and the stresses correspond to
a purely elastic state. That is, u0 is determined from a standard elasticity
problem:

∑

j

∫

Ω

BT
i DBjdΩ

u0

j = −f
0
i , i = 1, . . . , n,

with the associated stresses σ0 = D
∑

j Bju
0
j .

The Equations at an Arbitrary Time Level. Suppose u`−1, σ`−1, and ε̇P,`−1

are known. New displacements u` are generally computed by an iteration
procedure. As an initial guess for the iterations, we set u

`,0
j = u`−1

j , σ`,0 =

σ`−1, and ε̇P,`,0 = ε̇P,`−1. For k = 0, 1, . . . until convergence of the Newton-
Raphson method, we perform the following steps.

1. Compute C, D̂, and R`,k from (5.63), (5.65), and (5.60) at an integration
point in an element.

5.2. Elasto-Viscoplasticity 557

2. Compute Q from (5.66).

3. Compute the contribution BT
i D̂Bj to the coefficient matrix.

4. Compute the contributions BT
i σ`,k (needed in Ψ

`,k
i) and BT

i QR`,k to
the right-hand side of (5.67).

5. Assemble and solve the linear system (5.67) for the correction δu`,k+1 of
the displacement field.

6. Calculate the displacements and stresses according to

σ`,k+1 = σ`,k + δσ`,k+1, (5.68)

u`,k+1 = u`,k + δu`,k+1 . (5.69)

where δσ`,k+1 is found from (5.64).

7. Calculate the new viscoplastic strain rate from

ε̇P,`,k+1 = γ〈Φ(F (σ`,k+1
ij))〉

(
∂F

∂σ

)`,k+1

. (5.70)

8. Proceed with the next iteration.

If the iterative procedure has converged in m iterations, we define u`,m as
the converged solution u` at this time level.

When the effect of hardening is included in the viscoplastic model, the
parameter CY depends on an accumulated quantity κ, which can be the total
viscoplastic strain εP . This quantity is naturally updated according to

εP,` = εP,`−1 + θ∆tε̇P,` + (1− θ)∆tε̇P,`−1 . (5.71)

We remark that some of the numerical formulas above differ from the seem-
ingly corresponding ones in [108, Ch. 8].

5.2.3 Simplification; a Forward Scheme in Time

The computational algorithm simplifies considerably if θ = 0, which corre-
sponds to a forward finite difference scheme in time. In this case, D̂ = D

and the coefficient matrix in (5.67) becomes identical to the one in elasticity.
Moreover, the C matrix does not enter the algorithm, and Q is the identity
matrix. Of course, we can incorporate these simplifications directly in (5.67),
but it may be more instructive to go back to the original set of equations
Ψ `

i = 0 and R` = 0. When θ = 0 we can solve for σ` from R` = 0, see (5.60),
and insert σ` in (5.59). Assuming f constant in time and that σ`−1 fulfills
Ψ `−1

i = 0, we then get the simpler form of (5.67):

∑

j

∫

Ω

BT
i DBjdΩ

∆uj = ∆t

∫

Ω

BT
i Dε̇P,`−1dΩ . (5.72)

558 5. Solid Mechanics Applications

At initial time t = 0 we compute and store the coefficient matrix of a standard
linear elasticity problem. Then we solve the elasticity problem for the initial
elastic displacement, incorporating the prescribed loads on the right-hand
side: Ku0 = −f . When f is constant in time, the prescribed loads will
disappear from the equations as is seen from (5.72). At an arbitrary time
level `, the following algorithm is executed.

1. Compute the contribution ∆tBT
i Dε̇P,`−1 to the right-hand side.

2. Assemble the right-hand side contributions and solve the linear system
for ∆uj , j = 1, . . . , n.

3. Calculate the displacements and stresses according to

σ` = σ`−1 + D
∑

j

Bj∆uj −∆tDε̇P,`−1 (5.73)

u`
j = u`−1

j +∆uj . (5.74)

4. Calculate the new viscoplastic strain rate from (5.70).

5. Proceed with the next time step.

The algorithm corresponding to θ = 0 is significantly simpler to implement
than the implicit one (0 < θ ≤ 1), but has an expected restriction on the
time step length,

∆t ≤ ∆tcrit, (5.75)

where∆tcrit depends on the yield criterion [108]. ProvidedQ = F and Φ(F) =
F , we have for the Tresca, von Mises, and Mohr-Coulomb yield criteria (see
Chapter 5.2.4) that

∆tcrit =
(1 + ν)CY

γE
Tresca,

∆tcrit =
4

3

(1 + ν)CY

γE
von Mises,

∆tcrit =
4(1− 2ν)

1− 2ν + sin2 φ

(1 + ν)c cosφ

γE
Mohr-Coulomb .

No simple expression for ∆tcrit exists when the Drucker-Prager criterion is
applied. Notice that the critical time step does not depend on spatial dis-
cretization parameters.

The general implicit algorithm is unconditionally stable for 1
2 ≤ θ ≤ 1.

However, the accuracy of the time discretization and the convergence prop-
erties of the Newton-Raphson method normally limits the choice of ∆t.

5.2.4 Numerical Handling of Yield Criteria

Computation of ∂F/∂σ and also ∂ε̇P /∂σ are required in the algorithm from
the previous sections. Such computations can be conveniently handled in

5.2. Elasto-Viscoplasticity 559

a unified numerical framework for yield criteria, see [154, Ch. 7.8, Vol II]
and [108, Ch. 7.4]. This framework differs from the standard exposition of
classical plasticity theory found in most textbooks on solid mechanics or
material science.

We shall make frequent use of the following quantities:

J1 =
1

3
σm = σkk , (5.76)

σ̄ =

√
1

2
σ′

ijσ
′
ij , σ′

ij = σij −
1

3
J1δij , (5.77)

J ′
3 = det{σ′

ij}, (5.78)

where J1 is the first invariant of σij , whereas σ̄2 and J ′
3 are the second and

third invariants of the deviatoric stress tensor σ′
ij . We also define

θ =
1

3
sin−1

(
−3
√

3

2

J ′
3

σ̄

)
, −π

6
< θ <

π

6
. (5.79)

This θ must not be confused with the θ in the θ-rule for approximating time
derivatives! We keep the θ symbol for both these quantities since this is so
well established in the literature.

Several common yield criteria can be written in terms of J1, σ̄, and θ. To
incorporate strain hardening, we assume that the critical yield stress CY in a
uni-axial tensile test is a function of a hardening parameter κ [108, Ch. 7.2.2].
The special case κ = εP was used in (5.43).

– Tresca’s yield criterion:

F = 2σ̄ cos θ − CY (κ) . (5.80)

– von Mises’ yield criterion:

F =
√

3σ̄ − CY (κ) . (5.81)

– Mohr-Coulomb’s yield criterion:

F =
1

3
J1 sinφ+ σ̄

(
cos θ − 1√

3
sin θ sinφ

)
− c cosφ, (5.82)

where φ(κ) and c(κ) are the cohesion and angle of friction, respectively,
which can depend on the strain hardening parameter κ.

– Drucker-Prager’s yield criterion:

F = αJ1 + σ̄ − k′, (5.83)

with

α =
2 sinφ√

3(3− sinφ)
, k′ =

6c cosφ√
3(3− sinφ)

,

where c and φ can depend on κ.

560 5. Solid Mechanics Applications

We now write F = F (J1, σ̄, θ) and introduce aT ≡ ∂F/∂σ. The chain rule
gives

aT =
∂F

∂J1

∂J1

∂σ
+
∂F

∂σ̄

∂σ̄

∂σ
+
∂F

∂θ

∂θ

∂σ
. (5.84)

A convenient form for computations is [108, Ch. 7.4]

aT = C1a
T
1 + C2a

T
2 + C3a

T
3 , (5.85)

where

aT
1 ≡

∂J1

∂σ
= (1, 1, 1, 0, 0, 0), (5.86)

aT
2 ≡

∂σ̄

∂σ
=

1

2σ̄
(σ′

xx, σ
′
yy, σ

′
zz , 2σxy, 2σyz, 2σzx), (5.87)

aT
3 ≡

∂J3

∂σ
= (σ′

yyσ
′
zz − σ2

yz +
1

3
σ̄2, σ′

xxσ
′
zz − σ2

xz +
1

3
σ̄2,

σ′
yyσ

′
xx − σ2

xy +
1

3
σ̄2, 2(σyzσzx − σ′

zzσxy),

2(σxzσxy − σ′
xxσyz), 2(σxyσyz − σ′

yyσxz)) (5.88)

C1 =
∂F

∂J1
, (5.89)

C2 =
∂F

∂̄σ
− tan 3θ

σ̄

∂F

∂θ
, (5.90)

C3 = −
√

3

2 cos 3θ

1

σ̄3

∂F

∂θ
. (5.91)

Different yield criteria are now reflected in different values of C1, C2, and C3

only. Table 5.1 lists the expressions for these constants in the case of the four
previously defined yield criteria.

Table 5.1. Values of the constants in (5.85) for various yield criteria.

yield criterion C1 C2 C3

Tresca, θ 6= π/6 0 2 cos θ(1 + tan θ tan 3θ)
√

3

σ̄
sin θ
cos 3θ

Tresca, θ = ±π/6 0
√

3 0

von Mises 0
√

3 0

Mohr-Coulomb, θ 6= π/6 1

3
sin φ

cos θ[(1 + tan θ tan 3θ)

+ sin φ(tan 3θ − tan θ)/
√

3]

√
3 sin θ+cos θ sin φ

2σ̄2 cos 3θ

Mohr-Coulomb, θ = ±π/6 1

3
sin φ 1

2

“√
3 ∓ sin φ√

3

”

0

Drucker-Prager α 1 0

The case θ > 0 in the time-discretization scheme requires evaluation of
the matrix

C =
∂ε̇P

∂σ
= γ

(
Φ
∂aT

∂σ
+
dΦ

dF
aaT

)
.

5.2. Elasto-Viscoplasticity 561

Using the von Mises criterion, one can readily evaluate

∂aT

∂σ
=

√
3

2σ̄
M I −

√
3

3σ̄
aaT ,

where

M I =
1

9σm

2
3 − 1

3 − 1
3 0 0 0

2
3 − 1

3 0 0 0
2
3 0 0 0

2 0 0
symm. 2 0

2

.

5.2.5 Implementation

Looking at the computational algorithm for the elasto-viscoplastic problem
in the case θ = 0, we realize that the simulation code can be made similar to
class Elasticity1, except that we need

1. an outer time loop,

2. representation of the stresses σ, the viscoplastic strain rates ε̇P , and the
total viscoplastic strain εP , and

3. a hierarchy of yield criteria and associated functionality for computing
quantities like a.

The specialized algorithm corresponding to the time-discretization parameter
θ = 0 involves only repeated solutions of elasticity problems and are hence
quite easy to implement. Here we shall demonstrate how this implementation
can be achieved by extending class Elasticity1. The resulting solver is called
ElastoVP1 and its source code is located in src/app/ElastoVP1. The principal
extensions of class ElastoVP1, in comparison with class Elasticity1, are listed
next.

1. We need to supply functions for filling the matrices D and Bi in the case
of 3D, plane stress, plane strain, and axisymmetry.

2. The computational algorithm requires extensive computing with stresses
and viscoplastic strains. For this purpose, it is convenient to include a
FieldsFEatItgPt structure for storing σ, ε̇P , and εP at the integration
points in all elements. Built-in calculation procedures in this structure
call up the solver’s derivedQuantitiesAtItgPt routine for sampling the
expressions of the components of all the fields in the FieldsFEatItgPt

structure. The formulas for stresses and viscoplastic strain rates hence
appear in the derivedQuantitiesAtItgPt function in the solver.

Notice that we now need to sample the derived quantities at the standard
integration points, rather than the reduced points, since the values are
to be looked up in the integrands routine at the next time level (the use
of a FieldsFEatItgPt object for the stresses in class Elasticity1 used the
reduced Gauss points for optimal accuracy of the derivatives).

562 5. Solid Mechanics Applications

3. At t = 0 we set stresses and strain rates to zero. The integrands routine
must then solve the corresponding elastic problem.

4. At t > 0, we turn off body forces and surface tractions (we only solve for
corrections in the displacement field). Note that integrands must handle
the equations both at t = 0 (pure elasticity) and at t > 0 (combined
elasto-viscoplasticity).

5. The implementation of the time loop follows the standards from Chap-
ter 3, but we now also allow for termination if there are no plastic strains
or if a steady state has been reached.

6. The coefficient matrix is constant during the simulation, while the right-
hand side needs to be updated through a standard assembly procedure.
Optimizations for this kind of problem are suggested in Appendix B.7.1
and incorporated in class ElastoVP1.

A more flexible elasto-viscoplastic solver, called ElastoVP2, allows more gen-
eral traction boundary conditions than what is implemented in ElastoVP1.

Exercise 5.6. .
Extend the ElastoVP1 solver with software tools for nonlinear PDEs and

implement the general elasto-viscoplastic algorithm from Chapter 5.2.2. To
simplify the problem, you can restrict the implementation to the von Mises
yield criterion. Run the examples in the ElastoVP1/Verify directory and es-
tablish the relative efficiency of the θ = 0 algorithm and the more com-
plicated, but also more stable, version with θ = 1/2 and θ = 1, when the
simulation is run until the stationary elasto-plastic state is reached. �

5.2.6 Examples

In the following, we present two computational examples. Figure 5.6 depicts
a building on a two-material foundation. Under the action of gravity, the
building will deform the foundation. Because the yield stress is greater in
material 1 than in material 2, the building will be displaced to the right. All
the input data, including values of the material parameters, are provided in
the building.i file in the Verify directory.

5.2. Elasto-Viscoplasticity 563

21

3
g

(a)

0 10 16
0

10

18

initial elastic state

−1.18

137

275

413

551

689

827

965

1.1e+03

1.24e+03

1.38e+03

0 10 16
0

10

18

(b)

0 10 16.19
0

10

16.91

elasto−plastic solution

−4.96

106

217

328

439

550

661

772

883

994

1.11e+03

0 10 16.19
0

10

16.91

(c)

Fig. 5.6. Elasto-viscoplastic deformation of a building on a two-material
foundation. (a) sketch of the three material domains; (b) elastic stress state
(yield function F) at t = 0; (c) final converged state of the elasto-viscoplastic
solution (the scalar F field is shown).

564 5. Solid Mechanics Applications

The next example is more challenging. We consider a clamped beam,
modeled by a 2D grid and plane strain conditions, see Figure 5.7 for a sketch.
Close to the clamped end we impose a crack. This is a central problem setting

0 1
0

0.1

0.2

0.3

0 1
0

0.1

0.2

0.3
uniform pressure load

clamped
end

crack

Fig. 5.7. Elasto-viscoplastic beam in plane strain with a crack.

in fracture mechanics. Numerically, a crack here means that the nodes along
the crack line are duplicated; one set belongs to the material to the left of the
crack and the other set belongs to the material to the right. The boundary
condition along the crack line is, of course, vanishing stress. The makegrid

utility offers the possibility of defining such a crack, and the necessary steps
are explained in the input file to makegrid, named crackedBeam-makegrid.i, in
the Verify directory. Because severe stress concentrations are expected in the
vicinity of the crack tip, smaller elements are needed in this area. This calls for
local mesh refinements and the tools described in Chapter 3.7. We do not need
to equip the solver with the adaptive grids tools, as the makegrid program
offers access to local mesh refinements, provided that the refinement indicator
can be based on geometric considerations alone. In the present example we
mark a disk around the crack tip for local mesh refinements, see Figure 5.7.
From Figure 5.8a one can see the high stress concentrations at the crack tip
and at the lower boundary. The plastic flow is limited to these localized areas.

Finally, we mention that Diffpack has been used for much more advanced
solid mechanics problems than what is covered in this chapter. Nick Zabaras
and co-workers have implemented fully implicit finite element models for large
plastic deformations in Lagrangian coordinates [131,150,151]. These models
have also been combined with sensitivity equations for optimization and con-
trol [124] of manufacturing processes.

Exercise 5.7. .
Repeat Exercise 5.3 on page 544, but apply an elasto-viscoplastic material

model. �

5.2. Elasto-Viscoplasticity 565

0 1

−0.1

0

0.1

0.2

0.3

27
.7

55.5

83.2

11
1

111

13
9

139166

194

222

222

0 1

−0.1

0

0.1

0.2

0.3

(a)

0 1
−0.1

0

0.1

0.2

0.3

0 1
−0.1

0

0.1

0.2

0.3

(b)

Fig. 5.8. Simulation results from the elasto-viscoplastic beam problem
sketched in Figure 5.7. (a) The equivalent stresses F in the final converged
elasto-plastic state; (b) the deformed grid, visualizing the opened crack.

Chapter 6

Fluid Mechanics Applications

This chapter brings together numerical and implementational topics from
the previous chapters in three application areas taken from fluid mechanics.
First we present a solver for a general time-dependent and possibly nonlinear
convection-diffusion equation, where the implementation constitutes a syn-
thesis of most of the Diffpack tools mentioned in Chapters 3 and 4.2. The
next application concerns waves in shallow water. We first treat finite differ-
ence methods for the system of PDEs on staggered grids in space and time.
Thereafter we describe suitable finite element methods for weakly nonlinear
and dispersive shallow water waves. The rest of the chapter is devoted to
incompressible viscous flow governed by the Navier-Stokes equations. A clas-
sical finite difference method on staggered grid in 3D extends the ideas of the
finite difference-based numerical model for shallow water waves. A penalty
method for the Navier-Stokes equations, in combination with finite element
discretization, demonstrates how numerical and implementational tools from
the Poisson2, NlHeat1, and Elasticity1 solvers in previous chapters can be
combined to solve a time-dependent nonlinear vector PDE. Another finite
element method for the Navier-Stokes equations, based on operator splitting,
is also discussed, with special emphasis on efficient implementation.

6.1 Convection-Diffusion Equations

6.1.1 The Physical and Mathematical Model

The Governing Equations. Convection-diffusion equations appear in a wide
range of mathematical models. The particular initial-boundary value problem
to be addressed here reads

b

(
α
∂u

∂t
+ v · ∇u

)
= ∇ · (k∇u)− au+ f, x ∈ Ω ∈ IRd, t > 0, (6.1)

u(x, 0) = I(x), x ∈ Ω, (6.2)

u(x, t) = D1, x ∈ ∂ΩE1 , t > 0, (6.3)

u(x, t) = D2, x ∈ ∂ΩE2 , t > 0, (6.4)

−k ∂u
∂n

(x, t) = ν, x ∈ ∂ΩN , t > 0, (6.5)

−k ∂u
∂n

(x, t) = hT (u− U0), x ∈ ∂ΩR, t > 0, (6.6)

568 6. Fluid Mechanics Applications

where b, k, v, a, f , hT , and U0 are functions of x and possibly t, and D1,
D2, and ν are constants. Moreover, α is an indicator (1 or 0) that turns the
time dependence on or off. The complete boundary ∂Ω consists of the four
parts ∂ΩE1 , ∂ΩE2 , ∂ΩN , and ∂ΩR, having Dirichlet, Neumann, and Robin
conditions.

Convection-diffusion equations are of particular importance in heat trans-
fer and specie transport problems. Moreover, such equations also arise in the
intermediate steps of numerical methods for the Navier-Stokes equations and
multi-phase porous media flow.

Physical Interpretations. In the field of heat transfer, equation (6.1) stems
from the first law of thermodynamics and expresses energy balance of a con-
tinuous medium. The primary unknown u(x, t) represents the temperature,
b is the product of the density of the medium times the heat capacity, v is
the velocity of the medium, k is the medium’s heat conduction coefficient,
and f − au represents external heat sources. The time-derivative term is the
accumulation of internal energy at a fixed point in space, the convective term
v · ∇u models transport of internal energy with the flow, ∇ · (k∇u) reflects
transport of thermal energy by molecular vibrations (i.e. heat conduction),
and the source term f − au might represent heat generation or extraction
due to, for example, internal friction in the fluid, chemical reactions, or ra-
dioactivity. The boundary condition (6.6) is explained in Project 2.6.1.

One can also interpret equation (6.1) as a mass conservation equation that
governs specie transport in a fluid. In this case, u is the concentration of the
specie, b is the density of the specie, v is the velocity field of the fluid, k is a
diffusion coefficient, which is normally constant, and f −au represents specie
production or destruction. The time-derivative term expresses accumulation
of mass at a point in space, while the convection (v · ∇u) and the diffusion
(k∇2u) terms reflects transport of mass with the flow and due to molecular
diffusion, respectively. The source or sink term f − au might model, for in-
stance, injection or extraction of the specie or mass loss/gain due to chemical
reactions. If the heat transfer or the specie transport takes place in a porous
medium, the governing PDE is still the same, but the interpretation of the
coefficients must be slightly adjusted.

It must also be mentioned that special cases of equation (6.1) appear in
many other branches of engineering and science. For example, simple model
equations like the Laplace, Poisson, and Helmholtz equations are contained in
(6.1). We can also make (6.1) nonlinear, e.g., by letting k = k(u) and replacing
f − au by f(u). Such nonlinearities arise both in simple model problems as
well as in the heat transfer (cf. Chapter 1.3.7) and specie transport problems.

6.1. Convection-Diffusion Equations 569

6.1.2 A Finite Element Method

By means of a θ-rule in time and the weighted residual method in space we
can derive the following discrete equations:

∫

Ω

[(
θb` + (1− θ)b`−1

)
α
(
û` − û`−1

)
Wi +

θ∆tb`Wiv
` · ∇û` + (1− θ)∆tb`−1Wiv

`−1 · ∇û`−1 +

θ∆tk`∇Wi · ∇û` + (1− θ)∆tk`−1∇Wi · ∇û`−1 +

θ∆tWia
`û` + (1− θ)∆tWia

`−1û`−1 −
(
θ∆tWif

` + (1− θ)∆tWif
`−1
)]
dΩ

+

∫

∂ΩN

Wi∆tνdΓ

+

∫

∂ΩR

Wi∆t
[
h`

T θ(u
` − U `

0) + h`−1
T (1− θ)(u`−1 − U `−1

0)
]
dΓ = 0 .(6.7)

Superscript ` denotes the time level, û`(x) =
∑n

j=1 u
`
jNj(x) is an approxi-

mation to u(x, t) at time level `, and (6.7) is supposed to hold for n linearly
independent weighting functions Wi, i = 1, . . . , n. If some of the details in
the derivation of (6.7) are unclear, we refer to similar examples in Chapter 2.

The formula for the element matrix follows from restricting the domain of
integration to an element, replacing û` by

∑
j u

`
jNj and collecting the terms

at level ` containing the indices i and j. The remaining terms belong to the
element vector.

Exercise 6.1. .
Write down the precise expressions for the integrands of the element ma-

trix and vector associated with (6.7). �

6.1.3 Incorporation of Nonlinearities

A flexible convection-diffusion solver must handle nonlinear coefficients. Here
we suppose that b, k, and f can possibly depend on u. To solve the resulting
system of nonlinear algebraic equations, we introduce an iteration with q as
iteration index, and where û`,q is the approximation to û` in iteration q. The
Successive Substitution method (Picard iteration) implies that one simply
evaluates the expressions b`, k`, and f ` as b(û`,q−1), k(û`,q−1), and f(û`,q−1).
The corresponding modifications of the expressions in the element matrix
and vector are trivial to incorporate.

As usual, the Newton-Raphson method involves more book-keeping. A
term like Wib(û

`)û` now gives the contribution

∂

∂u`
j

(
Wib(û

`)û`
)

= Wib(û
`,q−1)Nj +Wi

db

du
(û`,q−1)Nj û

`,q−1

570 6. Fluid Mechanics Applications

to the integrands in the expression for the element matrix. Notice that only
the first term is used in the Successive Substitution method.

Exercise 6.2. .
Derive the precise expressions for the integrands of the element matrix

and vector when b, k, and f can depend on u. Try to write the expressions
in a form that is valid both in the Successive Substitution and Newton-
Raphson methods (introduce for example an on-off indicator as coefficient in
the Newton-Raphson-specific terms related to derivatives of b, k, and f). �

6.1.4 Software Tools

Ideally, we would like to have a flexible solver for the linear model problem
(6.1)–(6.6), with a fast specialized version in the case the coefficients are not
time dependent and the matrix assembly process can be avoided at each time
level, and another version that treats the computationally more demanding
problem when b, k, and f depend on u. The different program modules should
share as much common code as possible. This is straightforwardly realized
using the ideas of Chapter 3.5.7 and the optimization technique from Ap-
pendix B.7.2.

We create a base class CdBase that implements the linear version of (6.1)–
(6.6) in a flexible way, with the coefficients b, k, v, a, f , and U0 as virtual
functions that can be customized in specialized subclasses written by a user.
The default implementation of these functions in class CdBase applies the
general field representation Handle(Field) for the coefficients, as we explained
in Chapter 3.15.4. This means that we typically implement f as

virtual real f (const FiniteElement& fe, real t = DUMMY)

{ return f_field->valueFEM (fe, t); }

where f field is of type Handle(Field). A FieldFormat object is used to
allocate and initialize f field based on menu information at run time. In
integrands we call f before the loop over the element matrix and vector
entries,

const real f_value = f(fe,t);

A subclass CdEff specializes class CdBase in the case where the coefficients and
boundary conditions in the PDE are time independent. Two matrices are then
assembled initially, and the actual coefficient matrix and right-hand side in
the linear system at each time level are obtained by efficient matrix-vector op-
erations. The algorithms and software tools are explained in Appendix B.7.2.

Another subclass CdNonlin of CdBase implements the nonlinear version
of (6.1)–(6.6). New virtual functions for db/du, dk/du, and df/du are intro-
duced. The typical representation of, for example, the function k in the code
becomes

6.1. Convection-Diffusion Equations 571

virtual real ku (real u, const FiniteElement& fe, real t = DUMMY)

{ return u*u/2; }

virtual real dkdu (real u, const FiniteElement& fe, real t = DUMMY)

{ return u; }

Here k(u,x, t) = u2/2 is just an example. In integrands we evaluate k and
dk/du by statements like

const real u_pt = u->valueFEM(fe); // u at current point

const real k_value = ku (u_pt, fe, t);

const real dkdu_value = dkdu (u_pt, fe, t);

Notice that we actually do not use the function for k as defined in the base
class CdBase, i.e. a k(const FiniteElement&, real) function as we had in the
solvers in Chapter 3, because we find it more convenient to have u as an
explicit argument. However, the k function is convenient when computing
the flux by the FEM::makeFlux function, and its proper form for this purpose
is

real CdNonlin:: k (const FiniteElement& fe, real t)

{

const real u_pt = u->valueFEM(fe); return ku (u_pt, fe, t); }

}

In integrands it is better to use ku instead of k since this allows precompu-
tation of u pt and reuse in several functions.

Particular expressions for the coefficients b(u), k(u), and f(u), as well as
their derivatives, must be hardcoded in subclasses of CdNonlin. Class CdNonlin
must also implement a generalized edition of integrands and integrands4side.

In the case (6.1) is convection dominated, the numerical solution can
develop nonphysical oscillations at high mesh Peclet numbers Pe∆ = b||v||h/k
(h reflects the element size). Chapters 2.9 and 3.9 outline algorithms and
software tools for handling numerical problems associated with convection-
dominated phenomena. Class UpwindFE is a convenient tool for representing
different choices of Wi in the CdBase class.

Figure 6.1 depicts the class hierarchy for the convection-diffusion solver.
The source code is located in the directory src/app/Cd.

Exercise 6.3. .
Suppose you want to apply the suggested framework as basis for your

own software development, but that you need to make an efficient solver
for the Poisson equation on grids with linear triangular elements. Although
class CdBase will work in this problem, the implementation of integrands can
be made much more efficient (see Appendix B.7.3). Suggest how to derive
a subclass CdTriPoisson where you rely on data structures in class CdBase,
but avoid the integrands function and fill analytically integrated expressions

572 6. Fluid Mechanics Applications

CdCase2

CdCase1CdEffCdNonlin

CdBase

CdStefan

Fig. 6.1. A sketch of the convection-diffusion solver, with the base class
CdBase, the efficient implementation CdEff, the more general nonlinear
convection-diffusion solver CdNonlin, and the specialization CdStefan of
CdNonlin to solve problems with freezing or melting. The classes CdCase1

and CdCase2 just indicate possible user-defined small classes that customize
the b, k, and f functions in a particular problem. The arrows indicate class
derivation.

for the element matrix and vector directly in the ElmMatVec object in the
calcElmMatVec function. The material in Chapter 2.7.3 is useful for developing
the relevant analytical expressions. �

Remark. The framework for the convection-diffusion solver as sketched in this
chapter is quite flexible, but some users may find it too flexible and not very
easy to use for a novice C++ programmer. In such cases it is advantageous to
build an interface to the convection-diffusion solver and only apply the class
hierarchy as a hidden computational engine. The ideas from Chapter 3.12.9
can be used as a starting point for building an easy-to-use, perhaps graphical,
interface in (e.g.) Python. The interface should allow the user to change only
some of the input data to the solver, while others are kept at suitable default
values. The script must process input data from the user, run the simulator,
and visualize the results. Further development of such scripting interfaces
might lead to truly easy-to-use flexible simulation environments, where the
user can assign even mathematical expressions to b, k, etc. in the interface
and interactively specify the grid and boundary conditions. Diffpack was
designed for being a flexible computational engine in such problem solving
environments.

6.1.5 Melting and Solidification

Many heat transfer applications also involve solidification or melting, i.e.,
phase changes. An example is heat conduction in a fluid, where parts of the
fluid are frozen, while other parts are in a liquid state. The interface between
the frozen and melted region is an unknown moving internal boundary. Let
us consider a basic one-dimensional mathematical model for such a problem.

6.1. Convection-Diffusion Equations 573

There are two substances, denoted by the subscripts s (solid) and l (liquid).
At the temperature T = Tb, a phase change between solid and liquid takes
place. At time t we assume that the liquid part of the substance occupies the
region 0 ≤ x ≤ b(t), whereas the solid part is located for b(t) < x ≤ a. In
each of these domains, a heat conduction equation is valid:

%lCl
∂Tl

∂t
= κl

∂2Tl

∂x2
, 0 < x < b(t), t > 0, (6.8)

%sCs
∂Ts

∂t
= κs

∂2Ts

∂x2
, b(t) < x < a, t > 0, (6.9)

Tl = τ0, x = 0, (6.10)

Ts = τa, x = a . (6.11)

Here, % is the density, C is the heat capacity, T is the temperature, κ is the
heat conduction coefficient, and τ0 and τa are prescribed temperatures at the
end points of the domain. At the interface x = b we have continuity in the
temperature and a jump in the heat flux:

κs
∂Ts

∂x
− κl

∂Tl

∂x
= L

db

dt
, x = b(t), t > 0, (6.12)

Tl = Ts = Tb, x = b(t), t > 0, (6.13)

with L being the latent heat of phase transformation per unit volume. One
difficulty with such a moving boundary problem is that different PDEs must
be solved in different parts of the domain (0, a). However, in the present
problem it is possible to formulate a unified PDE that can be solved over the
whole domain (0, a), with the interface condition (6.12) being automatically
satisfied without explicitly tracking the internal boundary. The key to this
simplification is to employ an enthalpy formulation.

We introduce the enthalpy H(T) according to

H(T) =

{
%sCsT, T < Tb

%lClT + L, T > Tb

with
%sCsT ≤ H(T) ≤ %lClT + L, T = Tb .

The PDEs and the interface conditions in (6.8)–(6.13) can now be recast in
the unified form

∂H

∂t
=

∂

∂x

(
κ(T)

∂T

∂x

)
, 0 ≤ x ≤ a, t > 0, (6.14)

where

κ(T) =

{
κs, T < Tb

κl, T > Tb

574 6. Fluid Mechanics Applications

Usually, one solves (6.14) with respect toH . We then need the function T (H):

T (H) =

H/(%sCs), H < %sCsTb

Tb, %sCsTb ≤ H ≤ %lClTb + L
(H − L)/(%lCl), H > %lClTb + L

(6.15)

In the general heat transfer case, we have an initial-boundary value prob-
lem for H(x, t) of the form

∂H

∂t
+ v · ∇H = ∇ · (κ∇T (H)) + f, x ∈ Ω ⊂ IRd, t > 0, (6.16)

H(x, 0) = H(TI(x)), x ∈ Ω, (6.17)

H(x, t) = H(T1), x ∈ ∂ΩE1 , t > 0, (6.18)

H(x, t) = H(T2), x ∈ ∂ΩE2 , t > 0, (6.19)

−κ∂T
∂n

(x, t) = ν, x ∈ ∂ΩN , t > 0, (6.20)

−κ∂T
∂n

(x, t) = hT (T − T0), x ∈ ∂ΩR, t > 0, (6.21)

We see that we can use class CdNonlin for solving (6.16)–(6.21), but we need to
apply the H function to the initial temperature condition TI(x) and the pre-
scribed boundary values T1 and T2. Moreover, we have a special nonlinearity
in the term ∇·(κ∇T (H)) = ∇·(κT ′(H)∇H). The κ function is implemented
as a separate function in the code, whereas the k function, intended for the
effective heat conduction coefficient in Fourier’s law, must evaluate κT ′(H),
such that −k∇H = −κ∇T .

Our finite element method is based on a standard weighted residual for-
mulation, where we integrate by parts the term

∫

Ω

∇ · (κ∇T (H))WidΩ = −
∫

Ω

κΨ∇Wi · ∇H dΩ −

∫

∂ΩR

WihT (T (H)− T0)dΓ −
∫

∂ΩN

WiνdΓ .

The factor Ψ equals T ′(H), but from a numerical point of view a more stable
evaluation formula for Ψ is

Ψ =

{ ∇T ·∇H
||∇H||2 if ||∇H || 6= 0

T ′(H) if ||∇H || = 0

With a class CdStefan, derived from class CdNonlin, we simply implement a
new integrands routine according to the formulas above. Successive Substi-
tution is used as solution method for the nonlinear systems. In addition, we
must provide scan and setIC functions that transform the T1, T2, and TI

values through the function H(T). To track the solid and liquid region, it
can be convenient to introduce an indicator field, which equals zero at the
nodes where T < Tb and unity at the nodes where T ≥ Tb. The 0.5 contour of
this field will then visualize the movement of the frozen and melted regions.

6.2. Shallow Water Equations 575

6.2 Shallow Water Equations

The purpose of this section is to present a widely used model in geophysics
for large-scale water wave phenomena. This model involves a coupled system
of transient PDEs, referred to as the shallow water equations. A linearized
version of the system is first presented and discretized by finite differences
on a staggered in time and space. Thereafter, a Diffpack implementation is
explained. Finite element methods are also described, and the basic mathe-
matical model is extended to include weak dispersion and nonlinearities.

The system of PDEs for modeling water waves in the present section has
clear similarities to the Navier-Stokes equations. Much of the discretization
reasoning for the shallow water equations will therefore be reused when for-
mulating a finite difference method for the Navier-Stokes equations in Chap-
ter 6.4.

6.2.1 The Physical and Mathematical Model

Water waves are usually described by an inviscid fluid model involving the
Laplace equation ∇2ϕ = 0, where ϕ is the velocity potential (such that ∇ϕ is
the fluid velocity). The equation ∇2φ = 0 must be solved in the time-varying
3D water volume, with nonlinear boundary conditions at the surface. If the
wave length is large compared with the depth (“shallow water”), it is possible
to simplify the full water wave model and arrive at a system of equations to
be solved in a two-dimensional fixed domain. This domain corresponds to
the still-water surface. Although water waves are chosen as the principal
physical interpretation of the PDEs in this section, similar equations also
arise in acoustics and meteorology.

Small-amplitude three-dimensional shallow water waves, where the wave
length is much larger than the still-water depth H(x, y), and nonlinear effects
are neglected, can be described by the two-dimensional mathematical model:

∂η

∂t
= − ∂

∂x
(uH)− ∂

∂y
(vH) , x ∈ Ω, t > 0, (6.22)

∂u

∂t
= −∂η

∂x
, x ∈ Ω, t > 0, (6.23)

∂v

∂t
= −∂η

∂y
, x ∈ Ω, t > 0 . (6.24)

Figure 6.2 shows a sketch of the situation. We remark that the equations
have been scaled; for example, gravity – which is the driving force of the
waves – does not appear explicitly in the scaled model1. The primary un-
knowns are the depth-averaged velocity components u(x, y, t) and v(x, y, t)

1 The scaling is the same as the one used for the 1D wave equation in Appendix A.1
on page 668.

576 6. Fluid Mechanics Applications

η(x,y,t)

y

z

x

H(x,y,t)

Fig. 6.2. A sketch of the shallow water wave problem.

in addition to the surface elevation η(x, y, t). Typical boundary conditions
are (i) η prescribed or (ii) zero normal velocity: v · n = unx + vny = 0,
where n = (nx, ny)

T is the normal vector to the boundary and v = (u, v)T

is the horizontal velocity vector. Condition (i) applies when the wave motion
is known outside the domain, whereas condition (ii) applies to coastlines. A
third type of condition, allowing waves to pass undisturbed out of the domain
(so-called radiation condition), is also frequent, but is not treated here (see
Example A.22 on page 704). Initially, η, u, and v must be given for the model
to be well posed.

Equation (6.22) is a continuity equation which ensures that the mass of
water is conserved. The other two equations arise from Newton’s second law
and express balance between acceleration on the left-hand side and pressure
forces on the right-hand side. The assumption of long waves implies that the
pressure is hydrostatic, i.e., the pressure at a point equals the weight of the
water column above the point: p ∼ η − z.

To derive (6.22)–(6.24), one starts with the general Navier-Stokes equa-
tions for an incompressible fluid, which are listed in Chapter 6.3. Nonlinear
and viscous terms are neglected, and the equations are integrated in the
vertical direction, see [84, Ch. 8] or the more comprehensive references [99]
and [110]. Alternatively, one may start out with an integral form of the in-
compressible Navier-Stokes equations and apply it to a volume that is in-
finitesimal in the horizontal directions, but of extent [−H, η] in the vertical
direction. This latter modeling technique is demonstrated in Chapter 7.1 in
another physical setting.

For the discussion of finite difference methods, we assume that the domain
is a rectangle [0, α] × [0, β] in dimensionless coordinates. This domain may
model a basin, e.g. a harbor, with walls where the normal velocity is zero, i.e.,
condition (ii) above applies to the whole boundary. The boundary conditions
are then u(0, y, t) = u(α, y, t) = 0 and v(x, 0, t) = v(x, β, t) = 0. The initial

6.2. Shallow Water Equations 577

conditions are taken for simplicity as

u(x, y, 0) = 0, v(x, y, 0) = 0, η(x, y, 0) = η0(x, y),

where η0(x, y) is a prescribed initial surface displacement.

6.2.2 Finite Difference Methods on Staggered Grids

For the discretization of (6.22)–(6.24), it is common to use a grid where the
unknowns η, u, and v are located at different points in space and time. Such
grids are denoted as staggered, or alternating, and play an important role
in computational fluid dynamics, especially when solving Navier-Stokes-like
equations. Figure 6.3 depicts a typical staggered grid, where the discrete η
values are located at the center of the cell, and the discrete velocities u and v
are located at the cell edges. A typical cell in Figure 6.3a, illustrated by the
inner dashed square, is enlarged in Figure 6.4 and equipped with specification
of the spatial and temporal indices in the primary discrete unknowns. We
notice from Figure 6.4 that η is unknown at integer time levels `, whereas
the velocities are unknown at `+ 1/2.

(a) (b)

Fig. 6.3. Example on a staggered grid for the shallow water equations. The •
denotes η points, − denotes u points, whereas | denotes v points. This type of
grid is often referred to as an Arakawa C-grid. The surrounding dashed line in
(a) illustrates an impermeable (reflecting) boundary. Figure (b) exemplifies
how a skew boundary can be approximated by a “stair-case” boundary.

Our model problem, involving waves in a rectangular basin Ω = [0, α]×
[0, β], requires the points where the velocities are known, i.e. the cell edges, to
lie on the boundaries, as we have indicated in Figure 6.3a. Of book-keeping
reasons it is therefore natural to use integer indices for the cell edges (u and

578 6. Fluid Mechanics Applications

u

η`

i+ 1
2

,j+ 1
2

u
`+ 1

2

i,j+ 1
2

u
`+ 1

2

i+1,j+ 1
2

v
`+ 1

2

i+ 1
2

,j

v
`+ 1

2

i+ 1
2

,j+1

Fig. 6.4. A typical cell in a staggered grid, used for solving the shallow water
equations.

v points), cf. Figure 6.4. In other problems it may be convenient to have the
integer indices at the cell center instead.

The discrete primary unknowns are

η`
i+ 1

2 ,j+ 1
2
, u

`+ 1
2

i,j+ 1
2

, v
`+ 1

2

i+ 1
2 ,j
,

where i, j, and ` are integers. The spatial and temporal grid increments are
denoted by ∆x, ∆y, and ∆t. The basic idea of the discretization of equations
(6.22)–(6.24) is to apply centered differences in time and space. Equation
(6.22) is approximated at time level `− 1

2 at the spatial point (i+ 1
2 , j + 1

2).
In other words, we form finite differences for (6.22) at the space-time point
(i+ 1

2 , j+
1
2 , `− 1

2). Equation (6.23) is approximated at (i, j+ 1
2 , `), and finally

equation (6.24) is approximated at (i+ 1
2 , j, `). Writing out standard two-point

central difference approximations to the derivatives at the indicated space-
time points, gives the following discrete counterpart to the system (6.22)–
(6.24):

1

∆t

(
η`

i+ 1
2 ,j+ 1

2
− η`−1

i+ 1
2 ,j+ 1

2

)
= − 1

∆x

(
(Hu)

`− 1
2

i+1,j+ 1
2

− (Hu)
`− 1

2

i,j+ 1
2

)

− 1

∆y

(
(Hv)

`− 1
2

i+ 1
2 ,j+1

− (Hv)
`− 1

2

i+ 1
2 ,j

)
, (6.25)

1

∆t

(
u

`+ 1
2

i,j+ 1
2

− u`− 1
2

i,j+ 1
2

)
= − 1

∆x

(
η`

i+ 1
2 ,j+ 1

2
− η`

i− 1
2 ,j+ 1

2

)
, (6.26)

6.2. Shallow Water Equations 579

1

∆t

(
v

`+ 1
2

i+ 1
2 ,j
− v`− 1

2

i+ 1
2 ,j

)
= − 1

∆y

(
η`

i+ 1
2 ,j+ 1

2
− η`

i+ 1
2 ,j− 1

2

)
. (6.27)

Looking at these equations, we observe a striking feature: The scheme is
fully explicit due to the staggered grid in space and time. Assume that the
quantities

η`−1
i+ 1

2 ,j+ 1
2

, u
`− 1

2

i,j+ 1
2

, v
`− 1

2

i+ 1
2 ,j

are known for all i and j in the spatial grid. Equation (6.25) represents
an explicit formula for computing η`

i+ 1
2 ,j+ 1

2

at all spatial grid points. Equa-

tion (6.26) can thereafter be used to update all the u
`+ 1

2

i,j+ 1
2

quantities for all

i and j indices. Finally, equation (6.27) represents an explicit formula for

computing new values of v
`+ 1

2

i+ 1
2 ,j

. Since all the finite difference approximations

are based on two-point centered differences, we expect that the scheme is of
order O(∆x2, ∆y2, ∆t2). This can be shown by a standard truncation error
analysis or by studying numerical dispersion relations (see Project 6.6.1).
Moreover, since the scheme is fully explicit, we expect a stability criterion
that limits the size of ∆t. One can show (see Project 6.6.1) that this criterion
reads, for constant H ,

∆t ≤ H− 1
2

(
1

∆x2
+

1

∆y2

)− 1
2

. (6.28)

When H varies with x and y, we apply the “worst case” value of H , that is,
sup{H(x, y) | (x, y) ∈ Ω}, in (6.28).

After having understood the details of the discretization procedure on
staggered grids, it is convenient to condense the finite difference expressions
and introduce the operator notation from Appendix A.3. This enables us to
precisely define the numerical scheme in the following compact form:

[δtη = −δx(Hu)− δy(Hv)]
`− 1

2

i+ 1
2 ,j+ 1

2

, (6.29)

[δtu = −δxη]`i,j+ 1
2
, (6.30)

[δtv = −δyη]`i+ 1
2 ,j . (6.31)

The original coupled system of PDEs has been split into a sequence of scalar
PDEs by the particular time discretization. Such splitting of the original com-
pound differential (vector) operator is a common strategy, often referred to as
operator splitting, and is also encountered in Project 4.3.1 and Chapters 6.4,
6.5, 7.1, and 7.2.

Exercise 6.4. .
Eliminate u and v from the system (6.22)–(6.24) and show that η fulfills

a wave equation
∂2η

∂t2
= ∇ · [H(x, y)∇η] . (6.32)

580 6. Fluid Mechanics Applications

Also show that the boundary condition v · n = 0 translates to ∂η/∂n = 0
and that the initial condition u = v = 0 is equivalent to ∂η/∂t = 0 at t = 0.
�

Exercise 6.5. .
Eliminate the discrete u and v values from the system (6.25)–(6.27) and

show that η`
i+ 1

2 ,j+ 1
2

fulfills a standard finite difference discretization of the

wave equation (6.32). (For book-keeping simplicity it can be easier to work

with integer spatial indices in η, that is, η`
i,j , u

`+ 1
2

i+ 1
2 ,j

, and v
`+ 1

2

i,j+ 1
2

.) �

Exercises 6.4 and 6.5 demonstrate that our coupled system of shallow
water equations is mathematically and numerically equivalent to solving a
standard wave equation for η (or u). We could therefore equally well stick to
the simpler (6.32) and avoid systems of PDEs and staggered grids. Neverthe-
less, the system (6.22)–(6.24) is only a simplified model, which for relevant
applications in geophysics must be extended with, for example, nonlinearities,
dispersion, bottom friction, and surface drag from wind. These extensions are
much more readily incorporated in the system (6.22)–(6.24) than in the scalar
wave equation (6.32).

Exercise 6.6. .
Underwater slides can be represented as a time-varying bottom H(x, y, t).

The movement of the slide causes surface wave generation, modeled through
an extra term −∂H/∂t on the right-hand side of (6.22). Show that the cor-
responding extra term in (6.32) reads −∂2H/∂t2. �

6.2.3 Implementation

When coding the scheme (6.25)–(6.27) it would be convenient to use an array
abstraction that allows half-integer indices. Moreover, the number of spatial
points for u, v, and η differ, and a mesh abstraction for staggered grids that
automatically calculates the proper length of arrays and loops, makes the
programming easy and safe. Such convenient software abstractions are sup-
ported by Diffpack, but we shall first code the scheme (6.25)–(6.27) in terms
of integer indices and standard array structures, because this implementation
can easily be ported to any computer language and because this is a good
exercise in nontrivial index book-keeping.

Data Structures and Index Handling. The following basic field abstractions
can be useful for representing spatial values of η, u, and v at the current and
the previous time level:

Handle(FieldLattice) eta, u, v, eta_prev, u_prev, v_prev;

6.2. Shallow Water Equations 581

Recall from Chapter 1.6.5 that every FieldLattice object has an array of field-
point values, represented as an ArrayGenSel(real) object. We can access this
array through the member function values. Let us store the quantity η`

i+ 1
2 ,j+ 1

2

in the array entry eta->values()(i,j). The previous value η`−1
i+ 1

2 ,j+ 1
2

is stored

in eta prev->values()(i,j). A similar idea is applied to the discrete u and v

values. For instance, u
`+ 1

2

i,j+ 1
2

is stored in the array entry u->values()(i,j). In

general, we replace i+ 1
2 by the array index i, j + 1

2 by the index j, i− 1
2 by

the index i-1, and j− 1
2 by the index j-1. The i and j counters start at zero,

and the spatial coordinates corresponding to the index (i,j) is the lower left
corner of the cell containing ηi+ 1

2 ,j+ 1
2
.

The construction of a FieldLattice object implies allocation of grid-point
values at all the corner of the cells. Since there are fewer center or edge points
than corners, the arrays in the field objects will be too long. The extra space
is padded with zeroes and never addressed by the program. Unfortunately,
the extra space can cause strange results when arrays in the field objects are
communicated diretly to visualization programs.

Computer Code Extracts. The source code for the program that solves the
constant-depth shallow water equations (H = 1) is given below. The corre-
sponding files are located in src/app/LongWave1. As mentioned, to access the

value u
`+ 1

2

i,j+ 1
2

we can perform the array-look up u->values()(i,j), but this

statement involves three inline function calls: one call to operator-> in class
Handle(FieldLattice), one call to values in class FieldLattice, and one call
to operator() in class ArrayGenSel. Not all compilers are good at optimizing
such nested inline function calls. We might therefore help the compiler a bit
and index the ArrayGenSel object directly:

ArrayGenSel(real)& Un = u->values();

Using Un(i,j) rather than u->values()(i,j) may give a significant speed-up
of the code on some machines. The numerical scheme can now be coded like
this:

void LongWave1:: solveAtThisTimeStep ()

{

ArrayGenSel(real)& Un = u ->values();

ArrayGenSel(real)& Un_p = u_prev->values();

ArrayGenSel(real)& Vn = v ->values();

ArrayGenSel(real)& Vn_p = v_prev->values();

ArrayGenSel(real)& ETAn = eta ->values();

ArrayGenSel(real)& ETAn_p = eta_prev->values();

const real mu = tip->Delta()/u->grid().Delta(1); // dt/dx

const real nu = tip->Delta()/v->grid().Delta(2); // dt/dy

582 6. Fluid Mechanics Applications

const real m = grid->getMaxI(1); // last grid point i

const real k = grid->getMaxI(2); // last grid point j

int i,j;

for (j = 0; j <= k-1; j++)

for (i = 0; i <= m-1; i++)

ETAn(i,j) = ETAn_p(i,j)

- mu*(Un_p(i+1,j) - Un_p(i,j)) - nu*(Vn_p(i,j+1) - Vn_p(i,j));

for (j = 0; j <= k-1; j++)

for (i = 1; i <= m-1; i++)

Un(i,j) = Un_p(i,j) - mu*(ETAn(i,j) - ETAn(i-1,j));

for (j = 1; j <= k-1; j++)

for (i = 0; i <= m-1; i++)

Vn(i,j) = Vn_p(i,j) - nu*(ETAn(i,j) - ETAn(i,j-1));

*u_prev = *u;

*v_prev = *v;

*eta_prev = *eta;

}

When studying the source code, one should have in mind that the purpose
of the program is to make a compact, but not very flexible or computation-
ally efficient implementation of the finite difference scheme for shallow water
equations with constant depth.

Exercise 6.7. .
Explain in detail how to extend the LongWave1 class such that it can handle

a variable depth H(x, y). Discuss three formats of H : H(x, y) available as an
explicit function, H available at the same points as η, and H available at
the mid point of each cell side. (The relation between array and grid indices
and the corresponding indices in the numerical scheme must be carefully
considered when implementing a variable depth.) �

Test problems. A possible choice of the initial surface disturbance is the plug

η0
i+ 1

2 ,j+ 1
2

=

0, i < p1 or i > p2

A/2, i = p1 or i = p2

A, p1 < i < p2

where p1 and p2 are two prescribed i indices in the grid and A is the given
amplitude. A particularly attractive property of this model is that the numer-
ical scheme reproduces the analytical solution if the Courant number equals
unity, which here means that ∆t = ∆x. This is very advantageous when de-
veloping software since we then know exactly what the output of the program
in a particular example should be.

6.2. Shallow Water Equations 583

Another implemented test example involves η(x, y, 0) as a Gaussian bell
function.

Abstractions for Staggered Grid. Experience with programming of the shallow
water equations or the Navier-Stokes equations shows that it is easy to make
mistakes with the loop limits and array indices. For rapid prototyping it is
thus convenient to program with grid and array abstractions that can handle
staggered grids in a natural way. Diffpack offers class GridLatticeC in combi-
nation with class FieldLattice for this purpose. The GridLatticeC class con-
tains actually three grids, one for u, one for v, and one for η. A FieldLattice

object must be linked to one of these grids. From the FieldLattice object
for, say η, we can only view the η grid. To set up a loop over the η points, one
simply calls ordinary GridLattice functions for determining the loop lengths:

const int eta_i0 = eta->grid().getBase(1); // first grid pt in i-dir

const int eta_j0 = eta->grid().getBase(2); // first grid pt in j-dir

const int eta_in = eta->grid().getMaxI(1); // last grid pt in i-dir

const int eta_jn = eta->grid().getMaxI(2); // last grid pt in j-dir

for (j = eta_j0; i <= eta_jn; j++)

for (i = eta_i0; i <= eta_in; i++)

eta->valuesIndex(i+0.5,i+0.5) =

As we see, the FieldLattice object allows using half integer indices in the
valueIndex function. This results in a code that is very close to the numerical
specification of the scheme and hence easy to debug, especially since the
staggered grid object also controls the lengths of the loops. Furthermore,
there is no extra unused memory space in the fields, thus making interaction
with visualization software simple, efficient, and safe. We refer to the report
[1] for detailed documentation of Diffpack’s staggered grid classes in general.

Computational Efficiency. As could be expected, the attractive index syntax
eta->valueIndex(i+0.5,j+0.5) is associated with unacceptable low efficiency.
This is therefore a tool for program development. As soon as the implemen-
tation is verified, alternative loops over η, u, and v, with a more efficient
indexing technique should also be included in the solveAtThisTimeStep func-
tion. We emphasize the importance of first having a code that works before
optimizing the loops, and that the old and new implementations must exist
side by side and be activated by some run-time chosen indicator. Even the
pure integer indices in class LongWave1 have problems competing with a similar
Fortran 77 implementation, and this Diffpack program can also benefit from
improved indexing strategies in the ArrayGenSel class. Appendix B.7.4 pro-
vides an example on efficient indexing of ArrayGen (and hence ArrayGenSel)
objects in a typical finite difference setting. The source code in the opt sub-
directory demonstrates the implementation of efficient indexing techniques,
also in combination with staggered grid classes.

584 6. Fluid Mechanics Applications

Another candidate statement for optimization is the updating *u prev =

*u. It would here be more efficient to just switch pointers to the underlying
arrays of grid point values. Calling u prev->exchangeValues(*u) performs this
task in a safe manner.

Parallel Computing. The updating finite difference formula for η at a point
is independent of the similar formulas for all the other points in the grid.
The updating statements can hence be performed concurrently. The same
reasoning applies to the explicit finite difference formulas for the new u and
v values as well. This opens up for a very efficient parallel algorithm for
implementation on parallel computers. In theory, the present explicit finite
difference method should be optimal from a parallel computing point of view;
that is, on an n-processor machine the CPU time should be 1/n times the
CPU time on a single-processor machine. Diffpack offers support for easy
migration of class LongWave1 to a parallel computing environment [25].

Animation of Waves. Since our eta field contains redundant values, visu-
alization must be done with care, i.e., the eta->values() array cannot be
used directly, but we must write out the physical significant entries in some
suitable format2. In the LongWave1 solver, we demonstrate how to dump the
η values in a Matlab script (casename.m). After the simulation one can then
invoke Matlab and see a movie of the wave motion. Try the program with a
Gaussian bell-shaped initial surface, having the center of the bell located a
corner such that we take advantage of symmetry and compute in only 1/4 of
the physical domain (cf. page 65). An appropriate execution command is

./app --case 2 --casename bell -t ’dt=1 t in [0,2]’

-g ’d=2 [0,1]x[0,1] [0:50]x[0:50]’ -xc 0 -yc 1

Invoke Matlab and type bell (this will execute the bell.m script). Each frame
of η will be first be plotted and thereafter the smooth movie is shown. You
can play the movie again by typing movie(M) at the Matlab prompt.

6.2.4 Nonlinear and Dispersive Terms

The discretization of (6.22)–(6.24) appeared very natural in the staggered
grid. If we incorporate nonlinear and dispersive wave effects, some new terms
in the equations do not fit trivially with the previous discretization set-up.
As an illustration, we consider the following extension of a one-dimensional
version of the equations (6.22)–(6.24):

∂η

∂t
= − ∂

∂x
{(1 + αη)u} , (6.33)

2 Using staggered grid classes in the eta field results in a FieldLattice object
without redundant values. The FieldLattice object can then be managed by a
SaveSimRes object or other tools operating directly on large arrays.

6.2. Shallow Water Equations 585

∂u

∂t
+ α

∂

∂x

(
1

2
u2

)
= −∂η

∂x
− ε

3

∂2

∂x2

(
∂u

∂t

)
. (6.34)

The dimensionless depth H is now assumed constant and has thus disap-
peared from the equations (H = 1) for simplicity. We have two new terms
related to nonlinearity, marked with α, and one new term related to disper-
sion, marked with ε, where α and ε are dimensionless parameters measuring
nonlinear and dispersive effects, respectively. For example,

√
ε is the ratio of

the depth and the wave length and reflects how “shallow the water is” and
thereby the importance of dispersion.

Let us introduce a staggered space-time grid with η`
i+ 1

2

and u
`+ 1

2

i as pri-

mary discrete unknowns. Applying central differences to all derivatives, we
can write down the following discrete counterpart to (6.33)–(6.34):

[δtη = −δx((1 + αη)u)]
`− 1

2

i+ 1
2

,

[δtu+
1

2
αδxu

2 = −δxη −
1

3
εδxδxδtu]

`
i .

For convenience we also write these nonlinear difference equations in complete
detail:

η`
i+ 1

2

− η`−1
i+ 1

2

∆t
= − 1

∆x

({
(1 + αη

`− 1
2

i+1)u
`− 1

2

i+1

}
−
{
(1 + αη

`− 1
2

i)u
`− 1

2

i

})

u
`+ 1

2

i − u`− 1
2

i

∆t
= − α

2∆x

(
(u2)`

i+ 1
2
− (u2)`

i− 1
2

)
−
η`

i+ 1
2

− η`
i− 1

2

∆x

− ε

3∆x2

u

`+ 1
2

i−1 − u
`− 1

2

i−1

∆t
− 2

u
`+ 1

2
i − u`− 1

2
i

∆t
+
u

`+ 1
2

i+1 − u
`− 1

2

i+1

∆t

Quantities like η
`+ 1

2
i and u`

i+ 1
2

must be expressed in terms of our primary

unknowns in the staggered grid. The standard technique is to introduce some

kind of average. For example, η
`+ 1

2

i can be averaged in space and time as

η
`+ 1

2

i ≈ 1

4

(
η`

i− 1
2

+ η`+1
i− 1

2

+ η`
i+ 1

2
+ η`+1

i+ 1
2

)
.

A similar arithmetic average could also be used for (u2)`
i+ 1

2

:

(u2)`
i+ 1

2
≈ 1

4

(
(u2)

`− 1
2

i + (u2)
`− 1

2
i+1 + (u2)

`+ 1
2

i + (u2)
`+ 1

2
i+1

)
.

The disadvantage with this arithmetic average is that we get a nonlinear
system of discrete equations due to the nonlinearity of u2. If we apply a
geometric mean in time and an arithmetic mean in space, that is,

(u2)`
i+ 1

2
≈ 1

2

(
u

`− 1
2

i u
`+ 1

2

i + u
`− 1

2

i+1 u
`+ 1

2

i+1

)
,

586 6. Fluid Mechanics Applications

we obtain a linear system for the new u values at each time level. The reader
should identify a tridiagonal linear system for η`

i− 1
2

, η`
i+ 1

2

, and η`
i+ 3

2

from

the first difference equation and another tridiagonal system for u
`+ 1

2
i−1 , u

`+ 1
2

i ,

and u
`+ 1

2
i+1 from the other equation. Since we have to solve linear systems,

the scheme is implicit and one would expect better stability properties than
(6.28). This is true; one can perform a stability analysis when α = 0 (cf. Ex-
ercise 6.11) and arrive at

∆t ≤
√
∆x2 +

4

3
ε . (6.35)

Exercise 6.8. .
Formulate a complete numerical algorithm for solving the system (6.33)–

(6.34) with u = 0 at the boundaries. Initially, η is known and u = 0. �

Finally, we mention that real applications of the shallow water equations
involve complicated coastline geometries and often additional physical effects
in the equations, such as the Coriolis force, bottom friction, and surface drag
from wind. All these extensions are, at least in principle, straightforwardly
included in the presented models. Complicated coastline geometries can be
approximated by “stair-case” boundaries as indicated in Figure 6.3b. One can
hope that the successive setting of u = 0 and v = 0 yields a good approxima-
tion to v ·n = 0 at the real boundary. Unfortunately, “stair-case” boundaries
can generate nonphysical wave motion (noise). When the geometry is com-
plicated, the finite element method is therefore an attractive technique for
spatial discretization.

6.2.5 Finite Element Methods

A finite element method for the shallow water equations (6.22)–(6.24) can
be established through a standard Galerkin procedure. However, there is
no immediate technique available to mimic the staggered grid3. Boundary
conditions along curved coastlines, v · n = 0, constitute essential boundary
conditions in form of extra constraints, which demands a highly nontrivial
implementation. It turns out that a reformulation of (6.22)–(6.24) might be
advantageous for the application of finite element procedures. This reformu-
lation consists in introducing the depth-averaged velocity potential φ(x, y, t)
as a primary unknown instead of the velocities u and v. The latter quantities
are related to φ by u = ∂φ/∂x and v = ∂φ/∂y, that is, v = ∇φ. The number

3 Mixed finite element methods, where different basis functions are used for differ-
ent unknowns, constitute the counterpart to staggered grids in the finite element
world. However, mixed methods are beyond the scope of this text. Diffpack offers
a generalized version of the finite element toolbox that makes programming with
mixed methods quite easy [73,94].

6.2. Shallow Water Equations 587

of primary unknowns and PDEs is reduced from three to two. In this case
one also applies an integrated form of (6.23)–(6.24). The governing equations
for η and φ then take the form

∂η

∂t
= −∇ · (H∇φ), (6.36)

∂φ

∂t
= −η . (6.37)

The first of these is still a continuity equation derived from the principle
of conservation of mass, whereas the latter is an integrated Newton’s sec-
ond law (Bernoulli equation expressing balance of mechanical energy). The
boundary condition on the shoreline is now ∂φ/∂n = 0, which arises as a
natural boundary condition in the finite element formulation. Furthermore,
using the same basis functions for η and φ, combined with nodal-point inte-
gration, gives discrete equations of the same nature as those from the finite
difference method on staggered grids. With this alternative formulation, the
finite element method is a very handy tool for discretizing shallow water
equations in the complicated geometries frequently encountered in coastal
engineering applications.

The effects of weak dispersion and weak nonlinearity, as outlined in the
equations in Chapter 6.2.4, can also be incorporated in the η-φ formulation. A
possible set of relevant, commonly called the Boussinesq equations for water
waves, might be written

∂η

∂t
+∇ · q = 0, (6.38)

∂φ

∂t
+
α

2
∇φ · ∇φ+ η − 1

2
εH∇ ·

(
H∇∂φ

∂t

)
+

1

6
εH2∇2 ∂φ

∂t
= 0 . (6.39)

Also here, H(x, y) denotes the still-water depth. The flux q in equation (6.38)
is given by

q = (H + αη)∇φ + εH

(
1

6

∂η

∂t
− 1

3
∇H · ∇φ

)
∇H . (6.40)

Exercise 6.9. .
Let α, ε → 0 in (6.38)–(6.39), eliminate φ from the equations, and show

that η fulfills a standard wave equation:

∂2η

∂t2
= ∇ · (H∇η) .

Suppose that the boundary condition is ∂φ/∂n = 0 and that the initial
condition for φ is φ(x, y, 0) = 0. Show that the corresponding conditions for
η are ∂η/∂n = 0 at the boundary and ∂η/∂t = 0 for t = 0. �

588 6. Fluid Mechanics Applications

As usual, we shall first discretize the equations in time. To simplify the
mathematical expressions and increase the focus on the principal ideas, we
assume that H is constant. Equations (6.38)–(6.39) then become

∂η

∂t
+∇ · [(H + αη)∇φ] = 0, (6.41)

∂φ

∂t
+
α

2
∇φ · ∇φ+ η − ε

3
H2∇2 ∂φ

∂t
= 0 . (6.42)

It is convenient to think of a staggered grid in time (but not in space). This
means that we have η` as the time discrete approximation to η(x, y, `∆t) and

φ`+ 1
2 as the similar approximation to φ(x, y, (`+ 1

2)∆t).
The ideas from Chapter 6.2.4 can be reused in the present context. We

approximate the first (continuity) equation at time level `− 1
2 and use a cen-

tered difference in time. The second (momentum) equation is more naturally

approximated at time level `. Quantities like η`− 1
2 and [∇φ · ∇φ]` arise from

the time discretization, and these must be approximated by suitable averages.
Using an arithmetic average, η`− 1

2 = 1
2 (η`−1 + η`), and a geometric mean,

[∇φ · ∇φ]` = ∇φ`− 1
2∇`+ 1

2 (see also Chapter 6.2.4) enables us to decouple the
original system of two coupled nonlinear PDEs. The result is that we at each
time level first can solve a linear PDE (6.43) for η` and then solve a linear

PDE (6.44) for φ`+ 1
2 .

η` − η`−1

∆t
+∇ · (α

2
η`∇φ`− 1

2) +∇ ·
[
(H +

α

2
η`−1)∇φ`− 1

2

]
= 0, (6.43)

φ`+ 1
2 − φ`− 1

2

∆t
+
α

2
∇φ`− 1

2 · ∇φ`+ 1
2−

ε

3
H2∇2

(
φ`+ 1

2 − φ`− 1
2

∆t

)
= −η` . (6.44)

Each of these equations are linear convection-diffusion equations that can
be straightforwardly discretized by the finite element method in space, as
explained in previous chapters.

The stability of the proposed scheme can be calculated for constant H
and α = 0. Applying the resulting criterion locally in each element and
requiring that ∆t must be less than the “worst case” of all elements, results
in a generalization of (6.35):

∆t2 ≤ min
e

[
H−1

e

(
1

∆x2
e

+
1

∆y2
e

)−1

+
4

3
Heε

]
, (6.45)

where the subscript e means evaluation of the quantity in element no. e.
We remark that the result (6.45) demands a lumped mass matrix (with a
consistent mass matrix, we get the factor 1/

√
3 as in Chapter 2.4.3).

Regarding implementation, one can start with a solver like Heat2 and
include fields for η, φ, and H . The key idea is to introduce an enum variable

6.2. Shallow Water Equations 589

for indicating the current equation to be solved. The enum variable is set
prior to calling makeSystem, and integrands must test on the enum variable
to determine the right expressions in the element matrix and vector. The
principal steps regarding the enum variable are presented next.

class Boussinesq : public FEM

{

Handle(FieldFE) eta, phi, H;

enum Equation_type { CONTINUITY, MOMENTUM };

Equation_tp eq_tp;

Handle(LinEqAdmFE) lineq;

Handle(DegFreeFE) dof;

...

};

void Boussinesq::solveAtThisTimeStep()

{

eq_tp = CONTINUITY;

makeSystem (*dof, *lineq);

lineq->solve(); // unknowns are in linsol

dof->vec2field (linsol, *eta);

eq_tp = MOMENTUM;

makeSystem (*dof, *lineq);

lineq->solve(); // unknowns are in linsol

dof->vec2field (linsol, *phi);

...

}

void Boussinesq::integrands(ElmMatVec& elmat,const FiniteElement& fe)

{

if (eq_tp == CONTINUITY)

integrandsContinuity (elmat, fe);

else if (eq_tp == MOMENTUM)

integrandsMomentum (elmat, fe);

}

Complete finite element-based Diffpack simulators for the Boussinesq equa-
tions (6.38)–(6.39) have been developed [79]. The nonlinear shallow water
equations in moving (Lagrangian) coordinates, aimed at modeling run-up of
waves on beaches, have been solved by mixed finite element methods and
moving-grid tools in Diffpack [80].

Exercise 6.10. .
Restrict (6.43) and (6.44) to one space dimension and assume that H has

a finite element representation similar to that of η and φ. Derive the element

590 6. Fluid Mechanics Applications

matrices and vectors corresponding to each term in (6.43) and (6.44), us-
ing linear elements and nodal-point integration. Try to express the resulting
equations in the compact finite difference notation from Appendix A.3. Im-
plement the difference schemes in a program (a suitable starting point might
be the Heat1D code in src/fdm, see Chapter 1.7.6). The discrete solution to be
calculated in Exercise 6.11 is valuable for verification and debugging of the
program. Let H(x) and η(x, 0) be bell-shaped functions of the type outlined
on page 64. Make a scripting interface to the simulator such that you can give
the parameters of the initial state and the depth and get an MPEG movie
with three simultaneous animations of η(x, t) in return, one with α = ε = 0,
one with α = 0 and ε = 1 and one with α = ε = 1. Play around with this
script and try to demonstrate the effects of (weak) dispersion and nonlinearity
on water waves. �

Exercise 6.11. .
Restrict (6.43) and (6.44) to the one-dimensional case with H constant

and α = 0. Use linear elements and nodal-point integration for establishing
that the resulting difference equations can be written as

[δtη +Hδxδxφ = 0]
`− 1

2

i

and
[δtφ−

ε

3
H2δtδxδxφ = −η]`i ,

expect for the boundary points. Identifying [δxφ]
`+ 1

2

i− 1
2

as u
`− 1

2

i+ 1
2

shows that this

finite element method is similar to a finite difference method on staggered

grids with η`
i and u

`− 1
2

i+ 1
2

as primary unknowns. Analyze the stability and

accuracy of this scheme by employing the techniques from Appendix A.4. Also
find a complete solution of the discrete problem in the case η(x, y, 0) = cosπx,
Ω = (0, 1), and ∂φ/∂x = 0 at x = 0, 1 (choose some appropriate initial values
for φ). �

6.3 An Implicit Finite Element Navier-Stokes Solver

In Chapters 6.3–6.5 we shall address the Navier-Stokes equations describing
incompressible viscous fluid flow. These equations are hard to solve and still
represent a challenging problem from a numerical point of view, even after
over three decades of intensive research. The methods presented in Chap-
ters 6.3–6.5 were chosen because of their relatively straightforward imple-
mentation. For a brief review of numerical methods for the Navier-Stokes
equations, see [75], and for more in-depth treatments the textbooks by Gresho
and Sani [48], Griebel et al. [49], and Turek [142] are recommended.

Roughly speaking, the method in the present section transforms the Navier-
Stokes equations to a kind of a time-dependent, nonlinear elasticity equation,

6.3. An Implicit Finite Element Navier-Stokes Solver 591

by using a penalty function formulation. The resulting vector PDE can easily
be discretized by methods from Chapters 2, 4, and 5. The implementation
applies Diffpack tools covered in Chapters 3–5. Hence, a major pedagogical
reason for including the present section in the book is the possibility to sum-
marize and combine fundamental methods and tools into a more complicated
application.

The most common ways of discretizing the Navier-Stokes equations by
the finite element method make use of mixed finite elements. Diffpack offers
support for easy programming with mixed finite elements [73,94], but this
topic is beyond scope of the present text.

6.3.1 The Physical and Mathematical Model

The equations for viscous incompressible fluid flow are founded on the general
mass and momentum balance equations for continuous media:

%,t + (%vs),s = 0, (6.46)

%(vr,t + %vsvr,s) = σrs,s + %br . (6.47)

These equations have been written using the indicial notation explained in
Appendix A.2, where comma denotes differentiation and repeated indices
imply a sum from 1 to the number of space dimensions d. The various symbols
have the following meaning: % is the fluid density, vr is the fluid velocity, σrs

is the stress tensor, and br denotes external body forces. Equation (6.46)
reflects mass conservation, while (6.47) is a consequence of Newton’s second
law. The left-hand side of (6.47) is the “mass” (here represented through the
density) times the acceleration, and the right-hand side is the sum of internal
friction forces in the fluid and external forces such as gravity.

Incompressible flow is recognized by the fact that the mass conservation
equation reduces to the constraint vs,s = 0. This is compatible with constant
%, which we will assume in the following. To close the system of PDEs, the
stress tensor must be related to the velocity field by a constitutive law for the
fluid. Many common fluids, such water, air, and oil, exhibit a linear relation
between shear stresses and shear deformation rates. Such fluids are classified
as Newtonian and the corresponding constitutive law reads

σrs = −pδrs + µ(vr,s + vs,r), (6.48)

where p is the fluid pressure and µ is a constant coefficient of viscosity. In-
serting the constitutive law (6.48) in (6.47) and reducing (6.46) to the incom-
pressibility condition vs,s = 0, yields (see Exercise A.11)

%(vr,t + vsvr,s) = −p,r + µvr,ss + %br, (6.49)

vs,s = 0 . (6.50)

592 6. Fluid Mechanics Applications

This is the Navier-Stokes equations for incompressible flow. Some readers
might appreciate to see the equations written in traditional vector notation
as well:

%

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v + %b, (6.51)

∇ · v = 0 . (6.52)

Our interest in indicial notation is primarily motivated by the fact that ex-
pressions like ∇ · v need to be written out in detail prior to implementation,
whereas the indicial counterpart vs,s is a computational algorithm by itself;

we translate vs,s trivially to
∑d

s=1 ∂vs/∂xs and then to a corresponding for-
loop in the code.

The primary unknowns in the mathematical model (6.49)–(6.50) are the
velocity vector field vr and the scalar pressure field p. If thermal effects cannot
be neglected, the system (6.49)–(6.50) must augmented by a heat transport
equation. The coupling of heat conduction and fluid flow is the subject of
Chapter 7.2.

The boundary conditions associated with the system (6.49)–(6.50) are
frequently of two types: either vr is prescribed or the normal derivative of vr

vanishes. The latter condition can be replaced by a stress vector condition like
we explained in the elasticity problem in Chapter 5.1, but this variant will
not be considered herein. Uniqueness of the pressure requires p to be specified
at a point. Furthermore, transient flow requires a prescribed velocity field vr

at initial time.
Equations for stationary flow arise by omitting the time derivative term

vr,t in (6.49). It can therefore be convenient to insert an indicator α, which
is zero in the stationary case and unity otherwise, in front of the v,r term,
such that we can easily turn the time dependency on or off. This is done in
the forthcoming equations.

6.3.2 A Finite Element Method

The two main problems with numerical methods for the incompressible Navier-
Stokes equations (6.49)–(6.50) are the handling of the pressure term p,r and
the incompressibility constraint vs,s = 0. If there had been a time derivative
term p,t in (6.50), the governing equations would exhibit the same structure
as the shallow water equations in Chapter 6.2, modulo the terms vsvr,s and
vr,ss. Introducing a slight (artificial) compressibility in the mass conservation
equation may result in such a p,t term, and the system of PDEs can be solved
by explicit time integration after the same lines as we followed in Chapter 6.2,
see [43, Ch. 17]. However, the stability restriction on the time step is much
more severe than in the wave equation application4.

4 This is natural because sound waves in a slightly compressible fluid propagate
much faster than water surface waves.

6.3. An Implicit Finite Element Navier-Stokes Solver 593

Omitting the pressure term from (6.49) gives an equation that has the
same nature as a (nonlinear) convection-diffusion equation. The perhaps most
dominating technique for solving the Navier-Stokes equations applies this
observation and splits the differential operators such that one ends up with
solving a series of Poisson and convection-diffusion equations for which very
efficient numerical methods exist. This approach is the subject of Chapters 6.4
and 6.5.

An implementationally attractive method for dealing with the pressure
term and the incompressibility constraint is the penalty function approach,
where the equation of continuity is approximated by the equation vs,s =
−λ−1p, where λ→∞. For numerical purposes, λ is chosen as a large number.
The pressure can now be eliminated from (6.49), using the relation

p = −λvs,s (= −λ∇ · v), λ→∞ . (6.53)

The new form of (6.49) has the same nature as the equations of elasticity, thus
allowing us to apply solution concepts from Chapter 5.1. The penalty function
method has a thorough mathematical justification in linear problems, and
we refer the reader to Reddy’s paper [116] for an overview of the theoretical
background. Other sources regarding the numerics of the penalty method are
[48], [60], and [117, Ch. 4]. For broad information about solution methods for
the Navier-Stokes equations we refer to textbooks, e.g. [43,48,114,117], and
the references therein.

Inserting (6.53) in (6.49) results in the governing equation

%(αvr,t + vsvr,s) = λvs,sr + µvr,ss + %br, (6.54)

which should be compared with the equation of elasticity (5.10). The velocity
is first found from (6.54) and thereafter the pressure can be recovered from
p = −λvs,s. Recall that the α parameter turns the time dependency on
(α = 1) and off (α = 0).

Solving (6.54) by the finite element method starts with discretizing in
time by finite differences, for instance the θ-rule from Chapter 2.2.2:

%α
v`

r − v`−1
r

∆t
+ θ%v`

sv
`
r,s + (1− θ)%v`−1

s v`−1
r,s =

θ
(
λv`

s,sr + µv`
r,ss

)
+ (1− θ)

(
λv`−1

s,sr + µv`−1
r,ss

)
. (6.55)

Superscript ` denotes a quantity at time level `. We have also dropped the
source term br to save space in the formulas. We seek an approximation to
v`

r of the form

v̂`
r(x1, . . . , xd, t) =

n∑

j=1

vr,`
j Nj(x1, . . . , xd),

594 6. Fluid Mechanics Applications

where Nj are prescribed finite element functions and vr,`
j are to be found by

the method5. The parameter n represents the number of nodes in the finite
element mesh. Inserting this approximation in (6.55) and applying a weighted
residual method with weighting functions Wi, u = 1, . . . , n, yields a system
of nonlinear algebraic equations at time level `:

F r
i (v1

1 , . . . , v
d
1 , v

1
2 , . . . , v

d
2 , . . . , v

1
n, . . . , v

d
n) = 0, (6.56)

with i = 1, . . . , n and r = 1, . . . , d. The detailed expression for F r
i reads

F r
i ≡

∫

Ω

(
α(cijv

r,`
j − cijvr,`−1

j) + θ∆td`
ijv

r,`
j + (1− θ)∆td`−1

ij vr,`−1
j

)
dΩ +

∫

Ω

(
θλ∆tqr,`

i + (1− θ)λ∆tqr,`−1
i

)
dΩ −

∫

∂Ωr
N

(
θ∆tfr,`

i + (1− θ)∆tf r,`−1
i

)
dΓ . (6.57)

The following symbols have been introduced to make the expressions above
more compact:

d`
ij = µWi,kNj,k + %Wiv̂

`
kNj,k (6.58)

cij = %WiNj , (6.59)

qr,`
i = Wi,r v̂

`
k,k (6.60)

fr,`
i = Wi(

∂v̂`
r

∂n
+ p`nr) . (6.61)

Here, nr denotes an outward unit normal to the boundary ∂Ω. We see that
fr,`

i appears in a boundary term over a part ∂Ωr
N of ∂Ω. On ∂Ωr

N we shall
assume that the following condition holds:

∂vr

∂n
+ pnr = 0 . (6.62)

This is a natural “outflow” condition in many flow cases. As a consequence,
the boundary integral vanishes.

The explicit version of the θ-rule, i.e. θ = 0, is not suitable in combination
with the penalty method because of the unfavorable stability condition: ∆t <
O(h2/λ), where h is a characteristic element size.

The choice of finite elements is limited when using the penalty method.
Best results are obtained with multi-linear elements, although multi-quadratic
elements can also be used. Triangles or tetrahedra often lead to unacceptable
results.

5 We remark that comma in superscripts just separates indices; it does not indicate
any differentiation.

6.3. An Implicit Finite Element Navier-Stokes Solver 595

6.3.3 Solution of the Nonlinear Systems

The system of nonlinear equations F r
i = 0 can be solved by, for exam-

ple, Newton-Raphson iteration. We recall from Chapter 4 that the Newton-
Raphson method leads to a linear system that must be assembled and solved
in each iteration. The right-hand side of this linear system equals −F r

i ,
whereas the coefficient matrix is the Jacobian of F r

i . By differentiating F r
i

with respect to the unknown values vs,`
j , we can compute an entry in the

Jacobian to be6

Ars
i,j ≡

∂F r
i

∂vs,`
j

=

∫

Ω

(
(αcij + θ∆td`

ij)δrs + θ∆tcij v̂
`
r,s

)
dΩ +

∫

Ω

λθ∆tWi,rNj,sdΩ . (6.63)

We recognize that Ars
i,j is similar to corresponding symbol in Chapter 5.1,

representing the coupling of the degree of freedom r at node i with the degree
of freedom s at node j. As in Chapter 5.1, we can view Ars

i,j as a block matrix,
where i and j run over the blocks and r and s are local indices in a block. The
coefficient matrix J of the linear system in each Newton-Raphson iteration
can hence be partitioned into n× n blocks J i,j , each with dimension d× d,

J i,j =

A11

i,j . . . A
1d
i,j

...
. . .

...
Ad1

i,j . . . A
dd
i,j

 .

The right-hand side of the equation system, −F r
i , is similarly a vector par-

titioned into blocks, where i runs over the nodes (blocks) and r runs inside
a block (degrees of freedom at a node). Recall that when evaluating the
coefficient matrix and the right-hand side, we should use the most recent
approximation to vr,`

i . The correction vector in each Newton-Raphson itera-
tion is of course also partitioned into block form, exactly as in (6.56) or the
unknown displacement vector (5.14) in Chapter 5.1. The linear system to be
solved then takes the form

n∑

j=1

d∑

s=1

Ars
i,jδv

r,`
j = −F r

i , i = 1, . . . , n, r = 1, . . . , n .

This expression has a structure similar to the linear system in elasticity,
cf. (5.15). We remark that the iteration index (k) in the nonlinear solution
method has been skipped for notational simplicity.

6 Ars
i,j is a block matrix, and the comma between i and j separates the row and

column blocks; the comma is not related to partial differentiation.

596 6. Fluid Mechanics Applications

With experience from the implementation of the elasticity model, the
present solution algorithm can be regarded as an elasticity-like problem em-
bedded in a nonlinear solver loop, which again is embedded in a time loop.

Discretizing the penalty version of the Navier-Stokes equations in space
by the Galerkin method, results in a spatially discrete problem that can be
written on matrix form

%M
dv

dt
+ %N(v)v = λGv + µKv,

where M is the mass matrix, N stems from the nonlinear convection term
vsvr,s, λGv is the penalty term, K is the discrete Laplace operator, and
v is the vector of all vr

j (t) values. If we now let λ → ∞, we must require
Gv = 0, which implies the undesired solution v = 0 if G is nonsingular.
However, with a singular matrix G, the product Gv may approach zero for a
nonzero v as λ→∞. A singular G can be obtained by a technique known as
reduced integration [60,117], which means that we integrate the λ terms with
a Gauss-Legendre rule of one order lower than what we normally would have
applied. For example, a 2d-point rule is sufficiently accurate for the involved
integrals over multi-linear elements, and the reduced rule is therefore the
(2−1)d = 1 point rule. With multi-quadratic elements, a 3d-rule is sufficient,
and the reduced rule has (3−1)d = 2d points. The computation of the element
matrix and vector must hence deal with different numerical integration rules
for different terms. The term selective reduced integration is often used for
this type of integration strategy.

Another serious aspect of the penalty method is that the condition number
of the coefficient matrix in the linear systems is proportional to λ. Choos-
ing a large λ to approximate the incompressibility constraint vs,s = 0 well, is
thus not compatible with efficient iterative solution of linear systems, because
the convergence speed of iterative solvers decreases with increasing condition
number (see Appendix C.3.1). It turns out that standard preconditioning
methods, such as the RILU technique, are not sufficiently effective at reduc-
ing the condition number. The consequence is that iterative linear solvers
are too slow, and the linear system in each Newton-Raphson iteration must
be solved by direct methods, such as banded Gaussian elimination. Compu-
tations with a solver based on the penalty method are therefore restricted
to flow cases with up to a few thousand nodes. For such problem sizes the
solution technique is reliable and quite efficient. In general we must admit
that the penalty method is far from being the state-of-the-art finite element
approach to viscous fluid flow simulations. Our motivation for discussing this
method is mainly to demonstrate that the numerics and the implementa-
tional aspects represent a combination of building blocks from Chapters 3, 4,
and 5.

Exercise 6.12. .

6.3. An Implicit Finite Element Navier-Stokes Solver 597

Formulate a Successive Substitution method for the equations F r
i = 0 and

derive detailed expressions for the element matrix and vector in the linear
system that must be solved in each nonlinear iteration. �

6.3.4 Implementation

Overview of the Simulator. The penalty-based Navier-Stokes solver is imple-
mented in a class NsPenalty1. The basic data structures of this solver consists
of the usual grid (GridFE) and degree of freedom handler (DegFreeFE), plus
a vector field for the velocities v`

r and v`−1
r , as well as a scalar field for the

pressure p:

Handle(GridFE) grid; // finite element mesh

Handle(DegFreeFE) dof; // matrix dof <-> u dof

Handle(FieldsFE) u; // velocity field

Handle(FieldsFE) u_prev; // u at the previous time level

Handle(FieldFE) p; // pressure field

In addition we need tools from Chapters 3.10 and 4.2, namely a TimePrm

object and nonlinear solvers. The latter tools are the same here as in class
NlHeat1:

Vec(real) nonlin_solution; // nonlin. system sol.

Vec(real) linear_solution; // lin. subsystem sol.

Handle(NonLinEqSolver_prm) nlsolver_prm; // init prm for nlsolver

Handle(NonLinEqSolver) nlsolver; // nonlinear solvers

Handle(LinEqAdmFE) lineq; // linear solvers & data

Furthermore, we need real variables for representing the constants λ, µ, %,
and θ.

The overall program flow remains the same as in class NlHeat1, with a
timeLoop function that calls a nonlinear solver, which again jumps back to
the simulator class in the function makeAndSolveLinearSystem. The contents of
the two mentioned functions are the same as in class NlHeat1. The only major
difference from NlHeat1 is the calcElmMatVec and integrands functions, be-
cause we now have to deal with (i) a vector PDE and (ii) different integration
rules for different terms in the finite element integrals.

Implementation of Reduced Integration. In calcElmMatVec we split the inte-
gration into two parts, one over the λ terms and one over the remaining
terms. A class member flag integrands tp of type

enum Integrand_type { LAMBDA_TERMS, ORDINARY_TERMS }

is used to indicate the type of integrands to be evaluated in the integrands

function:

598 6. Fluid Mechanics Applications

void NsPenalty1:: calcElmMatVec

(int e, ElmMatVec& elmat, FiniteElement& fe)

{

// itg_rules is inherited from base class FEM

itg_rules.setRelativeOrder (0); // request ordinary rule

fe.refill (e, itg_rules);

integrands_tp = ORDINARY_TERMS;

numItgOverElm (elmat, fe); // ordinary integration

// request reduced rule:

itg_rules.setRelativeOrder (-1);

fe.refill (e, itg_rules);

integrands_tp = LAMBDA_TERMS;

numItgOverElm (elmat, fe); // reduced integration

}

In the integrands function, we simply check the integrands tp flag and call
either a integrandsReduced function for the λ terms or integrandsNonReduced

for the ordinary terms. We refer to the computer code in src/app/NsPenalty1

for details of the two integrands functions. The source code variables and ex-
pressions should follow closely the numerical formulas given here in the text.
Going through the details of the integrands functions is a straightforward
and highly recommended exercise7.

As any Diffpack solver, the present Navier-Stokes code must have a bound-
ary indicator convention. We have found it convenient to implement seven
indicators: no. 1 marks the inflow boundary, 2 the outflow boundary, 3-5
mark boundaries where v1, v2, or v3 are zero, respectively, whereas indica-
tors 6 and 7 are left for the stream function (see below) and not used in class
NsPenalty1.

Pressure Computation. After the velocity has been computed at a time level,
the pressure p = −λvs,s can be found by differentiation of the velocity field.
Because vs,s is given by the derivatives of the primary unknown finite element
field, the discrete pressure becomes discontinuous at the element boundaries,
with the highest accuracy at the reduced Gauss points in an element (see
Chapter 2.8). Normally, we want a smooth finite element representation of
the pressure. This can be obtained by a computational procedure of the
same nature as smoothing derivatives of finite element fields, and we can
apply the tools presented in Chapter 3.4.5. The Galerkin or least-squares
formulation of approximating −λvs,s by p̂ =

∑n
j=1 pjNj results as usual in

a linear system, with the mass matrix as coefficient matrix and a right-hand
side ci = −

∫
Ω
λvs,sNidΩ.

7 It is definitely advantageous to be familiar with the details of the somewhat
simpler Elasticity1::integrands function from page 530.

6.3. An Implicit Finite Element Navier-Stokes Solver 599

The implementation of the pressure calculation in class NsPenalty1 makes
use of an integrand functor for evaluating ci. Obviously, we need a finite el-
ement assembly routine and a specification of the integrand for computing
ci, but the integrands function in the simulator class NsPenalty1 is already
used for the penalty-modified Navier-Stokes equation. Integrand functors al-
low us to define additional integrands functions, such that we can assemble
several finite element systems8. More information on integrand functors are
presented in Appendix B.6.2, but now we focus directly on an application.
In the present case the integrand functor is a class PressureIntg containing
a virtual function integrands for evaluating the contribution from −λvs,s

at an integration point within an element. To perform this evaluation, the
PressureIntg needs access to λ and the computed velocity field. This is en-
abled by a pointer to the NsPenalty1 class. Class FEM has special makeSystem
functions that can use this PressureIntg class for specifying the integrands
in finite element equations. More precisely, we can specify the integrands

function as an argument to FEM::makeSystem (notice that such a function
argument is in C++ most naturally represented as a class with a virtual
evaluation function).

The PressureIntg class is defined by

class PressureIntg: public IntegrandCalc

{

NsPenalty1* data; // access to input data and computational results

public:

PressureIntg (NsPenalty1* data_) { data = data_; }

virtual void integrands(ElmMatVec& elmat,const FiniteElement& fe);

};

The integrands function takes the form

void PressureIntg:: integrands

(ElmMatVec& elmat, const FiniteElement& fe)

{

const int nsd = fe.getNoSpaceDim();

real div_v=0;

for (int k = 1; k <= nsd; k++) {

data->u()(k).derivativeFEM (data->gradu_pt(k), fe);

div_v += data->gradu_pt(k)(k);

// (gradu_pt is a VecSimple(Ptv(real)) structure)

}

const real pressure = - data->lambda*div_v;

const int nbf = fe.getNoBasisFunc();

8 Using an indicator such as integrands tp on page 597 is another possible imple-
mentation of multiple integrands functions.

600 6. Fluid Mechanics Applications

const real detJxW = fe.detJxW();

for (int i = 1; i <= nbf; i++)

elmat.b(i) += pressure*fe.N(i)*detJxW;

}

A scratch variable like gradu pt, containing vr,s, is most naturally declared
locally in the functions where it is needed, but since the type is a vector in
dynamic memory, more precisely VecSimple(Ptv(real)), the allocation time
of such variables may be significant. Therefore we let gradu pt be a member of
the NsPenalty1 class and allocate it only once. This is a useful programming
principle that applies to all variables which allocate free memory and which
are used in integrands or other functions being called a large number of
times.

To compute a smooth pressure field, we simply call FEM::smoothField with
our functor specification of ci:

PressureIntg penalty_integrand (this);

FEM::smoothField (*p, penalty_integrand);

Visualizing Streamlines. Fluid flow simulations are often visualized in terms
of streamlines, i.e., curves that have the velocity field as tangent vector. In
2D flow, the most convenient way of visualizing the streamlines consists of
first computing the stream function ψ and then using the property that the
isolines of ψ are the streamlines. The stream function fulfills the equation

∇2ψ(x1, x2) =
∂v2
∂x1
− ∂v1
∂x2

.

The right-hand side is the vorticity (curl) of the 2D velocity field (v1, v2).
The boundary conditions for ψ are of two types: ∂ψ/∂n = 0 at boundaries
where the tangential velocity vanishes (typical inflow and outflow sections),
while ψ is prescribed at solid walls or symmetry lines (i.e. walls or symmetry
lines are streamlines). Considering flow in a channel-like geometry, we can set
ψ = 0 at the lower wall (or symmetry line). The value at the upper boundary
must equal the total volume flux Q in the area between the lower and upper
streamlines, obtained by, e.g., integrating the inlet profile.

Having computed the velocity field, the stream function can be calculated
as a post process. Since the stream function is limited to 2D and mainly used
for stationary flow cases, it can be convenient to make a separate stream-
function solver Streamfunc1 that reads the velocity from a simres database
and stores ψ in a new simres database for later visualization. The implemen-
tation of Streamfunc1 is a matter of a slight modification of class Poisson1 and
can be found in the directory src/fem/NsPenalty1/Streamfunc1. The bound-
ary conditions associated with the stream function are conveniently stored
as part of the grid used for the velocity and pressure calculations. Hence, we

6.3. An Implicit Finite Element Navier-Stokes Solver 601

reserve the boundary indicators 6 and 7 for the lower and upper streamline
boundary, respectively. The ψ value at the lower boundary can always be
set to zero. The user is then responsible for calculating the volume flux Q
and assign this (on the menu) as the known ψ value at the upper streamline
boundary.

The Streamfunc1 solver takes the simres database name for the velocity
field as input and applies class SimResFile for loading the velocity field into
a FieldsFE object. In Chapter 3.15.4 we explain how to read fields from
simres files using the FieldFormat tools, but in class Streamfunc1 we do not
need the great flexibility of class FieldFormat and prefer instead to have a
code performing the read operations directly (our code is merely a copy of the
example on reading simres databases from the man page for class SimResFile).
A perl script plotStreamlines.py in the Streamfunc1 directory automates the
execution of the streamline computation and visualization of the streamlines
as the isolines of ψ.

Channel Flow with Constriction. We end the description of the NsPenalty1

solver by a computational example involving flow in a channel with constric-
tion. The grid is depicted in Figure 6.7a. The inlet profile is plug formed, and
the Reynolds number in the plots equals 60. At the outflow boundary we ap-
ply the condition (6.62). A relevant input file is constriction.i in the Verify

directory. The simulation required 10 Newton-Raphson iterations, starting
with zero velocities. Figures 6.7b and 6.8 show the velocities, the pressure,
and the streamlines.

Exercise 6.13. .
Extend class NsPenalty1 with flexible assignment of the initial velocity

field, by adopting ideas from Chapter 3.15.4. This new feature makes it easy
to continue a previous transient simulation. However, it also makes it easy to
solve a high Reynolds number stationary flow problem using the solution cor-
responding to a lower Reynolds number as start vector for the nonlinear iter-
ation. This is nothing but a manual continuation method (see Chapter 4.1.8)
with the Reynolds number as continuation parameter. One should scale the
low Reynolds number velocity field such that the initial guess for the higher
Reynolds number simulation has the correct characteristic velocity and hence
the correct (new) Reynolds number. The Reynolds number is a key parameter
in viscous fluid flow and is derived in Exercise A.2 in Appendix A.1. �

Exercise 6.14. .
A viscous fluid is flowing over a semi-cylinder attached to a plane wall as

depicted in Figure 6.5. The boundary conditions are as follows: v1 = U and
v2 = 0 at the inlet, v1 = U and v2,n = 0 at the top boundary, v1,n = v2,n = 0
at the outflow boundary, and v1 = v2 = 0 at the solid boundaries. Generate
a corresponding input file for the NsPenalty1 solver (the geometry can be

602 6. Fluid Mechanics Applications

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

U

Fig. 6.5. Flow over a semi-cylinder (Exercise 6.14).

generated by the BOX WITH ELLIPTIC HOLE feature in the PreproStdGeom utility9,
see Figure 3.9 on page 322). The size of the domain must be large enough for
the condition v1 = U to hold at the top boundary and for v1,n = v2,n = 0
to hold at the outlet (the recirculating region behind the cylinder should not
intersect the outflow boundary). �

Exercise 6.15. .
Figure 6.6 shows a channel with an abrupt change in width, resulting

in what is referred to as flow over a backward-facing step, which is a com-
mon benchmark test for numerical methods for the Navier-Stokes equations.
Calculate the stationary analytical solution for flow in an infinite channel
with plane walls and use this solution as inflow condition in the geome-
try in Figure 6.6. Reduce the size of the domain by taking symmetry into
account. Assign appropriate conditions at the boundaries. Set up a corre-
sponding input file for the NsPenalty1 solver (the grid can be generated by
the BOX WITH BOX HOLE feature in the PreproStdGeom utility, see Figure 3.8 on
page 321). Run different values of the maximum velocity in the inlet profile
and observe the extent of the recirculating region. �

Exercise 6.16. .
Instead of having Streamfunc1 as a stand-alone application, one could

think of calling Streamfunc1 from the NsPenalty1 solver. Implement this idea
by letting an object of type Streamfunc1 be a member of class NsPenalty1 (or
perhaps a member in a subclass of NsPenalty1 to separate the new code from
the old). The v field in Streamfunc1 can be bound directly to the v field in
the Navier-Stokes solver, such that one avoids loading the velocity from file.
�

9 For high Reynolds number flow the downstream area needs to be significantly
larger than the upstream part of the geometry, and this will require somewhat
more flexible grid generation utilities [77].

6.3. An Implicit Finite Element Navier-Stokes Solver 603

Fig. 6.6. Flow in a channel with a sudden expansion (Exercise 6.15).

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

uniform

inlet

profile

outlet

solid wall

solid wall

(a)

0.0252 0.03 0.04 0.05 0.0556
0.008267

0.01

0.0192

0.0252 0.03 0.04 0.05 0.0556
0.008267

0.01

0.0192

(b)

Fig. 6.7. Flow in a channel with constriction (Re = 60). (a) Sketch of the
problem, with the computational grid; (b) a close-up plot of the velocities in
the recirculating region. See also Figure 6.8.

604 6. Fluid Mechanics Applications

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

−0.00336 −0.
00

33
6

0.
00

23
6

0.00807

0.
01

95

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

(b)

Fig. 6.8. Flow in a channel with constriction (Re = 60). (a) The pressure
field; (b) streamlines. The computational grid is displayed in Figure 6.7.

6.4. A Classical Finite Difference Navier-Stokes Solver 605

6.4 A Classical Finite Difference Navier-Stokes Solver

In this section we shall present one of the most fundamental and widely
used techniques for simulating incompressible viscous fluid flow, namely an
operator-splitting method in combination with finite differences in time and
space. The specific scheme to be presented here dates back to the late 1960s
and work by Chorin [28] and Temam [139]. Since then numerous variations
over the basic classical theme have been proposed, see [43] and [111] for an
overview. Recently, similar schemes have also become popular among finite
element practitioners [117,118], and we address this topic in Chapter 6.5.

The spatial discretization relies on the use of staggered grids. Before pro-
ceeding, the reader should therefore study Chapter 6.2.2, where we explain
discretization on staggered grids for a set of PDEs (6.22)–(6.24) that is sim-
pler than the three-dimensional Navier-Stokes equations (6.49)–(6.50) we aim
to solve in the following. The forthcoming description of the numerics is quite
brief, and the reader can consult the comprehensive and computationally-
oriented book by Griebel et al. [49] for more information on numerical details,
model extensions, and a large collection of fluid flow applications. Other com-
prehensive books on finite difference techniques for the Navier-Stokes equa-
tions are Anderson [4] and Ferziger and Perić [41]. We refer to Chapter 6.3.1
for a quick introduction to viscous fluid flow and the Navier-Stokes equations.

6.4.1 Operator Splitting

As mentioned in Chapter 6.3, the main difficulties with numerical solution of
the incompressible Navier-Stokes equations are the handling of the pressure
term p,r and incompressibility constraint vs,s = 0. One way of dealing with
these difficulties is to split the full Navier-Stokes equations into more tractable
equations. Most operator splitting techniques for the Navier-Stokes equations
split the equations into a vector convection-diffusion equation and a Poisson
equation. These simpler type of equations can then be solved efficiently by
numerous methods.

We first rewrite the convective term vsvr,s in (6.49) by the aid of vs,s = 0:

vsvr,s = (vrvs),s − vrvs,s = (vrvs),s .

We then drop the body force term (br) for simplicity, divide (6.49) by %, and
introduce the kinematic viscosity ν = µ/%. The system of PDEs to be solved
is now

vr,t + (vrvs),s = −1

%
p,r + νvr,ss (6.64)

vs,s = 0 . (6.65)

The basic idea of the splitting technique to be applied here consists of dis-
cretizing the momentum equation (6.64) by an explicit forward difference in

606 6. Fluid Mechanics Applications

time:
v`+1

r − v`
r

∆t
= −(vrvs)

`
,s −

1

%
p`

,r + νv`
r,ss . (6.66)

The superscript ` denotes as usual the time level. The fundamental obstacle
is that (6.66) yields a velocity v`+1

r that, in general, does not satify the
continuity equation v`+1

s,s = 0. We therefore have to change the pressure field

in such a way that the incompressibility constraint v`+1
s,s = 0 is fulfilled. To

this end, we seek a solution (v`+1
r , p`+1) of the time discrete system

v`+1
r − v`

r

∆t
= −(vrvs)

`
,s −

1

%
p`+1

,r + νv`
r,ss (6.67)

v`+1
s,s = 0 . (6.68)

To accomplish the solution of this implicit system for v`+1
r and p`+1, we first

split the velocity into two components,

v`+1
r = v∗r + δvr,

where v∗r is found by stepping (6.67) forward in time, using old pressure
values, and δvr is found by imposing the constraint (6.68). The expression
for v∗r becomes

v∗r = v`
r +∆t

(
−(vrvs)

`
,s −

β

%
p`

,r + νv`
r,ss

)
. (6.69)

The parameter β ∈ [0, 1] is used to adjust the amount of pressure informa-
tion that carries over to the tentative velocity field v∗r . The incompressibility
condition v`+1

s,s = 0 is equivalent to

(δvr),r = −v∗s,s . (6.70)

Subtracting (6.69) from (6.67) yields

δvr = v`+1
r − v∗r = −∆t

%
Φ,r,

where Φ = p`+1 − βp`. Inserting this expression for δvr in (6.70) yields

Φ,rr =
%

∆t
v∗s,s . (6.71)

We recognize Φ,rr as the Laplacian of Φ: Φ,rr = ∇2Φ. The solution of the
Navier-Stokes equations is then reduced to a forward step in the convection-
diffusion equation (6.69), solving a Poisson equation for the “pressure” Φ, and
finally updating the velocity and the pressure. The steps are summarized in
Algorithm 6.1.

6.4. A Classical Finite Difference Navier-Stokes Solver 607

Algorithm 6.1.

Operator-splitting approach for the Navier-Stokes equations.

at each time level:
compute tentative velocity v∗r from (6.69)
solve the Poisson equation (6.71) for Φ
correct tentative field: v`+1

r = v∗r − Φ,r∆t/%
update p`+1 = Φ+ βp`

The forward step in (6.69) leads of course to a stability restriction on
∆t. Better stability properties can be obtained by using implicit schemes for
the convection-diffusion equation for the tentative velocity [43]. Here we keep
things simple and stick to the explicit forward scheme.

6.4.2 Finite Differences on 3D Staggered Grids

Algorithm 6.1 is essentially a special time discretization technique used to
split the differential operators in the incompressible Navier-Stokes equations.
The technique can in principle be combined with any type of spatial dis-
cretization, but here we focus on the finite difference method on a three-
dimensional staggered grid. This results in the most widespread numerical
method for the Navier-Stokes equations.

The staggered grid is recognized by having the pressure as unknown in
the center of a cell and the velocity components10 u ≡ v1, v ≡ v2, and w ≡ v3
as unknowns at the sides of the cell. Figure 6.9 depicts the staggered grid
and the primary unknowns in the scheme:

p`
i+ 1

2 ,j+ 1
2 ,k+ 1

2
, u`

i,j+ 1
2 ,k+ 1

2
, v`

i+ 1
2 ,j,k+ 1

2
, w`

i+ 1
2 ,j+ 1

2 ,k .

We notice that, contrary to Chapter 6.2.2, the temporal grid is not staggered.
The reason for using a staggered grid is that standard grids, where all the

unknowns are located at the corners of each cell, often lead to nonphysical
oscillations in the pressure11.

Implementation of the finite difference discretization first requires that we
write the vector equation (6.69) on component form. The x-component reads

u∗ = u` +∆t

(
−(uu)`

,x − (uv)`
,y − (uw)`

,z −
β

%
p`

,x + ν
(
u`

,xx + u`
,yy + u`

,zz

))
.

10 From now on it is convenient to work with u, v, and w rather than the indicial
notation vr.

11 Instead of applying staggered grids, one can add stabilizing terms to the dis-
crete equations. This has become popular among finite volume and finite element
practitioners in recent years, see [51] for these and other advances in the field of
incompressible computational fluid dynamics.

608 6. Fluid Mechanics Applications

x

z

y

w (i+0.5,j+0.5,k+1)

v (i+0.5,j+1,k+0.5)

u(i+1,j+0.5,k+0.5)
p(i+0.5,j+0.5,k+0.5)

Fig. 6.9. Example on a three-dimensional staggered grid for solving the in-
compressible Navier-Stokes equations. The indices i, j, and k refer to the x,
y, and z directions, respectively.

This equation is to be discretized by centered differences at the spatial point
(i, j + 1

2 , k+ 1
2). Looking at a staggered grid sketch, for example the 2D grid

in Figure 6.3 on page 577, or the 3D cell in Figure 6.9, it is straightforward
to discretize the term u`

,xx:

[u,xx]`i,j+ 1
2 ,k+ 1

2
≈ 1

∆x2

(
u`

i+1,j+ 1
2 ,k+ 1

2
− 2u`

i,j+ 1
2 ,k+ 1

2
+ u`

i−1,j+ 1
2 ,k+ 1

2

)
.

Applying the operator notation from Appendix A.3, we can make the last
expression compact and precise:

[δxδxu]
`
i,j+ 1

2 ,k+ 1
2
.

In a similar way we can discretize other terms:

[u,yy]
`
i,j+ 1

2 ,k+ 1
2
≈ 1

∆y2

(
u`

i,j+ 3
2 ,k+ 1

2
− 2u`

i,j+ 1
2 ,k+ 1

2
+ u`

i,j− 1
2 ,k+ 1

2

)

= [δyδyu]
`
i,j+ 1

2 ,k+ 1
2
,

as well as
[u,zz]

`
i,j+ 1

2 ,k+ 1
2
≈ [δzδzu]

`
i,j+ 1

2 ,k+ 1
2
.

The (uu),z term requires somewhat more treatment. We start with writing a
centered difference approximation,

[(uu),x]`i,j+ 1
2 ,k+ 1

2
≈ 1

∆x

(
(uu)`

i+ 1
2 ,j+ 1

2 ,k+ 1
2
− (uu)`

i− 1
2 ,j+ 1

2 ,k+ 1
2

)

6.4. A Classical Finite Difference Navier-Stokes Solver 609

= [δxuu]
`
i,j+ 1

2 ,k+ 1
2
.

The quantity u`
i+ 1

2 ,j+ 1
2 ,k+ 1

2

is not a primary unknown point value in the grid

and must therefore be represented by an arithmetic average:

u`
i+ 1

2 ,j+ 1
2 ,k+ 1

2
≈ 1

2
(u`

i+1,j+ 1
2 ,k+ 1

2
− u`

i,j+ 1
2 ,k+ 1

2
) = [ux]`i+ 1

2 ,j+ 1
2 ,k+ 1

2
.

We can then write

[(uu),x]`i,j+ 1
2 ,k+ 1

2
≈ [δxu

xux]`i,j+ 1
2 ,k+ 1

2
.

With the average operator at hand we can continue the approximation of the
convective terms:

[(uv),y]`i,j+ 1
2 ,k+ 1

2
≈ 1

∆y

(
(uv)`

i,j+1,k+ 1
2
− (uv)`

i,j,k+ 1
2

)

=
1

∆y

(
u`

i,j+1,k+ 1
2
v`

i,j+1,k+ 1
2
− u`

i,j,k+ 1
2
v`

i,j,k+ 1
2

)

≈ [δyu
yvx]`i,j+ 1

2 ,k+ 1
2

and
[(uw),z]

`
i,j+ 1

2 ,k+ 1
2
≈ [δzu

zwx]`i,j+ 1
2 ,k+ 1

2
.

610 6. Fluid Mechanics Applications

Finally, the pressure term is discretized by a natural centered difference,

[p,x]`i,j+ 1
2 ,k+ 1

2
≈ [δxp]

`
i,j+ 1

2 ,k+ 1
2
.

The reader should write out the other components of the equation for the
tentative velocity field and discretize them in a similar way.

The Poisson equation for the “pressure” Φ is discretized by centered dif-
ferences at the spatial point (i+ 1

2 , j + 1
2 , k + 1

2):

[δxδxΦ+ δyδyΦ+ δzδzΦ =
%

∆t
(δxu

∗ + δyv
∗ + δzw

∗)]i+ 1
2 ,j+ 1

2 ,k+ 1
2
.

Notice that the differences [δxu
∗]i+ 1

2 ,j+ 1
2 ,k+ 1

2
etc. fit naturally into the stag-

gered grid.
Boundary conditions related to the scheme above require careful consider-

ation. What type of conditions should be placed on the tentative velocity field
v∗r? It turns out that v`+1

r is independent of v∗r on the boundary [111]. We can
therefore apply the physical conditions for v`+1

r to v∗r as well. Doing so implies
the use of homogeneous Neumann boundary conditions for Φ: ∂Φ/∂n = 0.
This follows directly from taking the dot product of v`+1

r −v∗r = −∆tΦ,r/% and
the normal vector at the boundary. If we apply ∂Φ/∂n = 0 on the complete
boundary, Φ is only determined up to an additive constant, thus requiring Φ
to be specified at a point.

The staggered grid should be constructed such that the boundary passes
through velocity nodes at the parts of the boundary where the velocity is
prescribed. Similarly, if the pressure is given on a boundary, the boundary
should be located at the pressure nodes. Figure 6.10 shows a solid wall A-B
and an outflow boundary C-D. At the solid wall A-B we demand u = v =
w = 0 and ∂Φ/∂y = 0. For the velocity component v located at the wall face,
implementation of v = 0 is trivial. On the other hand, the condition u = 0
must be implemented in an average sense by demanding

u`
i,0,k+ 1

2
≈ 1

2
(u`

i, 1
2 ,k+ 1

2
+ u`

i,− 1
2 ,k+ 1

2
) = 0 .

This condition involves the fictitious value u`
i,− 1

2 ,k+ 1
2

. The same type of fic-

titious values appear in the condition ∂Φ/∂y = 0:

Φi, 1
2 ,k+ 1

2
− Φi,− 1

2 ,k+ 1
2

= 0 .

The fictitious values can be eliminated by applying the difference equation at
the boundary, as explained in Chapter 1.4.7, or by using a ghost boundary.
In the present Navier-Stokes solver the implementation makes use of field
objects FieldLattice with ghost boundaries. This means that the fields can
also access the fictitious values at the grid points outside the physical do-
main. We can hence sample the difference equations also at the boundary.
After the solution is computed, the fictitious values on the ghost boundary

6.4. A Classical Finite Difference Navier-Stokes Solver 611

A B

: V

: U

: P

j=0

j=1

j=2

i-1 i i+1 C

D

Fig. 6.10. Sketch of two 3D cells and associated velocity components.

must be updated according to the boundary conditions. In introduction to
programming with ghost boundaries and Diffpack finite difference fields is
provided by the source code related to Example C.1 on page 791.

At the outflow boundary C-D pressure values can be set directly, whilst
averaging of the normal component of the velocity may be applied. At an
inflow boundary one can easily implement a prescribed pressure gradient
(∂Φ/∂n).

We refer to the source files for complete documentation of the details
regarding the implementation of boundary conditions.

6.4.3 A Multigrid Solver for the Pressure Equation

The most time-consuming part of Algorithm 6.1 is the solution of the Poisson
equation∇2Φ = v∗s,s%/∆t. In a finite difference context it is tempting to apply
a simple iterative solution method for the Poisson equation, for example, the
Gauss-Seidel or SOR method. However, as explained in Appendix C.1, the
classical iterative methods are not efficient for fine-grid problems, and our 3D
Navier-Stokes solver is typically aimed at grids with millions of unknowns. A
sufficiently fast method is multigrid, which is described in Appendix C.4.2.
The multigrid algorithm has been implemented to solve the equation for Φ,
assuming that the grids are of box-shape with uniform partition. The cell size
is doubled in each space direction when going from one grid to the coarser
neighboring grid. Since V -cycle multigrid has proved to be very efficient for
solving Poisson equations, we have restricted the solver to this strategy.

6.4.4 Implementation

The present solution method for the Navier-Stokes equations is implemented
in a class NsFD. This class has two basic components: a geometry handler and

612 6. Fluid Mechanics Applications

a Poisson-equation solver. Both these components are represented as class hi-
erarchies, and the NsFD class contains bass class pointers (handles) to the base
classes Geometry and Poisson in these two hierarchies. The geometry object
is responsible for setting correct boundary conditions in the finite difference
schemes, and the various subclasses of Geometry implement specific flow cases,
such as 2D/3D cavity flow and 2D/3D channel flow (for verification). The
Poisson class hierarchy allows to switch between different Poisson-equation
solvers, e.g., SOR (PoissonSOR) and multigrid (PoissonMG) solvers.

Programming of finite difference schemes on staggered grids is most con-
veniently done using the grid and field objects for staggered finite difference
grids, see page 583. This safe approach is followed in class NsFD. However, the
efficiency of half-integer indexing of the type p(i+0.5,j+0.5,k+0.5) is unac-
ceptable in 3D viscous flow simulations, so after the NsFD class is debugged,
we derive a subclass NsFDFast, where the index operations are optimized as
outlined in Appendix B.7.4. The same implementation philosophy is applied
to the Poisson-equation solvers. The multigrid method is implemented in the
most obvious way on a uniform grid and does not make use of the multi-
grid toolbox in Diffpack [96] (this toolbox is geared towards finite element
methods).

An overview of the classes in this finite difference-based Navier-Stokes
solver is provided in Figure 6.11.

PoissonMG

Poisson

Geometry

PoiseuilleCavity

NsFDFast

NsFD

PoissonMGFast PoissonSORFast

PoissonSOR

Fig. 6.11. Sketch of the classes in the NsFD solver. Solid lines indicate in-
heritance (“is-a” relationship), while dashed lines indicate pointers (“has-a”
relationship).

Three-dimensional cavity flow is a typical example of nontrivial viscous
flow in box-shaped grid. The fluid is confined in a box, where the top face
moves with constant velocity. Figure 6.12 displays a subset of the velocity
vectors for a simulation on a grid with 963 = 884, 736 cells and a Reynolds
number of 1000. Stationary flow phenomena, such as cavity flow, must with
the present numerical approach be simulated as a time-dependent problem,
usually starting from rest. Most of the work in such simulations is spent in
the multigrid method. Naturally, finding the optimal combination of param-
eters and numerical strategies in multigrid might reduce the simulation time

6.4. A Classical Finite Difference Navier-Stokes Solver 613

X
Y

Z

0

1

0

1

0

1

Fig. 6.12. Velocity vectors in 3D cavity flow (Re = 1000).

substantially. Contrary to common practice in smaller 2D examples, we do
not use the same number of pre- and post-smoothing steps at the various
levels. Improved efficiency in the present problem is obtained by increasing
the number of pre-smoothing iterations for each coarser grid, keeping the
number of post-smoothing iterations constant. The optimal number of grid
levels in a V-cycle is another basic issue. Figure 6.13 shows the residual in
the linear system arising from the pressure-correction equation as a function
of work units (WU). A work unit is here defined as the cost of performing
one smoothing iteration on the finest grid. The optimal convergence rate was
obtained with four grid levels. Figure 6.14 displays the effect of varying the
number of pre- and post-smoothing iterations on the finest grid level (using
a total of four levels). One post-iteration and one or two pre-iterations had
the best performance.

Utilizing Diffpack’s menu system and the multiple loop facility, which is
available in the NsFD solver, one can easily set up a number of experiments
and find a good combination of parameters for a given flow case.

The current finite difference-based solution method is restricted to a uni-
formly partitioned box, but more complicated geometries can be treated by
blocking cells in the box. Such seemingly crude approaches have been widely
used and prove to be effective [49], although the finite element method might
be a more accurate way of dealing with nontrivial geometries.

614 6. Fluid Mechanics Applications

0 50 100 150 200 250 300 350 400
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

N=1

N=2

N=3

N=4 N=5
N=6

WU

||r||

Fig. 6.13. Experimentation with the effect of different number of grid levels
in the multigrid solver for the Poisson equation for Φ. The residual is plotted
against the computational work (measured in work units).

0 50 100 150 200 250 300
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

− : pre=1,post=1

o : pre=2,post=1
−− : pre=1,post=2

x : pre=2,post=2
* : pre=3,post=3

WU

||r||

Fig. 6.14. Experimentation with the effect of different pre- and post-
smoothing iterations in the multigrid solver for the Poisson equation for Φ.
The residual is plotted against the computational work (measured in work
units).

6.5. A Fast Finite Element Navier-Stokes Solver 615

6.5 A Fast Finite Element Navier-Stokes Solver

The goal of this section is to outline a fast finite element method for the in-
compressible Navier-Stokes equations (6.49)–(6.50) based on the ideas from
the operator-splitting approach in Chapter 6.4. The resulting algorithm in-
volves only vector updates and solution of a Poisson equation, which can
be efficiently performed also in 3D problems with geometrically complicated
grids. Since the time discretization is explicit, there is a restriction on the
time step length, and stationary problems must be computed as the limiting
stationary state of an appropriate transient problem.

The operator-splitting technique in Chapter 6.4 is normally combined
with spatial finite difference discretization on a staggered grid. The corre-
sponding finite element discretization should then apply different basis func-
tions for the velocity and pressure (mixed finite elements). This is quite
straightforward in Diffpack, but requires concepts that are beyond the scope
of the present text. By using a particular time discretization, it appears that
we can use identical basis functions for the velocity and pressure.

With regard to the implementation, we shall devise an optimized algo-
rithm where we avoid invoking full makeSystem calls at each time level, utiliz-
ing software constructions from Chapter 3.15 and Appendix B.7.2. The basic
ideas will be outlined, but the actual implementation is left as a project for
the reader.

For further reading about finite element methods based on operator split-
ting of the transient Navier-Stokes equations, we refer to [48], [51], and [114,
Ch. 13] and the references therein.

6.5.1 Operator Splitting and Finite Element Discretization

A Second-Order Operating-Splitting Technique. The basic idea of the current
operator-splitting technique to be applied to the Navier-Stokes equations is
most clearly explained for a simple equation of the form u,t = F (u), where F
is some nonlinear spatial operator. A centered time scheme for this equation
can be expressed as

u`+1 − u`

∆t
= [F (u)]`+

1
2 ≈ 1

2

(
F (u`) + F (u`+1)

)
.

The value F (u`+1) is of course unknown, leading to an implicit nonlinear
equation for u`+1. However, we can predict F (u`+1) by an explicit forward
Euler step: F (u`+1) ≈ F (û), where û = u`+∆tF (u`). This leads to a centered
explicit scheme of general applicability to nonlinear transient PDEs:

k(1) = ∆tF (u`), (6.72)

û = u` + k(1), (6.73)

k(2) = ∆tF (û), (6.74)

u`+1 = u` +
1

2

(
k(1) + k(2)

)
. (6.75)

616 6. Fluid Mechanics Applications

Operator Splitting Applied to the Navier-Stokes Equations. We can combine
the scheme (6.72)–(6.75) with the basic algorithm in Chapter 6.4. When
performing the steps (6.72) and (6.74) with the Navier-Stokes equations,
we omit the pressure and the body force terms (these will be included in
the corrector step). The resulting combination of techniques was originally
proposed by Ren and Utnes [118] and consists of four steps.

1. Calculation of coefficients for an intermediate velocity field:

k(1)
r = −∆t(v`

sv
`
r,s − νv`

r,ss) (6.76)

v̂r = v`
r + k(1)

r , (6.77)

k(2)
r = −∆t(v̂`

sv̂
`
r,s − νv̂`

r,ss) (6.78)

2. Calculation of an intermediate velocity field v∗r :

v∗r = v`
r +

1

2

(
k(1)

r + k(2)
r

)
. (6.79)

3. Solution of a Poisson equation for the new pressure (arising from the
incompressibility constraint v`+1

s,s = 0):

∇2p`+1 =
%

∆t
v∗s,s . (6.80)

4. Correction of the intermediate velocity field:

v`+1
r = v∗r − (p`+1

,r − %br)∆t/% . (6.81)

The velocity and pressure are represented using identical basis functions:

v`
r =

n∑

j=1

vr,`
j Nj , p` =

n∑

j=1

p`
jNj .

The fields k
(1)
r , k

(2)
r , v̂r, and v∗r have representations similar to v`

r.
Equation (6.76) can be considered as d decoupled equations for the d fields

k
(1)
1 , . . . , k

(1)
d . Introducing

v`
r = (vr,`

1 , . . . , vr,`
1)T ,

with similar definitions of k(1)
r , k(2)

r , v∗
r , and v̂r, we can write a Galerkin

finite element formulation of (6.76) on the form

Mk(1)
r = −∆tar(v1, . . . ,vd)− ν∆tKvr, (6.82)

for r = 1, . . . , d. Notice that for each value of r, (6.82) is a linear system for

k(1)
r . We can hence solve d linear systems for k

(1)
1 , . . . ,k

(1)
d instead of solving

one compound vector system, as we focused on in Chapters 5.1.2 and 6.3.2.

6.5. A Fast Finite Element Navier-Stokes Solver 617

The entries of the mass matrix M have the usual formMi,j =
∫

Ω
NiNjdΩ,

where Ω is the fluid domain and M may be lumped to simplify the solution
of the linear systems. The matrix K arises from the Laplace operator (recall
that vr,ss = ∇2vr), with entries Ki,j =

∫
Ω
Ni,sNj,sdΩ. The nonlinear term

ar(v1, . . . ,vd) is somewhat more complicated. Entry no. i, here denoted by
ar

i , can be expressed as an integral over a triple sum:

ar
i =

∫

Ω

NiNkv
s
kNj,sv

r
j dΩ . (6.83)

The discrete form of (6.78) should be obvious from (6.82). Equation (6.77)
achieves the form

Mv̂r = Mv`
r + Mk

(1)
r ⇒ v̂r = v`

r + k
(1)
r . (6.84)

In other words, the computation of v̂r involves no matrices, just nodal values
vectors in a node-by-node formula. The same reasoning applies to (6.79), with
the result

v∗
r = v`

r +
1

2

(
k(1)

r + k(1)
r

)
. (6.85)

Equation (6.80) is a standard Poisson equation, yielding the discrete form

Kp`+1 =
%

∆t
Bsv

∗
s , (6.86)

where K has the same form as in (6.82) and the entries of Bs are given by

Bs
i,j =

∫

Ω

NiNj,sdΩ . (6.87)

Finally, we have the discrete form of the update (6.81):

Mv`+1
r = Mv∗

r − (Brp
`+1 − %cr) . (6.88)

The vector cr contains the body forces br: c
r
i =

∫
Ω
NibrdΩ.

The original coupled system, i.e. the vector equation (6.49) and the scalar
PDE (6.50), has now been transformed into a sequence of linear systems,
where each linear system involves only n unknowns. Put in another way, we
have approximated the incompressible Navier-Stokes equations by a sequence
of standard scalar PDE problems of the type covered in Chapter 3.

The time step of the suggested scheme is limited by the explicit treatment
of the convection-diffusion equation (6.76). The stability criterion takes the
form

∆t ≤ min
e

h2
e

2ν + Uehe
,

where he is the characteristic length of element no. e and Ue is the charac-
teristic velocity of the element.

618 6. Fluid Mechanics Applications

6.5.2 An Optimized Implementation

We observe that the matrices M , K, and Bs are all constant in time. A
linear system like (6.86) can then be updated by performing d matrix-vector
products for the right-hand side, which is much more efficient than going
through all the computational details of the assembly process at each time
level. The corresponding implementation techniques in Diffpack are explained
in Chapter 3.15 and Appendix B.7.2. The reader should be familiar with these
techniques before working through the forthcoming material in detail.

The term ar(v1, . . . ,vd) changes in time and seemingly demands a full
assembly procedure at each time level. From the formula (6.83) we can write

ar
i = Cisjkv

s
kv

r
j , Cisjk =

∫

Ω

NiNkNj,sdΩ . (6.89)

If we interpret this formula at the element level, i.e. n is ne (the number of
nodes in the element) and Ω is an element, we see that we can generate the
element vector ar

i from precomputed Cisjk values (at the element) through
a triple sum over s, j, and k. Hence, we cannot (easily) avoid assembly of
element contributions, but we can avoid computing basis functions, their
derivatives, and the expressions (6.83) at each time level.

When it comes to suitable storage structures, the M and K matrices
can be represented as explained in Chapter 3.15 and Appendix B.7.212. The
matrices Bs, s = 1, . . . , d, can be represented as a

VecSimplest(Handle(Matrix(real))) B

object, i.e., a vector of d matrices. The computation of the lumped mass
matrix M is carried out by FEM::makeMassMatrix. The K matrix is conve-
niently stored in a LinEqAdmFE object, since we need to solve linear systems
later with K, and LinEqAdmFE gives immediate access to Diffpack’s full range
of storage formats and linear solvers. An appropriate implementation con-
sits of making an integrands functor for K (see Appendix B.6.2) and calling
a FEM::makeSystem function that applies this functor for filling a LinEqAdmFE

object.
The Bs matrices can be allocated from the K matrix13 and then be

computed by the FEM::makeSystem function that takes a Matrix object instead
of LinEqAdmFE. Again we recommend to implement the integrands function
for the Bs matrices in terms of a functor with s as parameter. One could

12 If essential pressure boundary conditions are to be prescribed, K in (6.86) must
be modified, and the same K can no longer be used for (6.84) and (6.86). Alter-
natively, we can integrate by parts in (6.88) to obtain a surface integral involving
pressure boundary conditions (the transpose of the Br matrix then enters that
equation).

13 The appropriate statement is lineq->A().makeItSimilar(B(s)), cf. the code
example in Appendix B.7.2.

6.5. A Fast Finite Element Navier-Stokes Solver 619

also think of letting all makeSystem calls end up in the simulator’s integrands

function, but apply an enum variable in the simulator for indicating which
integrand formula that is to be used.

The Cisjk quantity on each element requires somewhat more consider-
ation. An obvious data structure is a five-dimensional array C(e,i,s,j,k).
However, to have full control of the efficiency when accessing such large ar-
rays, we propose the application of just a one-dimensional vector Vec(real)

C. Let nsd be the number of space dimensions, nne the number of nodes in
an element (assumed constant), and nel the number of elements. The length
of the C array is then nel*nne*nne*nne*nsd. Since we will compute and use
C in an element-by-element fashion, the entries associated with one element
should be collected in a continuous memory block. This is enabled by letting
e be the “most slowly-varying” index, while the summation indices s, j, and
k should have the fastest variation. The conceptual index C(e,i,s,j,k) is
obtained by

C((e-1)*nne*nsd*nne*nne + (i-1)*nsd*nne*nne + (s-1)*nne*nne +

(j-1)*nne + k)

An equivalent, but more optimized index is

// n1=nne*nne n2=n1*nsd n3=n2*nne n4=n1+n2+n3+nne

C(e*n3 + i*n2 + s*n1 + j*nne + k - n4)

However, one should avoid this type of indexing and instead try to access
C entry-by-entry in the way this vector is stored in memory. To this end, a
triple sum Cisjkv

s
kv

r
j in element e can be implemented as follows.

// given VecSimple(Vec(real)) v_e, where v_e(s)(i) is vector field

// component s at local node i, this v_e is updated like this:

for (s = 1; s <= nsd; s++)

v()(s).localValues (v_e(s), e); // uses a Handle(FieldsFE) v

// triple sum:, store result in a(i), i=1,...,nne

real sum = 0, v_j_r, v_k_s;

int idx = (e-1)*n3 + (i-1)*n2; // +1 gives start index in C

Vec(real)* v_s; // efficient pointer to v_e(s)

Vec(real)* v_r = &(v_e(r));

for (s = 1; s <= nsd; s++) {

v_s = &(v(s));

for (j = 1; j <= nne; j++) {

v_j_r = (*v_r)(j);

for (k = 1; k <= nne; k++) {

idx++; v_k_s = (*v_s)(k);

sum += C(idx)*v_k_s*v_j_r;

}

}

620 6. Fluid Mechanics Applications

}

a(i) = sum; // local a_i^r in the formulas

// --- assemble a into global system: ---

// given VecSimple(int) loc2glob and Vec(real) global_vec:

dof->loc2glob (loc2glob, e); // uses a Handle(DegFreeFE) dof

global_vec.assemble (a, loc2glob, e);

The computation of the C array is slightly more complicated as we need
to write a tailored makeSystem routine, where we do not make use of any
LinEqAdmFE or ElmMatVec objects. Fortunately, this is a matter of combining
the information in Appendix B.6.1: We merge the code from the functions
FEM::makeSystem, FEM::calcElmMatVec, FEM::numItgOverElm, and integrands

into one makeSystem function, removing statements regarding LinEqAdmFE and
ElmMatVec. The core part of the new makeSystem function in the simulator can
be sketched as follows.

// inherits ElmItgRules itg_rules and FiniteElement finite_elm

// from base class FEM, takes DegFreeFE dof and Vec(real) C as

// arguments

finite_elm.attach (*dof);

C.redim (n3*nel);

int idx=0;

real N_i, N_js;

const Vec(real)& N = fe. N(); // faster array access

const Mat(real)& dN = fe.dN();

for (e = 1; e <= nel; e++) {

fe.refill (e, this /*attach solver to fe*/);

fe.setLocalEvalPts (rules); // tell fe about intgr. points

fe.initNumItg();

while (fe.moreItgPoints()) { // integration loop in an elm.

fe.update4nextItgPt();

for (i = 1; i <= nne; i++) {

N_i = N(i);

for (s = 1; s <= nsd; s++) {

for (j = 1; j <= nne; j++) {

N_js = dN(j,s);

for (k = 1; k <= nne; k++) {

idx++;

C(idx) = N_i*N_js*N(k);

}

}

}

}

}

}

6.6. Projects 621

One could also think of restricting the element type to triangles or tetrehedra
and compute the Cisjk quantity by analytical integration.

The rest of the solver code consists of statements that generate the proper
right-hand sides from matrix-vector multiplications and perform the four
solution phases at each time level. Pressure-driven flow between two flat
plates (see Project 1.8.2) can be a suitable test problem when debugging the
code.

6.6 Projects

6.6.1 Analysis of Discrete Shallow Water Waves

Mathematical Problem. We consider shallow water waves in a rectangular
basin with constant depth. The mathematical model is then equations (6.25)–
(6.27), with H = const and zero normal velocity on the boundaries. The
initial condition reads u = v = 0 (at t = ∆t/2), and

η(x, y, 0) = A sin kx, (6.90)

where A is a constant (the initial wave amplitude). The problem can be
reduced to one space dimension such that v = 0, u = u(x, t), and η = η(x, t).

Numerical Method. Set up an explicit finite difference method for the one-
dimensional equations, using a staggered grid in space and time. This will be
referred to as method 1. Method 2 is an explicit finite difference scheme on
a non-staggered grid:

η`+1
j − η`−1

j

2∆t
= −

u`
j+1 − u`

j−1

2∆x

u`+1
j − u`−1

j

2∆t
= −

η`
j+1 − η`

j−1

2∆x

Such centered time differences over two time intervals are frequently known
as Leap-Frog schemes.

Analysis. Find the analytical solution of the problem by assuming that
η(x, t) = Aη exp (i(kx− ωt+ φη)) and u(x, t) = Au exp (i(kx− ωt+ φu)).
Adjust the phase φη (and φu) such that the real part of these complex func-
tions gives the physically relevant solution (see Appendix A.4). Identify the
analytical dispersion relation ω = ω(k).

In the numerical scheme we also search for exponential solutions:

η`
j = Ãη exp (i(kjh− ω̃t)), u`

j = Ãu exp (i(kjh− ω̃t)) .

Insert these expressions in the numerical schemes for method 1 and 2 and
eliminate Ãu to find the numerical dispersion relation. Control the answer

622 6. Fluid Mechanics Applications

in the method 1 case by first eliminating the discrete velocities from the
scheme, then identifying the resulting equation as a standard finite difference
discretization of the wave equation ∂2η/∂t2 = H∂2η/∂x2, and then looking
up the numerical dispersion relation for this equation in Appendix A.4.5.
Discuss the accuracy and stability issues of method 1 and 2.

Implementation. Extend the Wave1D class from Chapter 1.7.4 to handle a
system of two equations. Implement both method 1 and method 2 (in method
2 one can mimic the boundary condition u`

0 = 0 by setting the mean value
u`
−1 + u`

1 to zero). Compute the error as a field and dump curve plots of this
field for animation. Verify the implementation.

6.6.2 Approximating the Navier-Stokes Equations by a Laplace
Equation

Mathematical Problem. This project deals with flow between two channel
walls, where the upper wall is deformed according to a Gaussian bell func-
tion, as depicted in Figure 6.15. The viscous fluid flow is governed by the

p p
0 1

h(x)

x

Fig. 6.15. Viscous fluid flow in a narrow gap between two surfaces, where
the upper surface has the shape of a bell function.

incompressible Navier-Stokes equations (6.49)–(6.50). We assume that the
flow is stationary. At the inlet we prescribe a plug profile and at the outlet
we demand constant pressure and zero normal derivative of the velocity (the
natural boundary condition in the penalty method in Chapter 6.3). On the
walls the velocity vector must vanish. The shape of the upper wall is given ac-
cording to a Gaussian bell function h(x) ∼ A exp (−(x− x0)

2/(2σ2)), where
x0 is the location of the top of the bell, A is the amplitude, and σ is a measure
of the width of the bell.

Flow in “thin geometries” can be approximated by the so-called Reynolds
lubrication equation. Instead of solving the incompressible Navier-Stokes
equations in a deformed geometry, one solves the Laplace equation with the
gap between the walls, h, as a variable coefficient:

∇ ·
(
h3

12µ
∇p
)

= 0, (6.91)

6.6. Projects 623

p being the fluid pressure and µ the viscosity of the fluid. In our application,
p = p(x) and h = h(x). (Equation (6.91) is derived in Chapter 7.1.1.) The
purpose of the this project is to evaluate, through computer experiments, the
validity of the lubrication approximation.

Numerical Method. The incompressible Navier-Stokes equations can be solved
by the method explained in Chapter 6.3. The implementation is available as
class NsPenalty. Adapt a subclass of NsPenalty to the present problem.

Equation (6.91) is straightforward to solve using finite difference methods
and programs from Chapter 1. A fundamental problem is how to assign pres-
sure values at the inlet and outlet. We suggest for the present investigation
of models to first run the Navier-Stokes solver to compute the pressure, and
then apply these pressure values as boundary conditions in the lubrication
equation (6.91).

The velocity

u =
h2

12µ

∂p

∂x

is constant in the continuous model (6.91), but not necessarily so when solving
(6.91) numerically and differentiating p, whereas the Navier-Stokes solver
computes a spatially varying velocity field. One must thus implement some
kind of average of the latter field in order to compare the two models. Suggest
some suitable averaging procedure.

Meshing the geometry in Figure 6.15 is easy if we apply the BOX WITH BELL

feature of the PreproStdGeom preprocessor. Details are given in the man page
for class PreproStdGeom.

Analysis. Define the error measure e = UN − UL, where UL is the velocity
from the lubrication model, and UN is the average velocity from the full
Navier-Stokes model. Organize your program such that you can give A and
σ as input and get e as output. For all runs you must use a fine enough grid.
This is checked by doubling the grid size and controlling that the difference
in the solution is satisfactorily small.

The lubrication approximation is assumed to be good when A is small and
σ is large, such that the gap h(x) is smoothly varying. Our interest now is to
see how severe the deformations can be before the lubrication approximation
becomes inaccurate. Present plots or tables of the variation of e with A and σ.
Visualize some severely distorted geometries and include the corresponding
e value in the plots.

Chapter 7

Coupled Problems

This chapter deals with two specific examples on systems of PDEs concerning
fluid-structure interaction and coupled heat and fluid flow. The exposition in-
cludes derivation of the PDEs, precise description of the numerical solution
algorithms, and software design principles based on object-oriented program-
ming and Diffpack tools. Contrary to Chapters 5 and 6, where vector PDEs
were in main focus, we now address systems of PDEs where the different
equations reflect different fundamental physical principles. Each scalar equa-
tion in the PDE system then has a life on its own. For example, the system
treated in Chapter 7.2 consists of a momentum equation and an energy equa-
tion. From an implementational point of view, it would be advantagous to
realize the compound solver for the system of PDEs as a simple combination
of well-tested stand-alone solvers for the various scalar PDEs in the system.
We shall pursue this idea in the present chapter.

7.1 Fluid-Structure Interaction; Squeeze-Film

Damping

Fluid-structure interaction is a basic problem in many engineering disciplines.
The flow of a fluid around a structure gives rise to forces and associated
motion of the structure, which again influences the fluid flow. The motion
of the fluid is often described by the incompressible Navier-Stokes equations,
whereas the structural deformations might be governed by the equations of
linear elasticity. We could therefore, at least in principle, solve a class of fluid-
structure interaction problems by combining solvers from Chapters 5 and 6.
However, the implementational details of such a coupling of classes are better
explained in a simplified problem. Of this reason, we address a fluid-structure
problem where certain simplifications can be made, such that we end up with
a PDE for the fluid flow and an ODE for the motion of the structure. This
reduces the mathematical and numerical complexity and helps to expose the
details of the software design. Furthermore, the simplifications demonstrate
important mathematical modeling techniques for deriving PDEs.

7.1.1 The Physical and Mathematical Model

Sensors and actuators frequently contain small vibrating plates whose motion
can be considerably influenced by induced viscous air flow in the surround-

7.1. Fluid-Structure Interaction; Squeeze-Film Damping 625

ings. We shall focus on the situation where there are two vibrating plates
separated by a narrow gap.

z

x

H(x,y,t)

L

If the characteristic length of the plates is L and H(x, y, t) is the width of
the gap, we make the assumption that L� H and that H is slowly varying.
This particular physical problem is often referred to as squeeze films. The
viscous fluid motion in the film can have a significant damping effect on the
vibrations of the plates. In the design of sensors subject to large accelerations,
e.g., during impact, one can rely on squeeze film damping to avoid destructive
displacement of plate-like structures in the sensor system.

The equations governing squeeze-film damping will now be derived. Read-
ers whose primary interest is the special software implementation technique
being used for this simulator, can safely move on to Chapter 7.1.2.

The mathematical model for the fluid motion consists of the well-known
incompressible or compressible Navier-Stokes equations. Depending on the
constitutive law of the fluid, an energy equation might also be required. The
fluid equations are defined in a domain whose shape is coupled to the move-
ment of the plates. This movement can be modeled by standard equations
for vibrating plates, with the fluid pressure as a driving force.

Derivation of the Fluid Flow Model. Physical problems involving domains
where one dimension is much smaller than the others, can be effectively
modeled by introducing quantities that are averaged over the thickness of
the small dimension. In the present problem, we can introduce averaged ve-
locities and pressure in the z direction. To derive the resulting equations, it
is convenient to work with the fundamental balance laws on integral form.
The general equation of continuity on integral form for an arbitrary control
volume V reads ∫

V

∂%

∂t
dΩ +

∫

∂V

%v · ndΓ = 0,

where % is the fluid density, v = (u, v, w)T is the velocity field, n is the
outward unit normal vector to the surface ∂V of V , and t denotes time.
For the purpose of deriving an averaged differential form of the continuity
equation, we let

V = {(x, y, z) | x ∈ [x0, x0 +∆x], y ∈ [y0, y0 +∆y],

z ∈ [hB(x, y, t), hT (x, y, t)]},

The position of the lower plate is z = hB , while z = hT is the equation for
the upper plate. The gap is hence H(x, y, t) = hT (x, y, t)− hB(x, y, t).

626 7. Coupled Problems

z

x

V

∆ x

Evaluating the integrals for this particular choice of V gives

∆x∆y

hT∫

hB

∂%

∂t
dz +∆y(U |x0+∆x − U |x0)

+∆x(V |y0+∆y − V |y0) + %∆x∆y

(
∂hT

∂t
− ∂hB

∂t

)
= 0, (7.1)

Here,

U =

hT∫

hB

%udz, V =

hT∫

hB

%vdz

are the averaged horizontal mass fluxes. Moreover, we have used the boundary
conditions on z = hB and z = hT : v · n = vs · n, where vs is the velocity
of the surface. The latter quantity equals (∂hT /∂t)k for the surface z = hT ,
and (∂hB/∂t)k for the lower surface.

In the limit ∆x,∆y → 0, we obtain an equation of continuity that is
averaged over the gap:

H
∂%

∂t
+
∂U

∂x
+
∂V

∂y
+ %

∂H

∂t
= 0 . (7.2)

Here we have assumed that ∂%/∂t is independent of z. For an incompressible
fluid, we take % = constant, whereas in the compressible case we simply
assume that % is constant1 in z direction.

The U and V quantities couple to the equation of motion. If H � L and
the variations of H are small (more precisely, the typical wave length of the
deformation of the plates is much larger than H), one can assume that the
flow is locally similar to steady rectilinear flow between two flat plates. With
this assumption we can apply the expressions for U and V found from the
equation of fluid motion in a channel of width H (Poiseuille flow [84]):

U = −% H
3

12µ

∂p

∂x
, V = −% H

3

12µ

∂p

∂y
, (7.3)

where µ is the fluid viscosity. Equation (7.3) is now our approximate form of
the momentum equation in the squeeze-film problem. Note that the expres-
sions for the mass fluxes stem from a simplified version of the incompressible

1 This can be justified for barotropic fluids, since % is then directly related to the
pressure, which is expected to be approximately constant in z direction.

7.1. Fluid-Structure Interaction; Squeeze-Film Damping 627

Navier-Stokes equations. We will, however, employ the same approximation
in the compressible case as well.

Inserting U and V in the equation of continuity results in

H
∂%

∂t
+ %

∂H

∂t
= ∇ ·

[
H3

12µ
%∇p

]
. (7.4)

For incompressible flow this equation reduces to

∇ ·
[
H3

12µ
∇p
]

=
∂H

∂t
. (7.5)

We employ the barotropic model p/%γ = const in the case of compressible
flow. From a numerical point of view, the equation for the fluid motion is
easier to solve if we introduce ũ = p1/γ . This results in

∂

∂t
(Hũ) = ∇ ·

[
H3

12µ
γũγ∇ũ

]
. (7.6)

The fluid flow equations are to be solved in a domain Ω, covering the extent
of the smallest plate. At the boundary ∂Ω of Ω, the pressure must match
the atmospheric pressure, denoted here by p0. The initial state is taken as
p = p0.

Exercise 7.1. .
Derive (7.1) and (7.3) in detail. �

Motion of the Plates. For the motion of the plates we can either apply full
3D time-dependent elasticity (Chapter 5.1.6) or the standard two-dimensional
equation for small deflections of thin plates. We shall address the latter model
as it can easily be reduced to ordinary differential equations by a rough
approximation. The total pressure p(x, y, t) − p0 and the force %Sf(t) in an
accelerated coordinate system comprise the loads on the plate. The function
f(t) represents the external acceleration of the coordinate system, and %S is
the density per unit area of the plate. The governing equation for a vibrating
plate can then be written as [67]

%S
∂2d

∂t2
+D∇4d = p− p0 + %Sf, D =

Eq3

12(1− ν2)
. (7.7)

The function d(x, y, t) is the deflection of the plate, ∇4 ≡ ∇2∇2 is the bi-
harmonic operator, ν is Poisson’s ratio, E is Young’s modulus, and q is the
thickness of the plate. We shall be particularly concerned with impulsively
started vibrations from rest, modeled as rapid variation of f(t):

f(t) =

{
I sin2 ωt, t < π/ω
0, t ≥ π/ω (7.8)

628 7. Coupled Problems

The boundary conditions depend on the support of the plate. For example,
on a clamped part of the plate, d = ∂d/∂n = 0.

A finite element method for (7.7) requires quite complicated elements with
twice differentiable basis functions, or we need to rewrite the plate equation
as a system of two PDEs, involving ∇2 operators instead of ∇4. A much
simpler approach is to apply a spectral method for the spatial discretization
of (7.7). This reduces the PDE to an initial-value problem involving only
ordinary differential equations (ODEs). The disadvantage is that the spectral
method outlined below is restricted to plates of rectangular or circular shape.
However, such shapes are highly relevant in squeeze-film applications.

Assuming that the plate is rectangular and simply supported at x = 0, L
(d = 0), with the two other ends free (∂2d/∂n2 = 0), a possible spatial
expansion of d can be written as

d(x, y, t) ≈ d̂(x, t) =

M∑

j=1

aj(t) sin
(
jπ
x

L

)
, (7.9)

where aj(t) are amplitude functions to be computed. By this particular ex-
pansion we also assume that the fluid pressure does not vary with y, otherwise
d would also depend on y. Since we know that damping effects may be signifi-
cant in the squeeze-film problem, high-frequency basis functions are expected
to have very small amplitude. We therefore attempt a one-term expansion,

d̂(x, t) = a(t) sin π
x

L
. (7.10)

The equation for a(t) can be derived from a Galerkin method applied to
the vibrating plate equation with sinπx/L as weighting function. The result
becomes2

%S ä+
(π
L

)4

Da =
4

π
%Sf +

2

L

∫ L

0

(p− p0) sin
(
π
x

L

)
dx . (7.11)

Exercise 7.2. .
Approximate the plate displacement d by a sum of M sinusoidal basis

functions as in (7.9) and derive a decoupled system of ODEs for aj(t), j =
1, . . . ,M . Explain why the system becomes decoupled. �

Exercise 7.3. .
Suggest a generalization of (7.9) in the case of a rectangular plate and

a two-dimensional pressure field, p = p(x, y, t). Assume that all sides of the
plate are simply supported. Compute the equation for the time-dependent
coefficient in a one-term expansion. �
2 Useful formulas:

R L

0
sin(xπ/L)dx = 2L/π,

R L

0
sin2(xπ/L)dx = L/2. Later we will

also make use of
R L

0
sin3(xπ/L)dx = 4L/(3π).

7.1. Fluid-Structure Interaction; Squeeze-Film Damping 629

Summary of the Mathematical Model. For a sample application in microme-
chanical sensor technology, the lower plate is often stiff enough to remain
plane (hB = constant). The gap between the plates in the nondeformed state
is h0, and we place the z axis such that z = hB = 0. The relation between
H and d then becomes H(x, y, t) = h0 + d(x, y, t). Since h0 is expected to be
small, the coefficient H3 can be very small and cause numerical problems.
A proper scaling of the equations would cure such problems. However, scal-
ing of the present initial-boundary value problem quickly becomes a tedious
procedure. We therefore apply the simpler approach of multiplying the flow
equation by the factor 12µh−3

0 , such that we avoid very small values in the
coefficient in the Laplace term. Another problem is that p0 = 0 implies p = 0
at all times. It is therefore advantageous to have the primary unknown u as a
perturbation around unity. This is accomplished by introducing u = (p/p0)

1/γ

as primary unknown.
The initial-boundary value problem for compressible flow can now be

summarized.

%S ä+
(π
L

)4

Da =
4

π
%Sf +

2

L

∫ L

0

(p(x, t)− p0) sin
(
π
x

L

)
dx, (7.12)

a(0) = ȧ(0) = 0, (7.13)

12µh−3
0

∂

∂t
(Hu) = ∇ ·

[(
H

h0

)3

p0γu
γ∇u

]
, x ∈ Ω, t > 0, (7.14)

u =
p1/γ

p
1/γ
0

, (7.15)

H = h0 + a(t) sin
(
π
x

L

)
, (7.16)

u(x, t) = 1, x ∈ ∂ΩE , (7.17)

u(x, 0) = 1, x ∈ Ω . (7.18)

The domain Ω is either one- or two-dimensional, and ∂ΩE denotes the com-
plete boundary of Ω.

For incompressible flow, we simply replace (7.14) by

∇ ·
[(

H

h0

)3

p0∇u
]

= 12µh−3
0

∂H

∂t
, x ∈ Ω, t > 0 . (7.19)

In this case, u = p/p0. To handle both the compressible and incompressible
case within the numerical expressions and the same code lines, it is convenient
to introduce a variable coefficient k(u) in the Laplace term, where k(u) = γuγ

in compressible flow and k(u) = 1 when the flow is incompressible.

Analysis of a Simple Case. Valuable insight into the problem can be obtained
by analyzing a special case where an analytical solution is straightforwardly

630 7. Coupled Problems

derived. This is also fundamental for partial verification of a computer imple-
mentation. With H(x, t) = h0 + a(t) sin(πx/L), the boundary-value problem
of an incompressible fluid, in the one-dimensional case, becomes

∂

∂x

((
1 +

a

h0
sinπ

x

L

)3
∂p

∂x

)
= 12µh−3

0 ȧ sinπ
x

L
, p(0) = p(L) = p0 .

(7.20)
We can integrate (7.20) and make a first-order approximation to the resulting
right-hand side:

∂p

∂x
= 12µȧh−3

0

(
L

π
cosπ

x

L
+ C1

)
.

Here C1 is an integration constant. Integrating once more and inserting the
boundary values yields

p(x, t) = p0 − ȧ
12µL2

h3
0π

2
sinπ

x

L
. (7.21)

In the case of a flat plate, d = a(t), we would get

p = p0 − ȧ
12µ

h3
0

1

2
x(L− x),

which leads to the same qualitative behavior of p−p0. The maximum pressure
disturbance is, however, affected by a factor of π2/8 ≈ 1.23.

The p− p0 function can now be inserted in our simplified vibrating plate
equation. The result becomes

%S ä+ κȧ+
(π
L

)4

Da =
4

π
%Sf, κ =

12µL2

h3
0π

2
. (7.22)

Observe that the “driving force” ∂H/∂t in the fluid flow equation leads to
p ∼ ȧ, which then gives rise to a damping term κȧ in the vibrating plate
equation. This means that for incompressible fluids, the squeeze film will
always damp the structural vibration.

Exercise 7.4. .
Consider compressible flow with a prescribed d = d0 sinωt. Scale the flow

equation, using ω−1 as time scale, and show that only one dimensionless
number, σ = 12µωL2/(p0h

2
0γ), appears in the scaled equation. One often

refers to σ as the squeeze film number. �

7.1.2 Numerical Methods

Our mathematical model for the squeeze-film problem consists of a linear
or nonlinear heat-conduction-like PDE, i.e. (7.19) or (7.14), coupled with a
linear second-order ODE (7.12). The simplest solution strategy is to solve the

7.1. Fluid-Structure Interaction; Squeeze-Film Damping 631

equations in sequence. At each time level, we first solve for the fluid motion
and compute the pressure load on the plate. Thereafter, we carry out one
time step in the discrete plate equation.

The fluid flow equation (7.19) or (7.14) can be discretized by a Galerkin
finite element method and a θ-rule in time (see Chapter 2.2.2). This yields
a system of linear or nonlinear algebraic equations to be solved at each time
level. In the nonlinear case, the system can be solved by Newton-Raphson or
Successive Substitution (Picard iteration) techniques. We refer to Chapter 4
for details regarding discretization and implementation of a PDE like (7.14).
The coefficient matrix Ji,j and the right-hand side vector −Fi of the linear
system to be solved in each Newton-Raphson iteration take the following
form:

Ji,j =

∫

Ω

[
τ12µh−3

0 HNiNj +

θ

(
H

h0

)3

∆t (k(u)∇Ni · ∇Nj + k′(u)∇Ni · ∇uNj)

]
dΩ, (7.23)

−Fi = −
∫

Ω

[
12µh−3

0 Ni∆Ψ +

(
H

h0

)3

∆t (θk(u)∇Ni · ∇u+ (1− θ)k(ū)∇Ni · ∇ū)
]
dΩ . (7.24)

The current time step size is denoted as ∆t. Quantities with a bar denotes
evaluation at the previous time level. For example, if ∆t is constant, u is a
short notation for the numerical approximation to u(x, `∆t), while ū is the
corresponding notation for the approximation to u(x, (`− 1)∆t). To simplify
the notation, we have dropped the iteration number as superscript, that is,
the symbol u in the numerical formulas refers to the most recent approxima-
tion to the primary unknown function u. The parameter τ equals unity in
compressible flow and vanishes for incompressible flow. Moreover,

∆Ψ =

{
Hu− H̄ū, compressible flow
H − H̄, incompressible flow

In the Successive Substitution method the linear system in each iteration
has a coefficient matrix

Ai,j =

∫

Ω

(
τ12µh−3

0 HNiNj + θ

(
H

h0

)3

∆tk(u)∇Ni · ∇Nj

)
dΩ (7.25)

and a right-hand side vector

bi =

∫

Ω

(
12µh−3

0 NiΦ− (1− θ)
(
H

h0

)3

∆tk(ū)∇Ni · ∇ū
)
dΩ . (7.26)

632 7. Coupled Problems

Here, Φ = H̄ū in compressible flow and Φ = H̄ −H in incompressible flow.

Exercise 7.5. .
Derive the expressions (7.23)–(7.26). �

The second-order ODE for the plate motion can be compactly written as

c1ä+ c2ȧ+ c3a = c4, (7.27)

with suitable definitions of c1, c2, c3, and c4 according to (7.12). A widely
used Newmark scheme for (7.27) can be formulated as [154, Ch. 10, Vol II]

ä =

(
c1 + β1c2∆t+ c3β2

∆t2

2

)−1

×
(
c4 − c2 (¯̇a+ (1− β1)∆t¯̈a))− c3(ā+∆t¯̇a+ (1− β2)

∆t2

2
¯̈a

)
(7.28)

a = ā+∆t¯̇a+ (1− β2)
∆t2

2
¯̈a+ β2

∆t2

2
ä (7.29)

ȧ = ¯̇a+ (1− β1)∆t¯̈a+ β1∆tä (7.30)

Again, the bar indicates quantities at the previous time level. Initially, ā and
¯̇a are prescribed. The value of ¯̈a for t = 0 follows from (7.27).

Various choices of the parameters correspond to different well-known
schemes. For example, β1 = β2 = 1/2 results in a Crank-Nicolson-like scheme.
In the present scalar case, we obtain an explicit formula for the new a value,
although the finite difference scheme is implicit (an implicit linear equation
in one variable can always be converted to an explicit form).

7.1.3 Implementation

The coupled fluid-structure problem modeling squeeze films is rather compli-
cated in its original form. Through some reasonable assumptions the model
has been reduced to a coupled system of a generally nonlinear scalar PDE
(7.14) and a linear ODE (7.12).

For simplicity, we decide to solve the PDE and the ODE in sequence at
each time level. The implementation of coupled models can quickly become
an error-prone process. To ease the coding and the associated debugging, and
at the same time increase the extensibility of the mathematical model, we
propose to make separate solvers for the fluid PDE and the plate ODE. The
equations can then be tested separately before we couple the two classes in
a compound solver for the fluid-structure interaction problem. At any time
in the debugging of the compound solver, the component simulators can be
pulled apart again and retested separately. This is an attractive implementa-
tional approach, but we need to clarify the details of the software design. It

7.1. Fluid-Structure Interaction; Squeeze-Film Damping 633

is advantageous to have studied Chapter 3.5.7 before proceeding. The com-
plete source code of the squeeze film solver is located in the directory tree
src/app/SqueezeFilm.

The PDE and ODE are coupled through the H and p quantities. There-
fore, if we want to solve the fluid PDE on its own, H must be a prescribed
quantity. Similarly, when solving the plate ODE separately from the fluid
equation, the p field must be specified.

Assume that we make a class PlateVib that solves the general version
of (7.27). For testing purposes, we derive a subclass PlateVibSin where we
specialize f(t) as f(t) = q sin2 ωt, set p− p0 = 0, and compare the numerical
and analytical solution. In another subclass PlateVibS we implement the more
application-relevant shock pulse (7.8) for f(t). This version of the vibrating
plate solver is to be coupled to the fluid flow equation. As usual, the code in
subclass solvers is only a few lines.

The fluid PDE is implemented as a standard Diffpack finite element solver,
like class NlHeat1 from Chapter 4.2. The name of the class is Squeeze, and
it can handle both compressible and incompressible flow in one or two space
dimensions. We leave the choice of H as a virtual function hmodel. In a sub-
class SqueezeEx, hmodel is implemented according to H = h0+t. The solution,
assuming incompressible flow, is then p = p0 + 6x(x − 1)/(h0 + t)3. We can
hence use class SqueezeEx for partial verification of the implementation of the
fluid flow solver.

Another subclass SqueezeS of Squeeze implements the hmodel function
with access to the plate deflection field: H = h0 + d. The S in the class name
SqueezeS stands for “System”, i.e., SqueezeS is a version of the stand-alone
class Squeeze for a system of differential equations.

To couple the SqueezeS and PlateVibS solvers, one can introduce a man-
ager class SqueezeSim that holds a fluid flow solver SqueezeS and a vibrating
plate solver PlateVibS. Figure 7.1 depicts the class relations in the squeeze
film solver. As advocated in Chapter 3.5.7, the source code of the various
subclasses in a solver hierarchy can conveniently be stored in different sub-
directories. With the AddMakeSrc script one can tell the make program that
the source is distributed across directories. The squeeze-film solver has a
directory coupling for the compound simulator, vib-test for verifying the
vibrating plate solver, and film-test for verifying the fluid flow simulator as
a stand-alone solver.

For a more detailed explanation of the software design of the squeeze film
simulator, it is convenient to start with the manager, class SqueezeSim:

class SqueezeSim : public SimCase

{

public:

Handle(PlateVibS) plate;

Handle(SqueezeS) film;

634 7. Coupled Problems

SqueezeEx

SqueezeSim

PlateVibSin

Squeeze

SqueezeS PlateVibS

PlateVib

Fig. 7.1. Sketch of the squeeze film solver SqueezeSim, which consists of a
fluid flow solver SqueezeS and a vibrating plate solver PlateVibS. The classes
SqueezeEx and PlateVibSin are aimed at simplified test problems for the fluid
flow and the structural vibration, respectively. Solid lines indicate inheritance
(“is-a” relationship), while dashed lines indicate pointers (“has-a” relation-
ship).

Handle(GridFE) grid;

Handle(TimePrm) tip;

Handle(SaveSimRes) database;

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan ();

virtual void timeLoop ();

real computePressureLoad (FieldFE& pressure, real p0);

SqueezeSim ();

~SqueezeSim () {}

virtual void adm (MenuSystem& menu);

virtual void solveProblem ();

virtual void resultReport ();

};

The manager SqueezeSim is in charge of the grid, the time integration pa-
rameters, and the storage for later visualization. Other tasks are distributed
to the fluid flow and vibrating plate solvers. The define function exemplifies
how some menu items are specific to SqueezeSim and how others are com-
pletely handled by calling the define functions in the stand-alone solvers for
each equation.

void SqueezeSim:: define (MenuSystem& menu, int level)

{

7.1. Fluid-Structure Interaction; Squeeze-Film Damping 635

menu.addItem (level, "gridfile", "readOrMakeGrid syntax",

"P=PreproBox | d=1 [0,10] | d=1 elm_tp=ElmB2n1D "

"div=[20], grading=[1]");

menu.addItem (level, "time integration parameters",

"TimePrm::scan(Is) syntax", "dt=0.1 t in [0,1]");

SaveSimRes::defineStatic (menu, level+1);

menu.setCommandPrefix ("plate");

plate->define (menu, level, true);

menu.setCommandPrefix ("film");

film ->define (menu, level, true);

menu.unsetCommandPrefix ();

}

The fluid flow and the vibrating plate simulators could in general happen to
define menu items with the same name. This is the case if both of the solvers
put a linear system and solver interface object (LinEqAdmFE) on the menu, a
situation that occurs when coupling two or more finite element solvers (cf. the
simulator in Chapter 7.2). However, the menu system offers the possibility to
set a command prefix for all the proceeding command names. As we see from
the define function above, one sets the command prefix “plate” before calling
plate->scan. This means that the menu command density in the vibrating
plate solver actually gets the name plate density. Similarly, all the fluid
flow menu items are prefixed by “film”. If the fluid flow solver had defined
a menu item density as well, the name of this item would be film density.
During scanning of menu items, one can activate or deactivate the prefix
feature of the menu system. For example, with the prefix “film”, a command
menu.get("density") will actually search for film density. The scan function
can look like this:

void SqueezeSim:: scan ()

{

MenuSystem& menu = SimCase::getMenuSystem();

String gridfile = menu.get ("gridfile");

grid.rebind (new GridFE()); // create empty grid object

readOrMakeGrid (*grid, gridfile); // fill grid

tip.rebind (new TimePrm());

tip->scan (menu.get ("time integration parameters"));

database.rebind (new SaveSimRes());

database->scan (menu, grid->getNoSpaceDim());

menu.setCommandPrefix ("plate");

plate->scan (menu, database->cplotfile, tip.getPtr());

menu.setCommandPrefix ("film");

film ->scan (grid.getPtr(), tip.getPtr(), database.getPtr());

menu.unsetCommandPrefix ();

636 7. Coupled Problems

The Squeeze solver must create its own grid in order to work as a stand-alone
solver. However, when the class is used in conjunction with SqueezeSim, it
is natural for the manager class to be responsible for the grid3. The scan

function of a solver could then take a grid pointer as argument. If the pointer
is null, the grid is allocated internally in class Squeeze, otherwise the grid
handle in Squeeze is rebound to an external grid. The same strategy applies
to the TimePrm and SaveSimRes objects, which are either internal in the fluid
flow simulator or managed by class SqueezeSim.

void Squeeze:: define (MenuSystem& menu, int level, bool externals)

{

if (!externals)

menu.addItem (level, "gridfile", "readOrMakeGrid syntax",

"P=PreproBox | d=1 [0,10] | d=1 elm_tp=ElmB2n1D "

"div=[20], grading=[1]");

void Squeeze:: scan (GridFE* grid_, TimePrm* tip_,

SaveSimRes* database_)

{

MenuSystem& menu = SimCase::getMenuSystem();

if (grid_ != NULL)

grid.rebind (grid_); // bind to some external grid

else {

String gridfile = menu.get ("gridfile");

grid.rebind (new GridFE()); // create empty grid object

readOrMakeGrid (*grid, gridfile); // fill grid

}

With the use of handles, the origin of an object is of no interest; all solver
classes can access the object through the handle, as if it were created by that
class.

The heart of the SqueezeSim class is the timeLoop routine. This function
demonstrates how the fluid flow and the vibrating plate solvers are supposed
to work together. The basic numerical steps consist of advancing the fluid flow
solver one time level to compute a new pressure field p. Then p− p0 is inte-
grated over the plate, using the function SqueezeSim::computePressureLoad.
The resulting pressure load on the plate is transferred to the vibrating plate
solver before asking that solver to update the d field at the new time level.

void SqueezeSim:: timeLoop ()

{

tip->initTimeLoop();

3 In the present case, only the fluid solver needs a grid, but in a more general
problem setting, the manager class creates a common grid and distributes it to
all the solvers.

7.1. Fluid-Structure Interaction; Squeeze-Film Damping 637

film ->timeLoopSetUp ();

plate->timeLoopSetUp ();

while(!tip->finished())

{

tip->increaseTime();

film ->solveAtThisTimeStep ();

plate->effectivePressureLoad

(this->computePressureLoad (*film->p, film->p0));

plate->solveAtThisTimeStep ();

film ->saveResults ();

plate->saveResults ();

if (tip->getTimeStepNo() % 100 == 0)

s_o << "t=" << tip->time() << endl;

}

plate->timeLoopFinish();

film ->timeLoopFinish();

}

The fluid flow and vibrating plate solvers have split the traditional contents of
a time loop function into timeLoopSetUp for storing/plotting the initial fields,
solveAtThisTimeStep for solving the equations in a solver at a given time level,
saveResults for calling SaveSimRes or related functionality for storing fields
for later visualization, and timeLoopFinish for closing curve plots or post
processing time series results. The need for this high degree of modularity is
not apparent for a single solver, but is very advantageous when combining
stand-alone solvers into a simulator for a system of differential equations.

As an alternative to modularizing the timeLoop function with timeLoopSetUp

and timeLoopFinish, we could just place the right dump statements of de-
sired quantities directly in SqueeseSim::timeLoop. This strategy distributes
less actions to the separate solvers. On the other hand, one avoids two extra
timeLoop-related functions in the film and plate simulators.

The basic fluid flow solver Squeeze is very similar to, e.g., class NlHeat1

so there is no need to explain the details here. The purpose of the SqueezeS

subclass simulator is to implement the virtual function hmodel for computing
H by calling the vibrating plate solver’s function computeDeflection. This
latter function loads the deflection into a FieldFE object. The communication
between the fluid flow solver and the vibrating plate solver is enabled by a
two-way pointer between class SqueezeS and the manager, class SqueezeSim.

class SqueezeS : public Squeeze

{

public:

SqueezeSim* manager;

SqueezeS (SqueezeSim* manager_) : manager(manager_) {}

638 7. Coupled Problems

virtual void hmodel (FieldFE& H);

};

We can then simply compute H = d+ h0 like this:

void SqueezeS:: hmodel (FieldFE& H)

{

manager->plate->computeDeflection (H); // H = d

H.add (h0); // H += h0

}

Based on our brief review of the SqueezeSim solver, the reader is encouraged
to study the source code in detail. Hopefully, one will realize that the classes
Squeeze and PlateVib are similar to standard Diffpack simulators and that
the extra glue for communication when solving the compound system is just
very small subclasses. The ideas of coupling stand-alone simulators for solving
a system of differential equations are developed further in Chapter 7.2.

Exercise 7.6. .
The squeeze-film simulator handles in principle 1D and 2D pressure fields.

However, class PlateVib does not support 2D functions for spectral discretiza-
tion of the vibrating plate equation. Describe how class PlateVib can be ex-
tended to handle rectangular plates (e.g. simply supported along all sides).
�

Exercise 7.7. .
The efficiency of the simulator can be enhanced by introducing a spectral

approximation for the pressure field p, similar to the representation of d.
Formulate such a numerical method and discuss its impact on the design of
the compound simulator SqueezeSim. Explain how we can choose between a
finite element or a spectral solver at run time. �

We have developed a GUI for running numerical illustrations with the
squeeze film applications. The file gui.py realizes the GUI as a Python script.
The GUI was roughly generated by the GloGUI.py utility (Chapter 1.7.4) and
extended with three curve plot widgets (Pmw.Blt.Graph) by calling up func-
tions in the dplib module’s SimVizPrmGUI class, a topic briefly commented
upon in Chapter 3.13.6. The GUI is shown in Figure 7.2. Basic input param-
eters can be adjusted through sliders, entry fields, and option menus. The
most useful feature is probably the three plot areas, where the curves from
the last three simulations are displayed. This makes it easy to see the effect
of a change in parameters. We refer to comments in the source code of gui.py
for how (easy) such a tailored application can be developed.

A typical solution of the squeeze-film problem is shown in more detail
in Figure 7.3. The basic expected feature, that the vibration of the plate is
damped due to the motion of the fluid film, is clearly demonstrated.

7.1. Fluid-Structure Interaction; Squeeze-Film Damping 639

Fig. 7.2. GUI for the squeeze film application.

640 7. Coupled Problems

0.0 5.0 10.0 15.0
−0.005

0.000

0.005

0.010

0.015
plate displacement

0.0 5.0 10.0 15.0
−0.00005

−0.00003

−0.00001

0.00001

0.00003

0.00005

0.00007

0.00009

pressure load

0.0 5.0 10.0 15.0
0.000

0.010

0.020

0.030

0.040

0.050

0.060
external acceleration

Fig. 7.3. Time series of the external acceleration f(t) (top), the pressure
load on the plate (middle), and the plate displacement a(t) (bottom). The
parameters were E = 5000, ν = 0.25, q = 0.01, L = 1, β1 = β2 = 0.5, ω = 1,
I = 0.05, %S = 0.5, θ = 1, γ = 0, h0 = 0.2, p0 = 0, and µ = 1.7 · 10−5.

7.2. Fluid Flow and Heat Conduction in Pipes 641

7.2 Fluid Flow and Heat Conduction in Pipes

This section addresses a coupled fluid-heat flow problem. We consider laminar
flow of a non-Newtonian fluid in a straight pipe with a geometrically arbitrary
cross section. The viscosity of the fluid may depend on the temperature, and
heat generation by internal friction in the fluid is an effect we shall include
in the model. Possible applications of such a model cover extrusion of metal
and flow of highly viscous polymers.

The present flow problem posed in a general 3D geometry is complicated,
but the restriction of the flow region to a straight pipe makes it possible
to introduce substantial simplifications. The resulting model consists of two
coupled nonlinear Poisson equations. For some relevant values of the physi-
cal parameters the nonlinearities are severe, and many common methods, like
Successive Substitution (Picard iteration) or Newton’s method, face serious
convergence problems. In the case of Newtonian flow, where the fluid prop-
erties are constant, we achieve two decoupled linear Poisson equations. This
means that the present mathematical model is a nice test problem for numer-
ical solution of a system of PDEs where the coupling between the equations
and the nonlinearities can be adjusted by varying the value of physical pa-
rameters in the problem. The main purpose of including this fluid-heat flow
problem in the present book is for demonstrating how we can make a solver
for the compound problem by combining independent solvers for the fluid
and heat flow equations, respectively. This is a general technique that makes
software development of simulators solving systems of PDEs faster and more
reliable. It might be advantageous to have studied the basic software design
principles in Chapter 7.1.3.

7.2.1 The Physical and Mathematical Model

The General Mathematical Model. Our derivation of the mathematical model
for non-Newtonian pipe flow with thermal effects will make use of the indicial
notation, including the summation convention and the comma notation for
derivatives. Appendix A.2 explains this effective notation in detail. Readers
who are not interested in the derivation of the model, can jump to the listing
of the boundary-value problem (7.37)–(7.40) on page 643.

The Newtonian fluid model is characterized by a linear relation between
internal forces in the fluid and the fluid motion. More precisely, there is a
linear relation between the stress tensor σrs and the velocity gradients vr,s:

σrs = −pδrs + µ(vr,s + vs,r) . (7.31)

Here, p is the pressure and δrs is the Kronecker delta. This is a constitutive
law, which reflects physical properties of a particular fluid. The other equa-
tions that enter the complete mathematical model are of general type and
apply to “all” fluids. For constant µ the presented equations reduce to the

642 7. Coupled Problems

well-known Navier-Stokes equations. If the relation between the stress and
the velocity gradients is nonlinear, the fluid is classified as non-Newtonian.

Non-Newtonian fluid flow is a huge topic and may involve complicated
large-deformation viscoelastic and viscoplastic models. Nevertheless, many
fluids that deviate from the common Newtonian model are satisfactorily de-
scribed by a conceptually simple extension of (7.31). Instead of treating µ as
a constant for the fluid in question, we allow the apparent viscosity to depend
on the motion. Introducing a measure γ̇ of the “intensity” of the deformation
in the flow, γ̇ =

√
2ε̇rsε̇rs, we simply postulate that µ is a function of γ̇. This

gives rise to the family of the so-called generalized Newtonian fluid models,
which will attract our attention in the rest of this section.

A complete mathematical model for coupled fluid and heat flow involves
a mass conservation equation, an equilibrium equation, a constitutive law
like (7.31), and an energy equation. Many common non-Newtonian fluids are
highly viscous and incompressible. The relevant mass conservation equation
then becomes

vr,r = 0 . (7.32)

The equilibrium equation for a continuum takes the form

%(vr,t + vsvr,s) = σrs,s + %br, (7.33)

where the left-hand side is the density % times the acceleration and the right-
hand side reflects the sum of forces on the continuum: stresses and body forces
(br). A suitable form of the constitutive law for a generalized Newtonian fluid
is

σrs = −pδrs + µ(vr,s + vs,r), (7.34)

where µ depends on

γ̇ =

√
1

2
(vr,s + vs,r)(vr,s + vs,r) (7.35)

and possibly the temperature T . The latter quantity is governed by an energy
equation, e.g.,

%C(T,t + vkT,k) = κT,kk + µγ̇2 . (7.36)

Here, C is the heat capacity at constant pressure, and κ is the coefficient of
thermal conduction. The left-hand side reflects the change of internal energy
of a small fluid element, which is due to the right-hand side terms involving
conduction (κT,kk ≡ κ∇2T) and dissipation (µγ̇2). The latter term represents
internal heat generation from the work done by the stresses.

Combining the equations (7.32)–(7.36) yields a coupled system of a non-
linear convection-diffusion equation for T and a generalized Navier-Stokes
equation for vi and p. With a suitable Navier-Stokes solver, we could devise
a finite element method for this system of PDEs, embedded in an iteration
technique for handling the nonlinearities. Nevertheless, our purpose is to de-
rive a simpler mathematical model by restricting the flow geometry to a
straight pipe.

7.2. Fluid Flow and Heat Conduction in Pipes 643

The Simplified Mathematical Model. The fundamental simplification of the
coupled heat-fluid flow model is that we consider laminar flow in a straight
pipe. Let the z axis be directed along the pipe. The velocity field is then
expected to be v = wk, where k is a unit vector in z direction. The equation
of continuity, vr,r = 0, now immediately gives ∂w/∂z = 0, which implies that
w = w(x, y, t). The special form of the velocity field leads to a dramatically
simplified equation of motion for the fluid; the Navier-Stokes equations with
a nonlinear viscosity model are reduced to a nonlinear scalar PDE %w,t =
∇ · [µ∇w] + const. If the problem is considered as stationary, as we do in the
following, w is governed by a Poisson equation∇·[µ∇w] = −β, where β is the
constant pressure gradient that drives the flow. Another basic assumption is
that T does not vary along the pipe. The simplifications in the heat flow model
due to rectilinear flow are not substantial; the convection-diffusion equation
in the general case is only reduced to a Poisson equation ∇2T = f(T,w) in
the present stationary problem. The equations for w and T are to be solved
in a domain Ω which represents the cross section of the pipe.

The Boundary-Value Problem. The complete set of differential equations can
be written as

∇ · [µ∇w] = −β, (7.37)

∇2T = −κ−1µγ̇2, (7.38)

µ = µT (T)µw(γ̇), (7.39)

γ̇ =

√
(w,x)2 + (w,y)2 . (7.40)

The simplifications due to flow in a straight pipe also apply if we consider
flow in a straight channel, both of Poiseuille type (driven by a pressure gra-
dient β) or Coquette type (driven by a moving channel wall). The PDEs are
the same, but the number of effective space dimensions and the boundary
conditions are different. By allowing some flexibility in setting the boundary
conditions, the mathematical model and its computer implementation will
be applicable to both pipe and channel flow.

Let ∂Ω1 be the part of the boundary corresponding to a fixed wall where
w = 0, let ∂Ω2 be a wall moving with velocity W1 in z direction, let ∂Ω3

be a possible symmetry plane where ∂w/∂n = 0 and ∂T/∂n = 0, let ∂Ω4

be a wall with fixed temperature T = 0, let ∂Ω6 be another wall with fixed
temperature T = T1, and finally let ∂Ω7 be a wall where a cooling condition

− κ∂T
∂n

= hT (T − Ts) (7.41)

applies. Here, hT is a coefficient that reflects the heat transfer through the
channel wall to the pipers surroundings, which have a constant temperature
Ts. When assigning boundary conditions in a flow case, one must recall that
we need exactly one condition on w and one condition on T at every point
on the boundary.

644 7. Coupled Problems

Constitutive Laws. Some common models for µT and µw are listed next.

– The Sisko model:
µw = µ∞ + µ0γ̇

n−1, (7.42)

where µ∞ is the viscosity at very high shear rates, µ0 is a reference
viscosity4, and n is the “power-law exponent”, which is usually in the
interval [0.15, 0.6]. When µ∞ = 0, this model reduces to the standard
power-law model. The choice n = 1 and µ∞ = 0 leads to Newtonian flow
with viscosity µ0.

– The Cross model takes the form

µw =
µ0

1 + (µ0γ̇/τ0)1−n
, (7.43)

where τ0 is the shear stress level at which the flow undergoes a transition
from the Newtonian nature to the power-law region.

– The Herschel-Bulkley model is more general:

µw =

{
µ∞ →∞, τ ≤ τ0
τ0/γ̇ + µ0γ̇

n−1 (7.44)

where τ = 2µγ̇ is the effective stress for plastic flow5 and τ0 is a critical
value of τ for the transition between a rigid-body movement of the fluid
(µ∞ →∞) and a modified power-law behavior. Notice that τ = 0 recovers
the standard power-law model, whereas n = 1 corresponds to a Bingham
model.

– For the temperature dependence we may choose

µT (T) = exp (−α(T − T0)), (7.45)

which reflects that the viscosity is reduced when the temperature is in-
creased, T0 being a reference temperature.

Looking at the specific constitutive laws above, we see that the parameters n,
α, µ∞, and τ0 are central. Setting n = 1, α = 0, τ0 = 0, and µ∞ = 0 results
in two decoupled linear PDEs for w and T , where we first can solve for w and
then for T . Decreasing n towards zero and increasing α sharpen the coupling
and the degree of nonlinearity. The present system of PDEs should therefore
be everything from easy to very difficult to solve, depending on the values of
n and α in particular.

4 One should notice that µ0 does not have the dimension of viscosity unless n = 1.
5 τ is similar to the von Mises stress in solid mechanics.

7.2. Fluid Flow and Heat Conduction in Pipes 645

7.2.2 Numerical Methods

Finite Element Formulation. The nonlinear Poisson equations for w and T
are straightforwardly solved by a Galerkin finite element method. We set

w(x, y) ≈
m∑

j=1

wjNj(x, y), T (x, y) ≈
m∑

j=1

TjNj(x, y),

where Nj(x, y) are finite element basis functions in the grid over Ω. Notice
that we use m as the number of nodes, and not n as in previous chapters,
because n is a standard symbol for the “power-law exponent” in the literature
on generalized Newtonian fluids. Multiplying the PDEs by Ni, integrating
overΩ, and integrating the second order derivatives by parts, lead to a system
of discrete equations on the form

F
(w)
i (w1, . . . , wm, T1, . . . , Tm) = 0, (7.46)

F
(T)
i (w1, . . . , wm, T1, . . . , Tm) = 0, (7.47)

for i = 1, . . . ,m. This is a system of 2m coupled nonlinear algebraic equations.

The exact expressions for F
(w)
i and F

(T)
i are given below.

F
(w)
i ≡

∫

Ω

(µ(T, γ̇)∇w · ∇Ni − βNi) dΩ,

F
(T)
i ≡

∫

Ω

(
∇T · ∇Ni − κ−1µ(T, γ̇)γ̇2Ni

)
dΩ +

∫

∂Ω7

hT (T − Ts)NidΓ .

Solution of Nonlinear Algebraic Equations. When µ depends on γ̇ or on T ,

the algebraic equations F
(w)
i = 0 and F

(T)
i = 0 are nonlinear. There are

two different basic strategies for solving these equations: either (i) solve the

F
(w)
i = 0 and F

(T)
i = 0 equations in sequence with an outer iteration6, or

(ii) apply a standard nonlinear solution method, like the Newton-Raphson
method or Successive Substitutions (Picard iteration) to the compound sys-

tem (F
(w)
i = 0, F

(T)
i = 0), and solve for wi and Ti simultaneously. Strategy

(ii) is often referred to as a fully implicit approach, whereas strategy (i) will
be denoted as Gauss-Seidel or Jacobi iteration on the PDE level. To see why
the names Gauss-Seidel and Jacobi are natural7, we write the algorithm as-
sociated with strategy (i) in more detail. Let q be an iteration parameter.
Quantities with superscript q denote approximations in the qth iteration.
The Gauss-Seidel procedure can then be expressed as in Algorithm 7.1.

6 This is also referred to as an operator-splitting technique.
7 We refer to Appendix C.1 for an introduction to the ideas of Gauss-Seidel and

Jacobi iteration for solving systems of (linear) equations.

646 7. Coupled Problems

Algorithm 7.1.

Gauss-Seidel-type method for systems of nonlinear PDEs.

for q = 1, 2, . . . until convergence

solve F
(w)
i (wq

1, . . . , w
q
m, T

q−1
1 , . . . , T q−1

m) = 0
with respect to (wq

1 , . . . , w
q
m), i = 1, . . . ,m

solve F
(T)
i (wq

1 , . . . , w
q
m, T

q
1 , . . . , T

q
m) = 0

with respect to (T q
1 , . . . , T

q
m), i = 1, . . . ,m

In other words, we first solve (7.37) with respect to w, using the most recently
computed Ti values in the formulas for µ. Thereafter we solve (7.38) with
respect to T , using the most recently computed wi values in the nonlinear
term on the right-hand side.

The equation for w is still nonlinear and can be solved by, e.g., a Newton-
Raphson method or Successive Substitutions. Jacobi’s method is similar to
the Gauss-Seidel approach, except that we use the old wq−1

i values when
solving for T in iteration q, see Algorithm 7.2.

Algorithm 7.2.

Jacobi-type method for systems of nonlinear PDEs.

for q = 1, 2, . . . until convergence

solve F
(w)
i (wq

1, . . . , w
q
m, T

q−1
1 , . . . , T q−1

m) = 0
with respect to (wq

1 , . . . , w
q
m), i = 1, . . . ,m

solve F
(T)
i (wq−1

1 , . . . , wq−1
m , T q

1 , . . . , T
q
m) = 0

with respect to (T q
1 , . . . , T

q
m), i = 1, . . . ,m

The attractive feature of the Jacobi or Gauss-Seidel iteration approach to
the nonlinear problem is that we only need to solve standard scalar PDEs.
The fully implicit approach, on the contrary, requires us to consider a system
of two PDEs with two unknowns per node, resulting in nonlinear algebraic
equations in 2m unknowns.

Let us explain the details of the Newton-Raphson method applied to the
fully implicit system of nonlinear algebraic equations. At each node i we have

two equations, F
(w)
i = 0 and F

(T)
i = 0, and two unknowns wi and Ti. The

total system has 2m equations and 2m unknowns. We order the equations as
follows.

F
(w)
1 = 0, F

(T)
1 = 0, F

(w)
2 = 0, F

(T)
2 = 0, . . . , F (w)

m = 0, F (T)
m = 0 . (7.48)

The corresponding numbering of the unknowns is

(w1, T1, w2, T2, . . . , wm, Tm)T . (7.49)

7.2. Fluid Flow and Heat Conduction in Pipes 647

This numbering gives smaller bandwidth compared with stacking together
all the w equations and unknowns first, followed by all the T equations and
unknowns, see the next exercise.

Exercise 7.8. .
As an alternative to the numbering of equations and unknowns in (7.48)–

(7.49) we consider

F
(w)
1 = 0, F

(w)
2 = 0, . . . , F (w)

m = 0, F
(T)
1 = 0, F

(T)
2 = 0, . . . , F (T)

m = 0 .
(7.50)

and
(w1, w2, . . . , wm, T1, T2, . . . , Tm)T . (7.51)

Find the bandwidth of the associated coefficient matrix for each of the two
numbering strategies (7.48)–(7.49) and (7.50)–(7.51) by considering a 2D
lattice domain with bilinear elements and a line-by-line node numbering.

You can assume for simplicity that the equations F
(w)
i = 0 and F

(T)
i = 0 are

linear, although the same reasoning can easily be extended to the nonlinear
case as well. �

From each node i we get a 2×2 linear system that is to be included in the
element matrix and vector and thereafter assembled into the global 2m×2m
system. In the Newton-Raphson method the local 2× 2 system reads

∂F
(w)
i

∂wj

∂F
(w)
i

∂Tj

∂F
(T)
i

∂wj

∂F
(T)
i

∂Tj

(
δwq

j

δT q
j

)
=

(
−F (w)

i

−F (T)
i

)
. (7.52)

In the matrix and the right-hand side we evaluate the expressions using old
values, wq−1 and T q−1:

F
(w)
i ≡

∫

Ω

(
µT (T q−1)µw(γ̇q−1)∇wq−1 · ∇Ni − βNi

)
dΩ, (7.53)

F
(T)
i ≡

∫

Ω

(
∇T q−1 · ∇Ni − κ−1µT (T q−1)µw(γ̇q−1)(γ̇q−1)2Ni

)
dΩ

+

∫

∂Ω7

hT (T q−1 − Ts)NidΓ . (7.54)

In the case where µw(γ̇) = γ̇n−1, the derivatives become as follows.

∂F
(w)
i

∂wj
=

∫

Ω

(
µT (T q−1)(n− 1)µw(γ̇q−1)

n−2 ∂γ̇

∂wj
∇wq−1 · ∇Ni +

µT (T q−1)µw(γ̇q−1)
n−1∇Nj · ∇Ni

)
dΩ,

648 7. Coupled Problems

∂F
(w)
i

∂Tj
=

∫

Ω

(
∂µT

∂Tj
µw(γ̇q−1)

n−1∇Ni · ∇wq−1

)
dΩ,

∂F
(T)
i

∂wj
= −

∫

Ω

(
κ−1µT (T q−1)(n+ 1)µw(γ̇q−1)

n
Ni

∂γ̇

∂wj

)
dΩ,

∂F
(T)
i

∂Tj
=

∫

Ω

(
∇Ni · ∇Nj − κ−1 ∂µT

∂Tj
µw(γ̇q−1)

n+1
Ni

)
dΩ

+

∫

∂Ω7

hTNiNjdΓ,

∂γ̇

∂wj
= µw(γ̇q−1)

−1∇Nj · ∇wq−1,

∂µT

∂Tj
= −αµT (T q−1)Nj .

In the Successive Substitution (Picard iteration) method we also have a
2× 2 system at each node:

(
Aww AwT

ATw ATT

)(
wq

j

T q
j

)
=

(
bw
bT

)
, (7.55)

where

Aww ≡
∫

Ω

µT (T q−1)µw(γ̇q−1)∇Ni · ∇Nj dΩ,

bw ≡ β
∫

Ω

NidΩ,

ATT ≡
∫

Ω

∇Ni · ∇Nj dΩ +

∫

∂Ω7

hTNiNj dΓ,

bT ≡
∫

Ω

κ−1µT (T q−1)µw(γ̇q−1)(γ̇q−1)2)dΩ +

∫

∂Ω7

hTNiTsdΓ,

AwT ≡ 0,

ATw ≡ 0 .

(We remark that the result AwT = ATw = 0 is not a general property of this
method.)

A Continuation Method. We know that n = 1 is an easy problem to solve,
whereas convergence problems are expected as n approaches zero or n is sig-
nificantly greater than unity. This points in the direction of formulating a

7.2. Fluid Flow and Heat Conduction in Pipes 649

continuation method, see Chapter 4.1.8, using λ = (1−n)/(1−np) as contin-
uation parameter, with np being the target value of n for the computations.
By defining a set of proper values λ0 = 0 < λ1 < · · · < λp = 1 of λ, and using
the solution obtained with λi−1 as initial guess for the nonlinear solvers in
the problem corresponding to λi, we might hope to establish convergence for
small n values. The α parameter can be used as continuation parameter in a
similar way.

Remark. From the theory and practice of iterative methods for linear systems
it is known that Jacobi’s method is generally slower than Gauss-Seidel iter-
ation. This is intuitively expected in the present nonlinear situation as well,
since the Gauss-Seidel algorithm incorporates new approximations as soon as
they are available. Nevertheless, when applying these iterative strategies at
the PDE level, Jacobi iteration sometimes have important advantages with
respect to conservation properties of the PDEs. For example, a Jacobi method
conserves mass in multi-phase reactive flow problems. This is occasionally a
fundamental property of the numerical formulation, although it is not of that
importance in the present relatively simple flow case.

7.2.3 Implementation

Looking back at the mathematical and numerical model, there are several
open questions regarding the choice of constitutive laws and nonlinear itera-
tion strategies. The influence of the element type and preconditioning strate-
gies for the linear systems is also not known. This calls for flexibility in the
implementation, as we have emphasized many other places in this book. More
specifically, a flexible simulation tool must deal with the following aspects of
the present problem.

– It must be easy to switch between the Gauss-Seidel, Jacobi, or fully im-
plicit solution strategies.

– The nonlinear algebraic equations in the inner iterations of the Gauss-
Seidel, Jacobi, or fully implicit methods must be solved by either Newton-
Raphson iteration or Successive Substitutions.

– Several methods must be available for solving the linear systems arising
in each nonlinear iteration.

– Any combination of solution strategies for nonlinear and linear equations
must be easily available at run time.

– The implementation must work for any finite element grid with any
isoparametric element.

– It should be easy to redefine boundary indicators such that the solver
can also handle channel flow of Poiseuille or Couette type. Analytical
solutions are known for these flow cases and will therefore constitute an
important tool in the verification of the implementation.

650 7. Coupled Problems

The purpose of the present section is to introduce a software design for
the coupled heat-fluid flow simulator that meets the flexibility requirements
listed above. Despite the fact that the present problem is a quite simple cou-
pled problem, the basic software design principles are general and applicable
to much more complicated systems of PDEs. The material to be presented
constitute a further development and improvement of the ideas from [19].

We assume that the reader is familiar with standard finite element-based
PDE solvers in Diffpack. Our basic idea for the present simulator is to de-
velop independent standard Diffpack solvers for the momentum and energy
equations and then couple these solver classes. This will work when the PDE
system is solved by Gauss-Seidel or Jacobi iteration strategies. We follow the
design from Chapter 7.1 and emphasize the possibility to pull the classes apart
at any time such that we can check that each PDE in the system is correctly
solved when its coefficients are not coupled to other equations. Moreover, we
present a way of programming constitutive laws and other common relations
in a separate module that can be accessed by all PDE solvers in the system.
Chapter 3.5.7 provides valuable background information for the design issues
discussed below.

The source code of the coupled heat-fluid flow solver is located in the
directory src/app/Pipeflow.

The Momentum Equation Solver. Equation (7.37) is implemented in a class
Momentum, but with a simple prescribed form of µ to assist the debugging and
verification of the implementation. Introducing a virtual function viscosity

for evaluating µ, Momentum can let viscosity return a constant, whereas sub-
classes of Momentum can implement viscosity with a call to physically relevant
viscosity models. Class Momentum is similar to class NlHeat1 from Chapter 4.2,
but with automatic report generation facilities built into the class. The non-
linear solver in Momentum is a NonLinEqSolvers object, which has the same
behavior as class NonLinEqSolver and its subclasses, but one can switch be-
tween different iteration methods within a call to solve. For example, one
can apply Successive Substitutions for the first iterations and then switch
to Newton-Raphson for hopefully faster convergence when the approximate
solution is sufficiently close to the exact solution. A NonLinEqSolvers object
typically contains an array of NonLinEqSolver handles; here we use two such
handles, pointing to a NewtonRaphson and a SuccessiveSubst object.

The NonLinEqSolver class offers a function continuationSolve that im-
plements the continuation method in Algorithm 4.3 on page 501. We make
use of this functionality in the Momentum class. The NonLinEqSolver prm ob-
ject can read a set of continuation parameters from the menu, and if there
are more than one parameter, the solve function in NonLinEqSolver calls the
continuationSolve function. Each time this latter function invokes an ordi-
nary nonlinear solve phase, it first calls a virtual function

void beforeSolveInContinuationMethod (real lambda, int niter);

7.2. Fluid Flow and Heat Conduction in Pipes 651

in the simulator class. The purpose of this function is to use the information
about the current value of the continuation parameter, Λ ∈ [0, 1] (lambda), for
adjusting the corresponding physical continuation parameter in the simulator
prior to computing the linear systems in each nonlinear iteration. Continua-
tion methods are hence available from the NonLinEqSolver tool by just writing
a small additional function for linking Λ ∈ [0, 1] to a physical parameter (here
n = 1− (1−np)Λ). The niter parameter reflects the current number of iter-
ations in the continuation method itself.

Class MomentumS, which is a subclass of Momentum, implements a new ver-
sion of the viscosity function, where a real generalized Newtonian viscos-
ity model is used: µ = µw(γ̇)µT (T). To this end, MomentumS needs to ac-
cess the temperature field. We will come back to the details on how this is
achieved technically. One could also think of several stepwise refinements of
class Momentum, for example, first making a subclass for a prescribed variable
coefficient µ, then a subclass for a nonlinear µ, before the coupling to the real
physical viscosity model is realized. The purpose of each step is to create test
problems of increasing complexity as this will aid the debugging of the final
momentum equation solver. We refer to Chapter 3.5.7 for a detailed expla-
nation of the ideas of making a class hierarchy for solving various versions of
∇ · [µ∇w] = −β.

The energy equation solver is also realized as a class hierarchy, with class
Energy as a stand-alone solver for ∇2T = f , f = const, and subclass EnergyS

with the physically relevant f = γ̇2µw(γ̇)µT (T).

Software Components for the Coupled System of PDEs. The PDEs are cou-
pled through the coefficients in the equations. We represent these coefficients
by virtual functions taking a FiniteElement object as argument, e.g.,

void Momentum::viscosity (const FiniteElement& fe);

With the fe variable at hand we can perform evaluation of explicit formulas
as well as efficient interpolation in Diffpack’s field objects (see pages 302 and
479 for more information).

The base class solvers have simple versions of the virtual coefficient func-
tions, often corresponding to constant coefficients, such that the solver can
be tested separately from the other solvers. Subclasses implement more com-
plicated forms of the variable coefficients and couple the coefficients to other
solvers. This coupling can be accomplished by calling a module that holds
formulas for µw and µT .

The coefficients in the original PDEs involve in general a set of constitu-
tive laws that are common to several PDEs. This is the case in the present
problem, where both PDE solvers need the quantities γ̇, µw(γ̇), and µT (T).
All common relations for a system of PDEs can be collected in a separate
class, here called CommonRel. This class contains physical parameters like µ0,
µ∞, T0, α, n, and τ0, which are initialized using the menu system. In addi-
tion, class CommonRel needs to interpolate and store the values of w, γ̇, T , ∇γ̇,

652 7. Coupled Problems

and so on, to avoid unnecessary recomputation of mathematical expressions.
A function tabulate performs this task and must be called prior to functions
for calculating µw(γ̇) and µT (T). The latter functions are virtual in class
CommonRel and can be redefined in subclasses that implement different physi-
cal viscosity models. Class CommonRel implements the widely used power-law
viscosity model, in the slightly extended Sisko form (7.42). A subclass Cross

implements the Cross model (7.43). Class CommonRel is sketched below.

class CommonRel : public HandleId
{
public:
real mu_0; // µ0

real mu_inf; // µ∞

real T_0; // T0

real alpha; // α
real n; // power law exponent n
real tau; // τ0

Handle(FieldFE) w, T; // w(x, y) and T (x, y)

// tabulated values at a point:
real w_pt, T_pt; // w and T
Ptv(real) dw_pt; // ∇ w
real gamma_pt; // γ̇
real gamma_n; // γ̇n

real gamma_nm1; // γ̇n−1

Vec(real) grad_gamma_dot_gradN; // ∇γ̇ · ∇Nj

virtual void tabulate (const FiniteElement& fe);

virtual real muw () const; // fast evaluation of µw

virtual real muT () const; // fast evaluation of µT

real viscosity () const { return muw()*muT(); }
real dissipation () const { return viscosity()*sqr(gamma_pt); }
...

};

Class CommonRel is derived from HandleId because we want to access CommonRel
objects through a handle (cf. page 106).

Newton-like methods require differentiation of the quantities in the con-
stitutive relations with respect to the nodal unknowns wj and Tj . In a general
case with a nonlinear function f(u, u,1, u,2, u,3), u ≈

∑n
j=1 Njuj , one needs

∂

∂uj
f(u, u,1, u,2, u,3) =

∂f

∂u
Nj +

d∑

k=1

∂f

∂u,k
Nj,k,

which is conveniently implemented in a function returning the vector ∂f/∂uj

at an evaluation point inside the element. Here, j = 1, . . . , ne, where ne is the
number degrees of freedom of u in an element. Class CommonRel hence offers
the functions dmuw dwj for ∂µw/∂wj and dmuT dTj for ∂µT /∂Tj .

7.2. Fluid Flow and Heat Conduction in Pipes 653

class CommonRel : public HandleId
{
public:
...

virtual void dmuw_dwj (Vec(real)& ddwj, const FiniteElement& fe);
virtual void dmuT_dTj (Vec(real)& ddTj, const FiniteElement& fe);

void viscosity_dwj (Vec(real)& ddwj, const FiniteElement& fe)
{ dmuw_dwj(ddwj,fe); ddwj.mult(muT()); }

void viscosity_dTj (Vec(real)& ddTj, const FiniteElement& fe)
{ dmuT_dTj(ddTj,fe); ddTj.mult(muw()); }

...
};

So far we have developed separate solvers for the momentum and energy
equation, in addition to a common pool of relations that are needed in both
PDEs. The final step is to make a class Manager, which holds the momen-
tum and energy equation solvers, the common data structures (grid, linear
system), and a CommonRel object. The main purpose of class Manager is to
administer the whole solution process.

class Manager : public SimCase

{

public:

Handle(EnergyS) energy_eq;

Handle(MomentumS) momentum_eq;

Handle(CommonRel) constrel;

// common data structures for the momentum and energy eq solvers:

Handle(GridFE) grid;

Handle(SaveSimRes) database;

Handle(LinEqAdmFE) lineq;

virtual void scan ();

virtual void define (MenuSystem& menu, int level=MAIN);

virtual void solveProblem ();

virtual real solveThisIteration ();

...

};

The define and scan functions put the local data, like grid, database, lineq,
and parameters for the outer Gauss-Seidel/Jacobi nonlinear iteration, on the
menu and initializes these data structures. Thereafter the define and scan

functions call the define and scan functions in the momentum and energy
equation solvers. The solveProblem function implements the nonlinear outer
iteration method. This is basically a loop with calls to solveThisIteration.
The latter function calls up solve functions in the momentum and energy

654 7. Coupled Problems

equation solvers (in sequence) to compute new w and T fields. The solve

functions have the same purpose as solveProblem in the a stationary solver
like Poisson1 in Chapter 3.2, but the current solution should not be dumped
to file, because we do not yet know if the solution has converged.

MomentumS

Energy

CommonRel

.....Cross

Manager

Momentum

EnergyS

Fig. 7.4. Relation between solver classes and the pool of common relations
in the simulator for coupled heat and fluid pipe flow. Solid arrows indicate
inheritance (“is-a” relationship). Dashed arrows indicate pointers (“has-a”
relationship).

The Momentum solver applies boundary indicators 1 and 2 for indicating
the conditions w = 0 and w = W1. Also in the Energy solver, indicators 1
and 2 are used to set Dirichlet conditions, here T = 0 and T = T1. A major
problem is now that these two classes are supposed to use the same grid, but
the boundary indicators for w and T might differ. A solution is to use two
Indicators objects in the Manager class, one for the w conditions and one for
the T conditions. The manager then attaches the w indicators to the grid,
before calling the velocity solver, and thereafter attaches the T indicators to
the grid, before computing the temperature. On the menu the manager offers
two items for redefining the original grid boundary indicators to the proper
indicators required by the Momentum and Energy solvers. The source code of
class Manager provides further details.

An overview of the various classes in the heat-fluid flow simulator is pre-
sented in Figure 7.4. We are now able to explain how MomentumS can override
the viscosity function in order to compute a physically relevant expression
for µ:

class MomentumS : public Momentum

7.2. Fluid Flow and Heat Conduction in Pipes 655

0 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

velocity

0

0.00147

0.00295

0.00442

0.00589

0.00737

0.00884

0.0103

0.0118

0.0133

0.0147

0.0162

0.0177

0.0192

0 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

temperature

0

1.39e−05

2.78e−05

4.17e−05

5.56e−05

6.95e−05

8.34e−05

9.74e−05

0.000111

0.000125

0.000139

0.000153

0.000167

0.000181

0 1
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Fig. 7.5. Coupled heat and fluid flow in a straight pipe. (a) w(x, y) in a
cross section; (b) T (x, y) in a cross section. A power-law viscosity model with
n = 0.8 and α = 0 was used.

656 7. Coupled Problems

{

Manager* manager;

virtual real viscosity (const FiniteElement& fe)

{ return manager->constrel->viscosity(); }

...

};

The Fully Implicit Simulator. It would be advantageous to combine indepen-
dent solvers for each PDE also in the fully implicit case, but this is technically
more difficult. However, using the Diffpack module for generalized and mixed
finite element methods, the previously described software design can be ap-
plied also to the fully implicit solver, but we will not present the details here.
Instead, we realize the fully implicit solution method in class FullyImplicit,
where the two PDEs are tightly coupled also in the implementation. Recall
that the nonlinear algebraic equation system has two unknowns at node no. i
(wi and Ti). The related book-keeping is managed by the DegFreeFE object,
much in the same way as we did in the elasticity solver in Chapter 5.1 and
the Navier-Stokes solver in Chapter 6.3. The integrands function in class
FullyImplicit builds the element matrix and vector in terms of blocks as
explained in Chapters 5.1 and 6.3. The reader is encouraged to study the
numerics of the fully coupled formulation and the corresponding implemen-
tation of the integrands function. The rest of class FullyImplicit is some kind
of a sum of class Momentum–MomentumS and Energy–EnergyS. Class CommonRel is
of course a valuable tool also in the fully implicit solver.

Without doubt, it is considerably more difficult to code and especially
debug class FullyImplicit compared to the more modular approach of the
classes Momentum, Energy, and Manager. An effective implementation strategy
for a fully implicit solver is therefore to first establish a working sequential
solver using the component-based software design described in this chapter
and then utilize parts of the code and results from test problems when de-
veloping a separate implicit simulator.

The source code of the pipe flow simulator employs some constructs that
are not completely described in this book. However, the material here gives
an overview of the problem and a motivation for the basic features of the
software design. Remaining details can be looked up in the man pages. We
recommend readers who are interested in a modular approach for solving
system of PDEs to study the source code of the pipe flow simulator in detail.

More information on the software design advocated in this chapter can
be found in the papers [57,58,66,76,102]. These references cover free surface
problems in injection molding, level-set methods in groundwater flow, coupled
flow, deformation, and heat transfer in geological basins, and a finite element-
based framework for Navier-Stokes solvers.

7.3. Projects 657

7.3 Projects

7.3.1 Transient Spherical-Symmetric Thermo-Elasticity

Mathematical Problem. We address the following one-dimensional initial-
boundary value problem in this project:

%C
∂T

∂t
=

1

r2
∂

dr

(
kr2

∂T

∂r

)
, (7.56)

∂

∂r

(
(λ+ 2µ)

∂u

∂r

)
+ 2

∂

∂r

(
λ
u

r

)

+ 4µ
1

r

(
∂u

∂r
− u

r

)
=

∂

∂r
(α(3λ+ 2µ)(T − T0)) , (7.57)

T (a, t) = Ti, (7.58)

T (b, t) = T0 +A sinωt, (7.59)

(λ(1) + 2µ(1))
∂u

∂r

∣∣∣∣
r=a

+ 2λ(1)u(a, t)

a
= −pi + α(1)(3λ(1) + 2µ(1))×

(Ti − T0), (7.60)

(λ(2) + 2µ(2))
∂u

∂r

∣∣∣∣
r=b

+ 2λ(2)u(b, t)

b
= α(2)(3λ(2) + 2µ(2))A sinωt,(7.61)

T (r, 0) = f(r), (7.62)

where all the variable coefficients are positive and piecewise constant:

%(r) =

{
%(1), a ≤ r ≤ c,
%(2), c < r ≤ b (7.63)

C(r) =

{
C(1), a ≤ r ≤ c,
C(2), c < r ≤ b (7.64)

k(r) =

{
k(1), a ≤ r ≤ c,
k(2), c < r ≤ b (7.65)

λ(r) =

{
λ(1), a ≤ r ≤ c,
λ(2), c < r ≤ b (7.66)

µ(r) =

{
µ(1), a ≤ r ≤ c,
µ(2), c < r ≤ b (7.67)

α(r) =

{
α(1), a ≤ r ≤ c,
α(2), c < r ≤ b (7.68)

Physical Model. The problem (7.56)–(7.62) models the temperature T (r, t)
and the radial deformation u(r, t) in a hollow spherical container built of
two elastic materials. Material 1 and 2 occupy the regions a ≤ r ≤ c and
c < r ≤ b, respectively. A gas at pressure pi is stored in the container and
leads to a loading on the materials. There is a temperature difference between

658 7. Coupled Problems

the gas and the outer oscillating temperature T (b, t) = T0 + A sinωt. This
temperature difference also results in a load on the materials. The tempera-
ture distribution is governed by (7.56), while (7.57) is the governing equation
for the elastic deformations and corresponding stress state. The parameter
% is the density of the materials, C is their heat capacity, k is the thermal
conduction coefficient, λ and µ are the elastic properties of the materials,
whereas α is a thermal expansion coefficient. The differential equations are
formulated with variable coefficients, which makes it unnecessary to explicitly
introduce interface conditions at r = c.

We remark that (7.57) is an equilibrium equation, with no time derivative
∂2u
∂t2 . Although the problem is transient, the temperature variations at t = b
are not assumed to be so fast that they introduce elastic vibrations and the
need to include a time-derivative term.

The problem (7.56)–(7.62) can be derived from the general energy equa-
tion for elastic solids and the general equilibrium for linearly elastic solids.
The key assumptions are radial displacement and spherical symmetry.

Numerical Method. Introduce a θ-rule in time and a Galerkin finite element
method in space. Integrate over the whole spherical container when deriving
the weighted residual form (cf. Project 2.6.2). Calculate the element matrices
and vectors by hand and assemble the system of linear equations arising from
the differential equations (7.56) and (7.57). Since u does not enter (7.56), we
can at each time level first solve (7.56) to find the temperature T and then
solve (7.57) to find the radial displacement u. When u is known, one can
differentiate u to find the stress components

σrr = (λ+ 2µ)
∂u

∂r
+ 2λ

u

r
− α(3λ+ 2µ)A sinωt,

σθθ = σφφ = λ
∂u

∂r
+ 2(λ+ µ)

u

r
− α(3λ+ 2µ)A sinωt .

Analysis. With some simplifications, we can find an analytical solution of
the problem (7.56)–(7.62). Consider constant material properties throughout
the container (i.e., no variable coefficients) and sufficiently slow temperature
variations at r = b to neglect the time derivative in (7.56). Solve (7.56) and
(7.57) in this case (hint: T, u ∼ rq). The solution can be used for partial
verification of the implementation.

Implementation. The system of algebraic equations for T can be solved by
slightly modifying the Heat1D simulator from Chapter 1.7.6. The same type
of simulator can also be used for the equations governing u. Compute σrr

and σθθ = σφφ in each element and dump a plot of these functions without
smoothing (dump coordinates of the corresponding polygon to a CurvePlot

object). Note that σθθ = σφφ is discontinuous at r = c (because λ and µ are

7.3. Projects 659

discontinuous; σrr is continuous at r = c because the stress vector must be
continuous).

The main point with this project, besides the derivation of the discrete
equation by a finite element method in a spherical coordinate system, is to
couple two independent simulators for the T and u problems. To accomplish
this, use the method outlined in the present chapter. Derive two subclasses
with two-way pointers to a manager class and let the manager steer the
solution process.

Test the compound solver using the analytical solution developed above.
Thereafter, present plots of T , u, σrr, and σθθ in a case with a thin, stiff,
high-conducting inner material (k(2) � k(1), λ(1) � λ(2), µ(1) � µ(2), c−a�
c− b). Run the simulator until the initial temperature has faded out and the
solution has reached a steady state driven by the outer sinusoidal temperature
variation.

7.3.2 Transient 2D/3D Thermo-Elasticity

Mathematical Problem. The current project aims at solving the PDE system
(3.47) and (5.10), where the u in (3.47) is identical to the temperature T in
(5.10).

Physical Model. The elasticity solver in Chapter 5.1 is able to handle the
effect of a general thermal “load” T (x). A time-dependent temperature field
T (x, t) is also allowed in the formulation of the governing equations, as long
as the time rate of change of T is not so fast that accelerations are induced in
the elastic medium. In general, the temperature field T (x, t) must be found
from a heat equation. The aim of this project is therefore to couple the
elasticity solver Elasticity2 from Chapter 5.1 with the heat equation solver
Heat2 from Chapter 3.11, using the software techniques of Chapters 7.1 or
7.2. The result is a transient thermo-elastic solver.

We assume that the (rate of) elastic deformations do not modify the heat
equation, such that (3.47) is a sufficient model for the temperature evolution.
That is, (5.10) depends on (3.47), but (3.47) is independent of (5.10). A
sequential solution approach is hence exact.

Implementation. The coupling of the classes Elasticity2 and Heat2 can fol-
low the recipe for coupling in Chapter 7.1.3. Notice that the situation is
simpler than in Chapter 7.2 as there is no need for a common pool of fields
and constitutive relations; instead the T handle in class Elasticity2 can just
be bound to the u field in class Heat2. Create an administering class that
has an Elasticity2 and a Heat2 solver as members. At each time level, we
first compute the temperature field in the Heat2 solver and then compute
the displacement field and stresses in the Elasticity2 solver. It is advanta-
geous if the managing class distributes a common grid, a SaveSimRes object,
and a TimePrm object to the two solvers (i.e. the define and scan functions

660 7. Coupled Problems

in classes Elasticity2 and Heat2 should be generalized as demonstrated in
Chapters 7.1.3 and 7.2.3).

The field name of u in class Heat2 should be altered to, e.g., temperature
(by the manager) to distinguish it from Elasticity2’s u field in the database.
Class Heat2 may also need to implement the functions timeLoopSetUp and
timeLoopFinish as explained for the Squeeze class in Chapter 7.1. Different
conventions for the boundary indicators are used in the Elasticity2 and
Heat2, but the ideas on page 654 can be applied to overcome this problem. The
report generation facilities in classes Elasticity2 and Heat2 can be combined
to a single report by following the source code of class Manager in the pipeflow
simulator from Chapter 7.2.

A basic test problem for verification of the implementation is to consider a
box or rod with no normal displacement at two ends and the other sides free of
stress. Develop a formula for the stress in the body as a function of a uniform
temperature. Arrange the temperature boundary conditions such that the
temperature becomes constant in space, but linearly varying in time. (The
solvers should then reproduce stress and temperature variations exactly.)

Another suitable test problem is transient thermal loading of a hollow
cylinder. The elastic solution for a general temperature variation is listed in
[140, Ch. 13]. The temperature field must be found from solving the tran-
sient heat equation in radial coordinates analytically8, with some appropri-
ate initial and boundary conditions. A simpler test problem is described in
Project 7.3.1.

Computer Experiments. Consider the welding model as explained in Chap-
ter 3.11.4, now coupled with elastic deformations. Suggest a suitable geome-
try, assign stress free conditions at all surfaces of the body, make a scripting
interface for efficient handling of simulation and visualization, and demon-
strate how the parameters in the welding model from Chapter 3.11.4 affect
the stress picture in the elastic material.

7.3.3 Convective-Diffusive Transport in Viscous Flow

Mathematical Problem. This project concerns computation of convective-
diffusive transport, governed by (6.1), in a fluid whose motion is computed
from the Navier-Stokes equations (6.50). That is, we shall solve the system
(6.50) and (6.1), where the former couples to the latter through the velocity
field v.

Implementation. The coupling can be realized by combining the CdBase solver
from Chapter 6.1 and the NsPenalty1 solver from Chapter 6.3, using the
software methodology from Project 7.3.2. As the present coupling is almost

8 The solution involves Bessel functions, but fortunately the standard C math
library offers some Bessel functions, see math.h.

7.3. Projects 661

identical to the one in Project 7.3.2, we recommend to study the text in that
project and understand the software details before carrying out the current
project. We assume that the velocity field is time-dependent such that both
equations must be solved at each time level. (If the velocity field is stationary,
it is easier to compute this by the NsPenalty1 solver and load the field into
the CdBase solver.)

As test problem for program verification one can try channel flow in a 2D
geometry [0, 1]× [−1, 1], where the concentration u of a specie in the flow is 0
initially, but with u = 0.1 at the inlet boundary for all times t > 0. Without
diffusion, the specie will be passively transported along the streamlines, that
is, u(x, y, t) = 1−H(x− U0(1− y2)t), where U0(1− y2) is the inlet velocity
profile and H is the Heaviside function. (We remark that it will be hard to
approximate u(x, y, t) well).

7.3.4 Chemically Reacting Fluid

Mathematical Problem. The current project considers the temperature dis-
tribution in a chemically reacting fluid. A simplified mathematical model,
where a chemical specie with concentration a is transformed into another
specie, consists of a system of two reaction-diffusion equations:

∂a

∂t
= D∇2a− sam exp

(
− E

RT

)
, (7.69)

%C
∂T

∂t
= κ∇2T +Qsam exp

(
− E

RT

)
. (7.70)

The functions a(x, t) and T (x, t) are primary unknowns, while s, m, E, R,
D, %, C, κ, and Q are viewed as prescribed constants.

Physical Model. Equation (7.69) reflects conservation of the specie mass,
where D∇2a models transport by diffusion and the last term models mass
reduction due to chemical reactions. Equation (7.70) is a standard energy
equation where the effect of heat generation from chemical reactions is taken
into account. The interpretation of the constants in the model is as follows:
m is the order of the reaction, E is the activation energy, R is the universal
gas constant, s is an adjustable constant, D is the diffusion coefficient of the
chemical specie (according to Fick’s law), % is the density of the fluid, C
is the heat capacity of the fluid, κ is the heat conduction coefficient in the
fluid (according to Fourier’s law), and Q is the heat released by the chemical
reactions. A brief description of the model can be found in [88, p. 238].

We remark that (7.69) and (7.70) can be extended to mass and energy
transport in a flowing fluid by including appropriate convection terms. If
the flow field is unknown, the equations for a and T must be coupled to the
Navier-Stokes equations. Using the suggested software design and a sequential
solution method, these extensions of the model are easily accomplished. One

662 7. Coupled Problems

will often also include more than one substance. This gives rise to a series
of equations like (7.69) for S substances a1, . . . , aS . Such extensions are also
quickly incorporated in our suggested design of the simulator.

Numerical Method. The system of PDEs can be discretized by a finite element
method in space and a θ-rule in time. Develop complete expressions for the
integrands in the element matrices and vectors, using both a squential and a
fully implicit method (follow the ideas in Chapter 7.2.2). Use the Successive
Substitution method for solving the nonlinear systems of equations.

Implementation. The implementation can make use of the solvers described
in Chapter 7.2.3. The modifications consists in adding functionality for the
time-dependency and changing the integrands functions. In the sequential
solution approach, we make separate solvers for (7.69) and (7.70), and each
of these can be tested separately as explained in Chapter 7.2.3. The source
terms in (7.69) and (7.70) are conveniently implemented in a CommonRel class
such that it is easy at a later stage to include additional models for the
chemical reactions. Also make a fully implicit solver for the two PDEs.

Computer Experiments. Limit the computational study to a rectangular 2D
domain with ∂a/∂n = ∂T/∂n = 0 on the boundary. The initial concentration
a can be taken as a Gaussian bell function (exploit symmetry and place
the center of the bell at the lower left corner of the domain). The initial
temperature can be constant. Try to assess the impact of the parameters
m, E, κ, and D. Investigate the relative efficiency and stability of the fully
implicit versus the sequential solution strategy.

Appendix A

Mathematical Topics

A.1 Scaling and Dimensionless Variables

Initial-boundary value problems, arising from physical problems, frequently
contain many parameters. By introducing dimensionless independent and de-
pendent variables, the number of physical parameters can often be reduced
because only certain combinations of the parameters appear in the resulting
equations. Moreover, by finding the right scales when converting variables to
dimensionless form, it is possible to precisely identify the relative size of the
various terms in the equations. This is crucial for simplifying models by omit-
ting terms or invoking special approximation techniques such as perturbation
methods. Successful scaling relies on physical understanding of the problem
in question, although the technical steps of the scaling procedure are simple.
These steps are briefly explained in the following. More information about
scaling can be found in [85, Ch. 6.3], [44, Ch. 2], or [87, Ch. 1.3].

Scaling a Two-Point Boundary-Value Problem. Our first example concerns
pressure-driven steady viscous flow between two flat plates, x = a and x = b.
Let u(x) be the velocity in the direction of the planes, let β be the magnitude
of the pressure gradient, and let µ denote the viscosity of the fluid. From the
Navier-Stokes equations one can derive the following model for u(x):

d2u

dx2
= −β

µ
, u(a) = u(b) = 0 . (A.1)

The scaling consists of introducing dimensionless independent and dependent
variables. In general, a quantity q is made dimensionless by

q̄ =
q − q0
qc

,

where q0 is a characteristic reference value and qc is a characteristic magni-
tude of q−q0. Note that if q is measured in a certain unit (meter for instance),
q0 and qc must be measured in the same unit. Thus, the units cancel and q̄
becomes dimensionless.

The ultimate goal of the scaling is to obtain a unit magnitude of q̄. Phys-
ical insight into the problem is usually required to find the right scale qc. In
the present problem we can introduce

x̄ =
x− a
b− a , ū =

u

uc
,

664 A. Mathematical Topics

where uc is the (unknown) maximum velocity or average velocity. Sometimes
it can be convenient to just perform the scaling and postpone the precise
estimation of some scales. Noting that

du

dx
=
d(ucū)

dx̄

dx̄

dx
=

uc

b− a
dū

dx̄
,

we can derive the dimensionless version of the boundary-value problem (A.1).

d2ū

dx̄2
= −α, α = β

(b− a)2
µuc

, ū(0) = ū(1) = 0, (A.2)

where α is a dimensionless parameter.
How can we estimate uc? The easiest way in the present problem is to

derive the exact solution of (A.1): u(x) = β(x−a)(b−x)/(2µ). The maximum
value of u(x) appears at the mid point x = (a + b)/2, which results in uc =
β(b − a)2/(8µ), or α = 8. Normally, we do not know any relevant exact
solutions.

Sometimes we know a maximum principle for the PDE problem in ques-
tion. For example, the solution of the scaled problem (A.2) has the following
property see [143, Ch. 1]: supx̄∈[0,1] |ū(x̄)| ≤ α/8. The inequality is sharp
so we may conclude that a unit maximum value of ū corresponds to taking
α = 8. With α = 8 we have the velocity scale uc = β(b− a)2/(8µ).

A more general approach to determining uc is to argue as follows. If the
scaling is successful, u and its derivatives should have a magnitude of order
unity. From the PDE (A.2) we easily see that choosing α = 1 gives a unit size
of ū′′. This determines the scale as uc = β(b − a)2/µ. Now |ū| ≤ 1/8 (from
the analytical solution), but one can claim that |ū| still has a magnitude of
order unity. The key point is to avoid a very large or very small |ū|.

What Has Been Gained? The original problem (A.1) involved four physi-
cal input parameters to the problem: a, b, β, and µ. It is thus appropri-
ate to write the solution as u(x; a, b, β, µ). To obtain a complete description
of this problem, by numerical experimentation, it is necessary to investi-
gate the u(x; a, b, β, µ) function in a four-dimensional parameter space. The
dimensionless version of the boundary-value problem does not involve any
physical parameters. A single graph of ū(x̄) contains all information about
u(x; a, b, β, µ), because

u(x; a, b, β, µ) =
β(b− a)2

8µ
ū(
x− a
b− a) .

Numerical investigation of the original function u(x; a, b, β, µ), by letting each
of the parameters a, b, β, and µ vary on (say) ten levels, requires 10,000
computer experiments. A single experiment with the scaled problem produces
the same (and much more) information in a dramatically clearer way.

A.1. Scaling and Dimensionless Variables 665

We remark that after the scaling is carried out, it is common to omit the
bars (or other labels) in the dimensionless quantities. That is, one proceeds
with x, u, etc. as the scaled variables and writes (A.2) simply as

d2u

dx2
= −1, u(0) = u(1) = 0,

if we choose the scaling uc corresponding to α = 1.

Increasing the Complexity. The heat conduction problem from Chapter 1.3.1
is a natural extension of the problem (A.1):

− k d
2u

dx2
= s(x), u(0) = Ts, −ku′(b) = −Q. (A.3)

Again, x is scaled according to x̄ = x/b such that x̄ ∈ [0, 1]. We might
choose ū = (u− Ts)/uc, where the scale uc must be determined from insight
into the problem. A scaling of s is performed according to s̄ = s/sc, where
the characteristic value sc is taken as supx∈[0,b] |s(x)|, since s(x) is a known
function. With the special choice s(x) = R exp (−x/LR), as in Chapter 1.3.1,
we get that sc = R. These steps result in

− d2ū

dx̄2
= γs̄(x̄), γ =

b2R

kuc
, ū(0) = 0, ū′(1) =

bQ

kuc
. (A.4)

How should we choose uc? Of course, we could find the analytical solution
also in this case and choose uc as the maximum value of |u|. However, the
x value for which the maximum value occurs, depends on the parameters in
the problem. Furthermore, reasoning in this direction is likely to fail in more
complicated problems. We therefore argue more generally and determine uc

such that |ū| or its derivatives gets a magnitude of order unity according to
the scaled PDE problem. In the present case we can aim at having ū′(1) = 1,
which gives uc = bQ/k and

− d2ū

dx̄2
= γs̄(x̄), γ =

bR

Q
, ū(0) = 0, ū′(1) = 1 . (A.5)

This scaling could also arise from the following argument. Let Tb be the
unknown temperature at x = b. If the heat generation is not a dominating
effect, we expect that u will lie between the boundary values, such that uc can
be taken as Tb− Ts. A rough estimation of Tb can be based on the boundary
condition (Fourier’s law) −Q = −ku′(b), and then approximating u′(b) by
the finite difference (Tb − Ts)/b = uc/b. This gives uc = Qb/k and (A.5).

The scaled problem (A.5) ensures ū′(1) = 1, but if γ � 1, one can show
from the analytical solution of (A.5) (see Exercise A.1) that the maximum
value of |ū| is of order γ. In other words, fixing ū′(1) = 1 may result in very
large |ū| or |ū′′| values if bR � Q, i.e., the size of the heat generation term

666 A. Mathematical Topics

is typically much larger than the size of the boundary heat flux. Under such
circumstances we should base our scaling on a unit order of |ū′′|, implying
that γ = 1 and hence uc = b2R/k. The corresponding scaled problem reads

− d2ū

dx̄2
= s̄(x̄), ū(0) = 0, ū′(1) =

1

γ
, γ =

bR

Q
. (A.6)

This scaling is not relevant when γ � 1 since one can then show that |ū| and
|ū′| has the size of γ−1 (see Exercise A.1).

Through this example we have shown that a particular scaling may be
tied to a particular regime of the parameters in the problem. The problem
(A.6) is suitable for large γ, whereas the problem (A.5) handles small values
of γ. When γ ∼ O(1) both scalings are appropriate. The numerical example
at the end of Chapter 1.3.6 applies the formulation (A.5) to a case where
γ = 103. The resulting plot in Figure 1.3 shows that u is not at all of order
unity. Switching to the scaling in (A.6), which in fact is a matter of dividing
u in (A.5) by γ, leads to a solution whose maximum value is of order unity.

Any of our two scalings leads to a problem with one dimensionless pa-
rameter γ. To explore the model, we would compute curves ū(x̄; γ) for various
choices of γ and shapes of s̄(x̄). For the particular choice s(x) = R exp (−x/LR),
s̄(x̄) = exp (−βx̄), where β = b/LR is another dimensionless parameter. In-
stead of experimenting with different shapes of s̄(x̄), we can experiment with
different values of β. The problem has been reduced to studying ū(x̄;β, γ).

Exercise A.1. .
Assume that LR →∞ and R = 1 in (A.5) and (A.6) such that we can ap-

proximate s̄(x̄) by a unit constant. Solve the two problems analytically in this
simplified case and discuss the sizes of the solutions for small, unit order, and
large γ values (hint: plot the solutions). This will reveal the appropriateness
of the scalings. �

Scaling a Transient 2D Heat Equation. Our next example concerns the two-
dimensional heat equation

%C
∂u

∂t
= k

(
∂2u

∂x2
+
∂2u

∂y2

)
,

where % is the density, C is the heat capacity, k is the heat condution co-
efficient, and u(x, y, t) is the unknown function. The domain is taken as
(a, b)× (c, d). We assign the boundary value u = 0 on x = a, b and y = d, and
−k∂u/∂n = Q, where Q is a constant, on y = c. The initial condition reads
u(x, y, 0) = f(x, y).

The obvious dimensionless form of the coordinates is

x̄ =
x− a
b− a , ȳ =

y − c
d− c .

A.1. Scaling and Dimensionless Variables 667

Nevertheless, this scaling give rise to anisotropic dimensionless diffusion. Us-
ing the same length scale for x and y preserves the isotropic diffusion term.
In the following we scale both x and y by b − a. The time coordinate is
scaled by tc, whose value must be estimated. Similarly, u(x, y, t) is scaled by
the unknown quantity uc, whereas f(x, y) is scaled by its maximum absolute
value, here referred to as fc. Inserting the new dimensionless variables in the
initial-boundary value problem results in

∂ū

∂t̄
= α

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
,

−∂ū
∂n̄

= β, ȳ = 0,

ū = 0, x̄ = 0, 1, ȳ = δ,

ū(x̄, ȳ, 0) = γf̄(x̄, ȳ) .

The dimensionless parameters α, β, γ, and δ are given as

α =
ktc

%Q(b− a)2 , β =
Q(b− a)
kuc

, γ =
fc

uc
, δ =

d− c
b− a .

It remains to determine the scales tc and uc. An obvious choice of uc is fc,
i.e. γ = 1 and a unit size of the initial |ū|. This is a relevant scaling if u
does not grow significantly with time. In the present case, we know that u
will be decreasing, because the current PDE has a fundamental property:
u is bounded above by its initial value (see [143, Ch. 4] for more precise
information about this property in a 1D problem with Dirichlet boundary
conditions). However, in the case we have force terms in the PDE, the solution
may grow in time and determining uc is more challenging.

The value of tc could be adjusted such that terms in the PDE are of unit
order. That is, α = 1 is a reasonable choice, leaving the first derivative in time
and the second derivatives in space of ū as unit quantities. The corresponding
tc value reads

tc = k−1%C(b− a)2 .
Another way of reasoning consists in finding a solution of the PDE that

displays the principal characteristics of u. A possible guess is

u(x, y, t) = e−νt sinπ
x− a
b− a sinπ

y − c
d− c ,

which upon insertion in the heat equation gives

ν =
kπ2

%C

(
(b− a)−2 + (d− c)−2

)
.

The characteristic time tc can be chosen such that the solution is reduced by
a factor of e at time tc, i.e. u(x, y, tc) = e−1u(x, y, 0), giving tc = 1/ν, which

668 A. Mathematical Topics

is often referred to as the e-folding time. We simplify the expression for tc by
replacing d− c by the other length scale b− a. The result becomes

tc =
%C(b− a)2

2π2k
,

which implies α = 2π2. We could skip the 2π2 factor in tc without any
significant loss of important information in the time scale. Then α equals
unity, which corresponds to our previous reasoning based on choosing scales
such that terms in the PDE have unit size.

We can now summarize the scaled initial-boundary value problem:

∂ū

∂t̄
=
∂2ū

∂x̄2
+
∂2ū

∂ȳ2
,

−∂ū
∂n̄

= β, ȳ = 0,

ū = 0, x̄ = 0, 1, ȳ = δ,

ū(x̄, ȳ, 0) = f̄(x̄, ȳ) .

The original problem, involving u(x, y, t; %, C, k, a, b, c, d,Q) and f(x, y), is
now reduced to a problem involving ū(x̄, ȳ, t̄;β, δ) and f̄(x̄, ȳ). This is a sig-
nificant reduction in complexity when it comes to investigation of the problem
through computer experiments.

Scaling the Wave Equation. Our next example is devoted to the one-dimensional
wave equation with a variable coefficient q(x):

∂2u

∂t2
=

∂

∂x

(
q(x)

∂u

∂x

)
, x ∈ (a, b) .

The boundary conditions read u(a) = u(b) = 0, whereas the initial conditions
are taken as u(x, 0) = f(x) and ∂u(x, 0)/∂t = 0. With x̄ = (x − a)/(b − a),
t̄ = t/tc, ū = u/uc, q̄ = q/qc, qc = supx∈[a,b] |q(x)|, f̄(x̄) = f(a+ x̄(b−a))/fc,
fc = supx∈[a,b] f(x), we obtain

∂2ū

∂t̄2
= γ

∂

∂x̄

(
q̄(x̄)

∂ū

∂x̄

)
, x̄ ∈ (0, 1),

ū(0) = 0,

ū(1) = 0,

ū(x̄, 0) = δf̄(x̄),

∂

∂t̄
ū(x̄, 0) = 0 .

The dimensionless parameters γ and δ read

γ =
t2cqc

(b− a)2 , δ =
fc

uc
.

A.1. Scaling and Dimensionless Variables 669

It remains to determine uc and tc. Again, we could do this by looking at the
scaled PDE problem and requiring unit initial condition (i.e. δ = 1) and unit
order of magnitude of the space-derivative term in the PDE (i.e. γ = 1). We
get

tc =
b− a√
qc
, uc = fc .

Alternatively, we may study a prototype solution of the PDE. Let q(x) = qc.
The general solution of the wave equation is then

u(x, t) = F (x−√qct) +G(x+
√
qct),

which is easily justified by inserting this expression in the PDE. With u = f
and ∂u/∂t = 0 at t = 0, we get F = G = f/2 such that u(x, t) = (f(x −√
qct) + f(x +

√
qct))/2. It follows that uc = fc and consequently δ = 1.

The characteristic time scale tc can be chosen equal to the traveling time of
a wave across the domain: tc = (b − a)/√qc, realizing that the function f
(i.e. the wave pulse) is propagated to the left and right with velocity

√
qc.

Then γ becomes equal to unity. Notice that when q(x) is constant (equal
to qc), all physical parameters are “scaled away” from the initial-boundary
value problem. It can be convenient, nevertheless, to keep γ in front of the
∂2ū/∂x̄2 term just for labeling this term in hand calculations.

Scaling the Convection-Diffusion Equation. The convection-diffusion equa-
tion

∂u

∂t
+ v · ∇u = k∇2u (A.7)

appears in many fluid flow contexts. Scaling of initial and boundary condi-
tions for this equation will be similar to the previous heat equation example,
so we just focus at scaling the PDE (A.7) in the following. It is assumed
that v in (A.7) is a prescribed spatially varying vector (velocity) field, k is
a known parameter, and u(x, t) is the primary unknown. Equation (A.7) is
referred to as a convection-diffusion equation.

Let L be the characteristic length of the domain Ω in which the equation
above is to be solved. Furthermore, let U be a characteristic measure of the
velocity field v. It is then natural to introduce the following dimensionless
variables:

x̄ =
x

L
, v̄ =

v

U
, ū =

u

uc
,

where uc is a characteristic size of the solution. Inserting these expressions
in (A.7) results in

v̄ · ∇̄ū =
1

Pe
∇̄2ū .

The bar in ∇̄ indicates derivation with respect to scaled coordinates x̄. Con-
trary to the previous examples, the present one has a dimensionless parameter
in the governing PDE. This parameter is the Peclet number Pe = UL/k. We

670 A. Mathematical Topics

can interpret the Peclet number as the ratio between the |v ·∇u| and k|∇2u|
terms, which physically expresses the relative importance of convective and
diffusive effects:

|v · ∇u|
|k∇2u| ∼

UL−1uc

kL−2uc
=
UL

k
= Pe .

If we extend (A.7) with a time derivative term, ∂u/∂t on the left-hand
side, we also need to scale the time: t̄ = t/tc. The natural time scale depends
on whether diffusion or convection dominates. Assuming that convection is
most important, the typical velocity in the problem is U . Then tc can be
taken as the time it takes to propagate a signal through the medium, i.e.,
tc = L/U . The resulting equation becomes

∂ū

∂t̄
+ v̄ · ∇̄ū =

1

Pe
∇̄2ū . (A.8)

However, if diffusion is dominant, we should choose a time scale as we did
in the heat equation example. With our present symbols this results in tc =
L2/k. The corresponding dimensionless PDE reads

∂ū

∂t̄
+ Pe v̄ · ∇̄ū = ∇̄2ū . (A.9)

In the limit Pe → ∞, when convection dominates over diffusion, equation
(A.8) tends to the expected form where the diffusion term is neglected. Con-
versely, when Pe→ 0 we can neglect the term v·∇u, which is clearly indicated
by (A.9).

Exercise A.2. .
Consider the Navier-Stokes equations

∂v

∂t
+ (v · ∇)v = −1

%
∇p+ ν∇2v, (A.10)

where % and ν are known constants, representing the density and the viscosity
of the fluid, while v is the fluid velocity, and p is the fluid pressure. Explain
how we can derive the following dimensionless form of the Navier-Stokes
equations,

∂v̄

∂t̄
+ (v̄ · ∇̄)v̄ = −Eu∇̄p̄+

1

Re
∇̄2v̄, (A.11)

where Re = UL/ν and Eu = pc/(%U
2) are dimensionless numbers, and the

bar indicates dimensionless quantities. The parameters U , L, and pc are the
characteristic velocity, length, and pressure of the problem, respectively. In
many flows, the motion depends on pressure differences and not on pressure
levels like pc. This implies that Eu can be taken as unity. Re is called the
Reynolds number and play a fundamental role in viscous fluid flow. (An ex-
cellent treatment of the present exercise is found in [123, Ch. 5.2], while [147,
Ch. 3.9], [84, Ch. 2], and [149, Ch. 2.9] represent alternative references that
contain more advanced material on scaling the equations of fluid flow.) �

A.2. Indicial Notation 671

Exercise A.3. .
Extend the Navier-Stokes equations (A.10) with an additional term −gk

on the right-hand side. This term models gravity forces, with g being the con-
stant acceleration of gravity and k being an associated unit vector. Perform
the scaling and identify an additional dimensionless number, the so-called
Froude number Fr = U/

√
gL. �

Scaling of Models with Many Parameters. The examples in this section
demonstrate the three main strengths of scaling:

– the size of each term in a PDE is reflected by a dimensionless coefficient,

– the number of parameters in the problem is reduced because only certain
combinations of the parameters appear in the scaled equations,

– the expected size of the unknown and its time scale becomes evident (this
is important when assessing the correctness of simulations).

In more complicated mathematical models, involving systems of PDEs and a
large number of parameters, the advantages of scaling might be more limited.
The scaling is normally restricted to a particular physical regime. Advanced
models typically exhibit several different physical regimes. Equations (A.8)
and (A.9) illustrate that even for a simple convection-diffusion equation there
are two possible time scales. Furthermore, the reduction in active parameters
in the model is not as substantial as in simpler problems. The danger of intro-
ducing errors through tedious manipulations in scaling procedures is another
negative aspect. Therefore, if the aim is to develop a flexible simulation code
for exploring a complicated mathematical model, it is often convenient to
use quantities with dimension, or to introduce only a partial scaling, if the
magnitude of some variables is far from unity and thereby can cause numeri-
cal problems. These comments explain why the simple PDE examples in this
text are usually written in dimensionless form, while the more complicated
models in the application chapters appear in their original form with physical
dimensions. Nevertheless, the reasoning behind scaling reveals the expected
size of the unknown and the time scale, and this insight is always useful.

A.2 Indicial Notation

This appendix introduces an indicial notation that helps to condense large
mathematical expressions, yet with a syntax that translates directly to pro-
gram code. In this notation, vi denotes a vector and σij represents a tensor1.

1 Readers who are unfamiliar with the tensor concept can roughly think of tensors
as matrices when reading the present book. Explanation of the properties of
tensors are given in most books on continuum mechanics [92,97,126,140]. These
references also provide more comprehensive introductory material on the indicial
notation.

672 A. Mathematical Topics

Whether the notation vi means component no. i of the vector, or the whole
vector, will be evident from the context. The same convention applies to ten-
sors as well. The index i in vi is just a dummy index; we could also have
written vj or vr, or σrs for σij . In this book we often use r and s for indices
ranging from one to the number of space dimensions, while i and j are fre-
quently used for indexing basis functions, nodes, grid points, or unknowns in
linear systems.

Let d be the number of space dimensions. Using Einstein’s summation
convention, we can write

∑d
k=1 akbk simply as akbk. That is, we sum over an

index that is repeated twice in an expression.
Let xi denote the spatial coordinates. We can then to introduce a conve-

nient and compact notation for differentiation:

vr,s ≡
∂vr

∂xs
, σrs,s ≡

d∑

s=1

∂σrs

∂xs
.

In other words, a comma in the index expression denotes derivation. As we
see, the comma notation and summation convention are useful tools for reduc-
ing the size of equations and thereby improving the readability. For example,
the incompressible Navier-Stokes equations can easily fit within a line:

vr,t + vsvr,s = −p,r +
1

Re
vr,ss + br .

The reader is encouraged to write out these equations for a 3D problem
(r, s = 1, 2, 3) and observe the amount of space that is saved.

The comma notation is also much in use when the subscripts are x, y,
and z, rather than 1, 2, or 3. For example,

Ni,x ≡
∂Ni

∂x
.

Repeated x, y, and z does not imply summation: w,xx ≡ ∂2w/∂x2.
The identity tensor is denoted by δrs, also referred to as the Kronecker

delta. We have that δrs = 0 when r 6= s, while δrr (without sum) equals 1.

Normally, δrr implies a sum,
∑d

r=1 δrr =
∑d

r=1 1 = d, so we must explicitly
state if the summation convention is not to be applied. There are many
important rules for contracting products of vectors (or tensors) with the
Kronecker delta. For example,

vrδrs = vs, σrsδrq = σqs .

These results are easily shown by writing out the sums (over r), choosing
some specific values of free indices (s and q), and using the values of δrs.

Remark. The indicial notation explained above is in its presented form re-
stricted to Cartesian coordinate systems. Other tools, e.g. dyadic notation,

A.2. Indicial Notation 673

are attractive for hand calculations with cylindrical or spherical coordinates.
However, in Cartesian coordinates the indicial notation offers compact ex-
pressions and at the same time the details of the algorithm for computing
the expressions.

Exercise A.4. .
Explain that the divergence operator, ∇ · v, can be written as vr,r using

the indicial notation. �

Exercise A.5. .
Express the matrix-vector product using the indicial notation. Develop a

similar formula for a vector times a matrix. �

Exercise A.6. .
Explain that the Laplace term ∇2u can be written as u,rr using the indi-

cial notation. (Notice that r is a dummy index such that, e.g., u,rr and u,jj

are equivalent forms.) �

Exercise A.7. .
Explain that the variable-coefficient Laplace operator can be written as

(ku,r),r. Generalize this result to the case where k is a tensor. �

Exercise A.8. .
Write explicitly out all terms in the vector equation σrs,s = 0, r, s =

1, . . . , 3. �

Exercise A.9. .
Write the heat equation

%C

(
∂T

∂t
+ v · ∇T

)
= κ∇2T,

using the indicial notation. �

Exercise A.10. .
Explain why σikδkj = σij and ui,jδi,j = uk,k. These results are useful

when deriving numerical methods for the elasticity and the Navier-Stokes
equations. �

Exercise A.11. .
Given the relations σij,j = 0, σij = −pδij + 2µε̇ij , ε̇ij = (vi,j + vj,i)/2,

and vi,i = 0, show that these relations can be combined into

−p,i + µvi,jj = 0 .

This is essentially the derivation of a simplified version of the Navier-Stokes
equations, where acceleration and body force terms are neglected. Similar
mathematical manipulation with index expressions appears in the derivation
of the equations for linear elasticity. �

674 A. Mathematical Topics

A.3 Compact Notation for Difference Equations

The discrete equations arising from finite difference or finite element tech-
niques become much more lengthy than the underlying PDEs. It can therefore
be convenient to introduce a compact notation that aids to make difference
equations short, clear, and intuitive. Furthermore, mathematical manipula-
tion of difference schemes, which is required in accuracy and stability cal-
culations (cf. Appendix A.4), is significantly simplified using the compact
notation.

Let u`
i,j,k be the numerical approximation to the function u(x, y, z, t). We

then define the difference operator

[δxu]
`
i,j,k ≡

u`
i+ 1

2 ,j,k
− u`

i− 1
2 ,j,k

∆x
,

with similar definitions for δy, δz, and δt. Sometimes we need a difference
over two cells,

[δ2xu]
`
i,j,k ≡

u`
i+1,j,k − u`

i−1,j,k

2∆x
.

Compound operators, like δxδx can now be defined. To simplify the sub-
script expressions, we restrict the attention to functions u(x, t) without loss
of generality. We then have

[δxδxu]
`
i = [δxφ]`i , φ`

i ≡ [δxu]
`
i =

u`
i+ 1

2

− u`
i− 1

2

∆x
,

=
φ`

i+ 1
2

− φ`
i− 1

2

∆x
,

=
1

∆x

(
u`

i+1 − u`
i

∆x
− u`

i − u`
i−1

∆x

)
,

=
1

∆x2

(
u`

i−1 − 2u`
i + u`

i+1

)
.

In equations with variable coefficients we need the arithmetic average oper-
ator

[ux]`i ≡
1

2

(
u`

i+ 1
2

+ u`
i− 1

2

)
.

Sometimes we also need one-sided differences, like the forward difference

[δ+x u]
`
i ≡

u`
i+1 − u`

i

∆x
,

and the corresponding backward difference

[δ−x u]
`
i ≡

u`
i − u`

i−1

∆x
.

A.3. Compact Notation for Difference Equations 675

Example A.1. The equation −u′′(x) = f(x), with conditions u(0) = u(1) = 0
and grid points (i− 1)∆x, i = 1, . . . , n, can now be written

−[δxδxu]i = [f(x)]i, i = 2, . . . , n− 1, [u]1 = [u]n = 0 .

It is convenient to place the whole discrete equations inside brackets:

[−δxδxu = f]i .

With this notation we have a strong link between the original differential
equation and the discretized version. �
Example A.2. The wave equation

∂2u

∂t2
= γ2∂

2u

∂x2
, x ∈ (0, 1), t > 0,

for u(x, t), with initial and boundary conditions u(x, 0) = I(x), ∂
∂tu(x, 0) = 0,

u(0, t) = 0, and u(1, t) = 0, can be discretized by a standard finite difference
method as in Chapter 1.4.2. Using the compact notation, the difference equa-
tion corresponding to the PDE can be written

[δtδtu = γ2δxδxu]
`
i , i = 2, . . . , n− 1, ` ≥ 1, (A.12)

whereas the discrete initial and boundary conditions can be expressed as
[u = f]0i , [δtu = 0]0i , [u = 0]1, and [u = 0]n. Observe the clear similarity in
the notation of the continuous and discrete problem. �

Example A.3. The variable-coefficient PDE (λu′)′ = 0 is normally discretized
according to

1

∆x

(
1

2
(λi + λi+1)

ui+1 − ui

∆x
− 1

2
(λi−1 + λi)

ui − ui−1

∆x

)
= 0, (A.13)

see Chapter 1.3.6. This can be compactly and more intuitively written as

[δxλ
x
δxu = 0]i . (A.14)

Observe again the close similarity between the continuous and discrete no-
tation. The reader is encouraged to write out the left-hand side of (A.14) in
detail and verify that the expression becomes identical to the more conven-
tional form (A.13). �
Example A.4. The 3D wave equation ∂2u/∂t2 = ∇·(λ∇u) can be discretized
using standard centered (second-order accurate) finite differences in time and
space, combined with arithmetic averaging of λ. The specification of such a
scheme in the compact notation reads

[δtδtu = (δxλ
x
δxu+ δyλ

y
δyu+ δzλ

z
δzu)]

`
i,j,k .

We see that the compact notation not only saves space, it also gives a more
intuitive explanation of the reasoning behind the discretization. �

676 A. Mathematical Topics

Example A.5. Discretizing the 2D heat equation ∂u/∂t = κ∇2u with a for-
ward difference in time and standard centered differences in space, yields a
(forward Euler) scheme that takes the following form in the compact nota-
tion:

[δ+t u = κ (δxδxu+ δyδyu)]
`
i,j . (A.15)

�

Example A.6. The θ-rule for the heat equation ∂u/∂t = κ∂2u/∂x2 can be
written

[δtu]
`− 1

2

i = θκ[δxδxu]
`
i + (1− θ)κ[δxδxu]`−1

i . (A.16)

Chapter 1.7.6 introduces this scheme in detail. �

A.4 Stability and Accuracy of Difference

Approximations

A fundamental concern of all numerical methods is the errors arising from
the approximations. Another critical aspect is accumulation of round-off er-
rors due to finite precision arithmetic, as such accumulation may destroy
the solution. These topics bring us to measures of the accuracy of finite
difference approximations and to the concept of stability. The forthcoming
discussion of accuracy and stability is centered around exact solutions of the
difference equations, which also enables easy construction of test problems
for verifying computer implementations. This approach is somewhat different
from the standard approach in many other textbooks. Nevertheless, we also
present classical subjects like truncation error, consistency, and the von Neu-
mann method for investigating stability. A comprehensive extension of the
approach advocated in this appendix, using the convection-diffusion equation
as example, appears in the recent text by Gresho and Sani [48, Ch. 2].

The methods of analysis presented in the following are traditionally ap-
plied to finite difference schemes only. However, the methods can equally well
be used to analyze finite element approximations. This is demonstrated in
Chapter 2.4. The reader should be familiar with the compact finite difference
notation from Appendix A.3 before studying Appendices A.4.5–A.4.11.

A.4.1 Typical Solutions of Simple Prototype PDEs

Separation of Variables. Homogeneous linear PDEs with constant coefficients
allow exponential or trigonometric functions as solutions. Separation of vari-
ables might be used to show this property. Consider, for instance, the damped
wave equation,

%
∂2u

∂t2
+ β

∂u

∂t
= γ2∇2u, (A.17)

which represents a mixture of the standard wave equation, the heat equation,
and the Laplace equation. The coefficients %, β, and γ are assumed to be

A.4. Stability and Accuracy of Difference Approximations 677

constant in space and time. Separating the variables in the solution according
to

u(x1, . . . , xd, t) = X1(x1) · · ·Xd(xd)T (t),

inserting this expression in the equation, and dividing by u gives

%
T ′′(t)

T (t)
+ β

T ′(t)

T (t)
= γ2

d∑

s=1

X ′′
s (xs)

Xs(xs)
.

The left-hand side is a function of t only, whereas each term on the right-
hand side depends on xs only, s = 1, . . . , d. If the equation is to be fulfilled,
the left-hand side must be a constant, and each term on the right-hand side
must also be constant. The constants must sum up to zero for the equation to
hold. In other words, separation of variables lead to d+1 ordinary differential
equations for T and Xs:

%T ′′(t) + βT ′(t)− λT (t) = 0, (A.18)

and
γ2X ′′

s (xs)− µsXs = 0, s = 1, . . . , d. (A.19)

The constants λ and µs fulfill λ =
∑

s µs.

Solution of the Separated Equations. The solution of equations (A.18) and
(A.19) takes the form T = exp (ωt) and Xs = exp (ksxs), where ω and ks

are complex numbers to be determined. The total solution u is then exp(ωt+∑
s ksxs).
Inserting the exponential solution for T and Xs into (A.18) and (A.19)

gives %ω2 + βω − λ = 0 and γ2k2
s − µs = 0 for s = 1, . . . , d. The ω and

ks parameters are hence solutions of quadratic algebraic equations, and in
general we achieve two complex roots. Denoting the two ω roots as ω(1) and
ω(2), the function T (t) is the linear combination

T (t) = A exp (ω(1)t) +B exp (ω(2)t),

where A and B are unknown constants. The same reasoning applies equally
well for the Xs functions. The constants in all these functions, as well as λ
and µs, must be determined from the initial and boundary conditions.

Complex Notation. Any complex number ω can be written as ω = ωr + iωi,
where ωr is the real part of ω, ωi is the imaginary part, and i is the imaginary
unit: i =

√
−1. By elementary properties of complex numbers we have

eωt = eωrt+iωit = eωrt (cosωit+ i sinωit) . (A.20)

A similar decomposition of ks is also useful.
In many physical applications, the trigonometric behavior is often dom-

inating in space, which means that ks is often purely imaginary. Therefore,

678 A. Mathematical Topics

it is convenient to seek Xs = exp (iksxs), such that ks becomes real. For
wave phenomena, the same comments apply to ω, and it is again convenient
to write T = exp (iωt). Diffusion problems, on the other hand, have their
typical time dependence as exp (−ωt), with ω real and greater than zero.

We will mainly work with solutions u ∼ exp (i(
∑

s ksxs − ωt)) in the fol-
lowing. The physical solution is not complex, so we must take the real or
imaginary part of exp (i(

∑
s ksxs − ωt)) prior to physical interpretation. If

we multiply by a factor eiφ, where φ is free, we can always take the real
part: Re exp (i(

∑
s ksxs − ωt+ φ)); adding φ = π/2 in this function argu-

ment leads to the same results as taking the imaginary part when φ = 0.
The outlined example demonstrates the basic ideas behind the technique

known as separation of variables. This is a general technique for calculating
analytical solutions of linear constant-coefficient PDEs [87,132,143]. The pur-
pose of separating variables in the current context is mainly to show that the
solution of linear homogeneous PDEs with constant coefficients can be con-
veniently sought on the form exp (i(

∑d
s ksxs − ωt+ φ)), with complex ω. We

shall make use of this generic form of the solution when analyzing properties
of mathematical models and numerical schemes.

Working with complex functions might seem unnecessarily complicated,
but the complex notation is very efficient for practical hand calculations,
and we only make use of a few very basic properties of complex numbers,
essentially formulas like (A.20) and i2 = −1.

A One-Dimensional Example. Let us restrict the governing PDE (A.17) to
one space dimension. We write k ≡ k1, x ≡ x1, and insert the candidate
solution u = A exp (i(kx− ωt+ φ)), with A being a constant amplitude, in
the governing PDE. This yields

−%ω2 − iωβ + γ2k2 = 0 .

With β = 0 (no damping) we have ω = ±γk/√%, otherwise we have two
complex ω values as solution. In both cases we see that ω = ω(k). The
solution is hence parameterized by k, and we can write

u(x, t; k) = A(k)ei(kx−ω(k)t+φ) .

In the following, it appears to be convenient to work with the solution of the
PDE, u(x, t; k), as a complex quantity. It then goes without saying that only
the real part is of physical significance.

Forming the General Solution. The general solution of the one-dimensional
version of our PDE (A.17) can now be obtained by forming the linear com-
bination of the different u(x, t; k) over the set of legal k values. If the PDE is
defined on an interval, some boundary conditions will usually restrict k to a
set of discrete values. A typical example is the condition u(0, t) = u(1, t) = 0.
These are fulfilled when u ∼ sin qπx, q ∈ IN. Hence, k = qπ and φ = π/2,

A.4. Stability and Accuracy of Difference Approximations 679

ensuring that Re exp (iqπx+ iπ/2) = sin qπx. The general solution is now a
linear combination of all u(x, t; q):

u(x, t) =
∞∑

q=−∞

u(x, t; q) =
∞∑

q=−∞

Aq exp (i(qπx− ω(qπ)t+ π/2)) . (A.21)

The generally complex amplitudes Aq are unknown and can be determined
from the initial conditions. Setting t = 0 in (A.21) gives an ordinary com-
plex Fourier series, and the coefficients Aq are then determined by standard
Fourier techniques.

When the PDE is defined on an infinite interval, there are usually no
restrictions on the k values so the linear combination is an integral:

u(x, t) =

∫ ∞

−∞

A(k) exp (i(kx− ω(k)t))dk . (A.22)

Notice that the coefficient A(k) is now a continuous function. Standard
Fourier integral or transform techniques can be used to calculate A(k). Nev-
ertheless, in this book we will not need explicit expressions for the amplitudes
A(k) or Aq , and therefore Fourier transforms or Fourier series are not used
further. It appears that the nature of the solution is sufficiently well reflected
by the argument kx− ω(k)t of the exponential solution function.

A.4.2 Physical Significance of Parameters in the Solution

The parameters ω and k have important physical interpretations, especially
in wave phenomena when ω and k are frequently real numbers. Consider the
solution

u(x, t) ∼ Re ei(kx−ω(k)t) = cos(kx− ωt),
with real k and ω. The reader should verify that this is a solution of the
one-dimensional wave equation

∂2u

∂t2
= γ2 ∂

2u

∂x2
(A.23)

provided ω2 = γ2k2, i.e., ω = ±γk. This means that two values of ω are
allowed and that the complete solution is a linear combination on the form

u(x, t) = C1 cos k(x− γt) + C2 cos k(x+ γt) . (A.24)

If the initial conditions are ∂u/∂t = 0 and u(x, 0) = A cos kx we simply get
C1 = C2 = A/2.

The purpose now is to give a physical interpretation of such a solution.
Since u is a solution of a wave equation, we expect u to reflect typical prop-
erties of “waves”. Fixing t, say t = 0 for simplicity, we see that u = A cos kx,
which is a periodic wave-like function with amplitude A and period 2π/k.

680 A. Mathematical Topics

The period is actually the spatial length between two peaks of the function,
usually referred to as the wave length λ = 2π/k. Fixing x, say x = 0, gives
u = A cosωt, which means that we watch the up and down movement of a
fixed x point on the u surface. The period of this up and down movement is
2π/ω, a quantity that is obviously referred to as the period T of the wave.

Another important physical quantity is the phase velocity of the wave,
which can be defined as the velocity of a peak. The peaks of cos θ are given
by θ = 2nπ, n ∈ ZZ. In the present example the peaks are characterized by θ =
kx−ωt = 2πn, or by using λ and T : x/λ− t/T = n. A particular peak xp(t)
then moves in time according to xp/λ− t/T = n, that is, xp(t) = λn+λt/T .
The velocity of the peak is therefore dxp/dt = λ/T . We refer to this velocity
as the phase velocity c. If ω = ω(k) it follows that T = T (λ), which means
that c depends in general on the wave length: c = c(λ) = λ/T (λ) = ω(k)/k.
The following sketch exemplifies the central parameters in the mathematical
description of waves:

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6

λ

c

A

The relation c = c(λ) or ω = ω(k) is referred to as the dispersion relation.
It connects the wave length and the phase velocity of a wave component.
The general solutions (A.21) or (A.22) can be interpreted as a discrete or
continuous weighted sum of wave components u(x, t; k) with generally differ-
ent phase velocities. Because the wave components propagate with different
speed, the shape of u is modified as time increases. This effect is called dis-
persion. Nondispersive waves are recognized by c being a true constant or
ω being a linear function of k. That is, all wave components move with the
same velocity and the graph of u(x, t) moves with preserved shape in time.
Solutions of (A.23) have this property. Oral communication relies on the
nondispersive nature of pressure waves in the air; the pressure signal result-
ing from our voice propagates with undisturbed shape through the air and
can be recognized by other humans at different positions.

More information about basic description of waves can be found in most
textbooks on general physics, see e.g. [3, Ch. 28] or [109, Ch. 15-18].

Also in problems where ω (or k) is complex, it makes sense to think of the
solution as composed of waves, but in those cases the waves will be damped or,
more seldom, amplified. Fundamental qualitative properties of the solution
are reflected in an arbitrary wave component u(x, t; k). We shall therefore

A.4. Stability and Accuracy of Difference Approximations 681

focus on studying a single wave component in the following. The technique
of analysis is often referred to as dispersion relation analysis and is widespread
in geophysics and fluid mechanics. The strength of the method is its simplicity
and that it gives a strong coupling between numerical properties of the scheme
and the underlying properties of the physical phenomenon. Moreover, the
method can be used to study accuracy and stability of numerical schemes.

A.4.3 Analytical Dispersion Relations

The analytical dispersion relation ω = ω(k) is found by inserting the expo-
nential solution

u(x1, . . . , xd, t) = A exp (i(

d∑

s

ksxs − ωt+ φ))

in the PDE. For the one-dimensional wave equation (A.23) we get the rela-
tion ω = ±γk. Some examples and exercises concerning analytical dispersion
relations are given next.

Example A.7. One important property of the dispersion relation ω = ω(k)
for the wave equation is that ω is real; that is, there is no damping or growth
of the waves. Turning our attention to the heat equation

∂u

∂t
= κ

∂2u

∂x2

and inserting a wave component u = A exp (i(kx− ωt+ φ)), we easily find
that ω = −iκk2, which means that ω is imaginary. The typical wave solution
of the heat equation is then

u = Ae−κk2tei(kx+φ) . (A.25)

This is a damped wave since κ > 0 is an important physical condition in
the heat equation (in fact, κ < 0 implies that heat flows from cold to hot
regions!). Notice that high frequency wave components (k large) are signif-
icantly damped, since the damping factor behaves like exp (−κk2t). This
property is demonstrated in detail in Example A.8.

We can add wave components, either as Fourier series or Fourier inte-
grals, to obtain an analytical solution that fulfills the prescribed initial and
boundary conditions. If the aim is just to construct an analytical solution,
e.g. for verifying a computer implementation, we can look at (A.25) and ad-
just the initial and boundary conditions. For instance, working on a domain
(0, 1) with u = 0 at the boundary, requires the spatial part of the solution,
exp (i(kx+ φ)), to be sin qπx, q ∈ IN. That is, k = qπ. Moreover, using the
real part of (A.25) as the physical significant part, implies φ = π/2. It then re-
mains to fit a suitable initial condition. The simplest choice is to use only one

682 A. Mathematical Topics

k value, say k = π (q = 1). The analytical solution with physical significance
is then u(x, t) = ReA exp (−κπ2t+ iπx+ iπ/2) = A exp (−κπ2t) sinπx for
an arbitrary real constant A. �

Example A.8. Suppose we have the rapidly varying initial condition u(x, 0) =
sinπx+0.6 sin 100πx in the one-dimensional heat equation. The general solu-
tion for a wave component is given in (A.25), and in the present case the total
solution can be obtained by adding two such components with wave numbers
k = π and k = 100π. Choosing κπ2 = 1 to condense the expressions, we get

u(x, t) = e−t sinπx+ e−10000t0.6 sin 100πx .

The highly oscillatory component, which is significant at t = 0, is very quickly
damped. Figure A.1 shows that after 1/1000 second, all the oscillations have
disappeared and u looks like an average of the initial shape. This is an illus-
tration of the property that the solutions of the heat equation are smoothly
varying, regardless of the initial function. �

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

u(x,0)

(a)

-0.5

0

0.5

1

1.5

2

0 0.2 0.4 0.6 0.8 1

u(x,0.001)

(b)

Fig.A.1. Illustration of the damping properties in the heat equation: (a)
initial condition; (b) solution after 1/1000 s.

Example A.9. Consider the 3D wave equation ∂2u/∂t2 = γ2∇2u. A wave
component can then be written as

u(x, y, z, t) = A exp (i(kxx+ kyy + kzz − ωt+ φ)) .

Now k = (kx, ky, kz) is the wave-number vector, indicating the spatial direc-

tion of the wave. The wave length is λ = 2π/k, with k =
√
k2

x + k2
y + k2

z . The

A.4. Stability and Accuracy of Difference Approximations 683

phase velocity becomes c(λ) = c(λ)k/k, c being the length of c. Inserting the
wave component in the PDE gives

−ω2 = γ2
(
−k2

x − k2
y − k2

z

)
,

that is, ω = ±γk as in the one-dimensional counterpart. �

Example A.10. We can extend the analysis in Example A.7 to a 2D heat
equation, ∂u/∂t = κ∇2u. A characteristic wave component can now be writ-
ten

u(x, y, t) = A exp (i(kxx+ kyy − ωt+ φ)) .

Inserting this u in the equation gives the dispersion relation ω = −iκ(k2
x+k2

y).
Again we can use this information to construct a special analytical solution to
the 2D heat equation to help us in program verification. Suppose the PDE is
to be solved on Ω = (0, 1)× (0, 1) with ∂u/∂n = 0 on the boundary. To fulfill
the boundary conditions, u ∼ cosπqx cosπry, q, r ∈ IN. This gives kx = qπ,
ky = rπ, and φ = 0. Let us pick q = 2 and r = 1. The solution then becomes

u(x, y, t) = ReAe−κ5π2tei(2πx+πy) = Ae−κ5π2t cos 2πx cosπy .

�

Exercise A.12. .
Sound or light waves in three-dimensional space, propagating with perfect

spherial symmetry from some source, can be described by the wave equation
in spherical coordinates with radial symmetry:

∂2u

∂t2
= γ2

(
∂2u

∂r2
+

2

r

∂u

∂r

)
,

where r represents the distance to the origin. Show that we can write this
equation alternatively as

∂2ru

∂t2
= γ2 ∂

2ru

∂r2
.

Find the dispersion relation and discuss whether the waves are damped or
not. �

A.4.4 Solution of Discrete Equations

Consider a linear homogeneous difference equation, for example,

uj−1 − 2uj + uj+1 = αuj . (A.26)

The solution of this equation takes the form uj = Qj , where Q can be deter-
mined by inserting uj = Qj in (A.26). This gives

Q = 1 +
α

2
±
√
α(1 +

α

4
) .

684 A. Mathematical Topics

The general solution is a linear combination of the two roots:

uj = A

(
1 +

α

2
+

√
α(1 +

α

4
)

)j

+B

(
1 +

α

2
−
√
α(1 +

α

4
)

)j

,

where A and B are constants to be determined from the boundary conditions.
We see that the solution Qj can be written in exponential form if desired:

Qj = ej ln Q = ejQ̃, now with Q̃ = lnQ as the unknown quantity to be
calculated.

When α = 0 we have a double root Q = 1. Two linearly independent
solutions are then Qj (= 1) and jQj (= j). We can now write uj = AQj +
BjQj = A+Bj.

Separation of variables works in the case of multi-dimensional problems.
For example, ur,s = QrP s = exp (r lnQ+ s lnP), where the parameters Q
and P (or lnQ and lnP) are determined by inserting the assumed solution
in the discrete equations. As in the continuous case, we find that linear ho-
mogeneous difference equations allow complex exponential solutions. In fact,
if u`

j1,...,jd
is the discrete solution at the point with spatial indices (j1, . . . , jd)

and time level `, a generic form of u`
j1,...,jd

is

u`
j1,...,jd

= exp (i(
d∑

s

ks(js − 1)∆xs − ω̃`∆t+ φ)) . (A.27)

Here, ∆x1, . . . , ∆xd are the constant spatial grid spacings, and ∆t is the time
step. The exact appearance of the indices js depends on the numbering of
the grid points; we see that js = 1 corresponds to xs = 0. Changing the
number of grid points is equivalent to multiplying the exponential function
by a constant, which is of no significance in a linear homogeneous difference
equation. We will therefore usually write

∑
s ksjs∆xs to keep the argument in

the exponential function as simple as possible. As in the continuous problem,
only the real part of the right-hand side in (A.27) has physical significance.
The ks parameters are supposed to be the same as in the analytical case,
but ω̃ is in general different from ω (otherwise the discrete solution would be
identical to the exact solution). We can determine ω̃ by inserting (A.27) in
the discrete equations. This results in a numerical dispersion relation taking
the form

ω̃ = ω̃(k1, . . . , kd, ∆x1, . . . , ∆xd, ∆t) .

That is, the dispersion properties depend on the discretization parameters.
In difference equations arising from PDEs with first-order time derivative,

like the heat equation, the calculations are often more conveniently carried
out by introducing ξ = exp (−ω̃∆t), i.e., we seek solutions on the alternative
form ξ` exp (i

∑
s ksjs∆xs + φ).

We have seen that the analytical dispersion relation is calculated by
straightforward differentiation. Calculation of numerical dispersion relations

A.4. Stability and Accuracy of Difference Approximations 685

requires much more algebra. By using the discrete operator notation from
Appendix A.3 and some convenient rules from Table A.1, the algebra is sub-
stantially reduced. Having these tools at hand, we look at explicit expressions
for numerical dispersion relations in Appendix A.4.5.

Table A.1. Useful formulas involving difference operations on complex ex-
ponential functions.

operator uj result

[δxδxu]j exp (ikxj) uj
2

∆x2 (cos k∆x − 1) = −uj
4

∆x2 sin2 k∆x/2

[δ+
x u]j exp (ikxj) uj

1

∆x
(exp (ik∆x) − 1)

[δ−x u]j exp (ikxj) uj
1

∆x
(1 − exp (−ik∆x))

[δxu]j exp (ikxj) uj
2

∆x
i sin k∆x/2

[δ2xu]j exp (ikxj) uj
1

∆x
i sin k∆x

Table A.2. Useful formulas involving difference operations on quadratic and
linear polynomials. The result of applying any of the present difference oper-
ators to a constant equals zero.

operator uj result

[δxδxu]j j2 2/∆x2

[δ+
x u]j j2 (2j + 1)/∆x

[δ−x u]j j2 (2j − 1)/∆x
[δ2xu]j j2 2j/∆x

[δxδxu]j j 0
[δ+

x u]j j 1/∆x
[δ−x u]j j 1/∆x
[δ2xu]j j 1/∆x

Example A.11. With the aid of Table A.1 we can study the accuracy of nu-
merical derivatives of wave-like functions. Assume that u = exp (ikx). We
then have

[∣∣∣∣
δ2xu

du/dx

∣∣∣∣
]

j

=

∣∣∣∣
exp (ikxj)

1
h i sin kh

−ik exp (ikxj)

∣∣∣∣ =
1

kh
sin kh

= 1− 1

6
k2h2 +O(k4h4) (A.28)

686 A. Mathematical Topics

and
[∣∣∣∣

δxδxu

d2u/dx2

∣∣∣∣
]

j

=

(
2

kh
sin

kh

2

)2

= 1− 1

12
k2h2 +O(k4h4) . (A.29)

As we see, the critical quantity is the dimensionless number (kh)2 = 4π2(h/λ)2,
or in other words, the square of the ratio of the wavelength and the grid spac-
ing. Having 20 cells per wavelength, we obtain a relative error of 1.6% in the
first derivative and 0.8% in the second derivative, using the leading terms
in the expressions above. With only 4 cells per wavelength, the relative er-
rors are 41% and 21%, respectively. It is therefore crucial to resolve wave-like
functions sufficiently in the grid. �
Exercise A.13. .

A possible higher-order finite difference approximation to u′′ is

1

12h2
(−ui−2 + 16ui−1 − 30uj + 16ui+1 − ui+2) . (A.30)

Calculate the relative error of the second-order derivative approximation as
indicated in (A.29). Show that the accuracy of the five-point difference is
superior to the accuracy of the three-point scheme for u′′ on fine grids, but
that neither scheme is accurate on coarse grids. �

A.4.5 Numerical Dispersion Relations

It was stated in Appendix A.4.4 that the numerical dispersion relation is
found by inserting the discrete exponential solution in the discrete equa-
tions. Let us demonstrate the relevant calculations in an example concern-
ing the 1D discrete wave equation, [δtδtu = γ2δxδxu]

`
j . A solution u`

j =
A exp (i(kjh− ω̃`∆t)) is inserted into the discrete equations. Using the for-
mulas from Table A.1, we easily get

− 4

∆t2
sin2 ω̃∆t

2
= −γ2 4

h2
sin2 kh

2
,

which is simplified to

sin
ω̃∆t

2
= ±γ∆t

h
sin

kh

2
. (A.31)

Solving with respect to ω̃ and then inserting this expression in the discrete
wave component yield an analytical solution of the finite difference equation.

If we define

Ω =
2

∆t
sin

ω̃∆t

2
, K =

2

h
sin

kh

2
,

we see that the numerical dispersion relation takes the form Ω = ±γK.
Moreover,

lim
∆t→0

Ω = ω̃, lim
h→0

K = k .

In the limit h,∆t→ 0 we therefore recover the analytical dispersion relation.

A.4. Stability and Accuracy of Difference Approximations 687

Example A.12. The numerical dispersion relation of the scheme

[δtδtu = γ2(δxδxu+ δyδyu+ δzδzu)]
`
p,q,r

for the 3D wave equation can be obtained by inserting

u`
p,q,r = A exp (i(kxp∆x+ kyq∆y + kzr∆z − ω̃`∆t)) .

With the aid of Table A.1, we find that

Ω2 = γ2
(
K2

x +K2
y +K2

z

)
. (A.32)

Here,

Kx =
2

∆x
sin

kx∆x

2
,

with similar definitions of Ky and Kz. Again we see that the analytical dis-
persion relation is recovered as the grid parameters ∆x,∆y,∆z,∆t go to
zero. To find ω̃, we multiply (A.32) by ∆t2/4 and take the square root,

sin
ω̃∆t

2
= ±γ∆t

(
1

∆x2
sin2 kx∆x

2
+

1

∆y2
sin2 ky∆y

2
+

1

∆z2
sin2 kx∆x

2

) 1
2

.

(A.33)
This equation can be solved with respect to ω̃, thus yielding an explicit
expression for the numerical dispersion relation. �

Example A.13. It was explained in Appendix A.4.4 how the analytical solu-
tion of the discrete equations could in principle be calculated. Such solutions
are of fundamental importance for verifying computer implementations, be-
cause these solutions should be exactly reproduced by the program (within
machine precision), regardless of the uniform grid size.

Suppose we have found an analytical formula for the numerical frequency
ω̃. The physical solution of the discrete equations can be taken as

u`
j = ReAei(kxj−ω̃`∆t+φ)

in a one-dimensional problem. This solution can be adapted to a particular
test problem. Assume that the aim of our simulator is to solve a wave equation
problem like (1.48)–(1.52). To fulfill the boundary and initial conditions, we
can have an exact discrete solution that behaves like sin kxj cos ω̃`∆t, which
is obtained by letting φ = π/2 and k = qπ, q ∈ IN. Thus we can try

u`
j = A sin(π(j − 1)h) cos(`ω̃∆t), (A.34)

with

ω̃ = ± 2

∆t
sin−1

(
γ∆t

h
sin

kh

2

)
(A.35)

688 A. Mathematical Topics

from (A.31). It suffices to use the plus sign in (A.35) since cos−ω̃ = cos ω̃.
This discrete solution (A.34) is compatible with the boundary conditions
u(0, t) = u(1, t) and the initial conditions u(x, 0) = A sinπx and ∂u/∂t = 0.

The case C ≡ γ∆t/h = 1 was used for testing the implementation of the
numerical method for (1.48)–(1.52) in Chapter 1.4. We see from (A.35) that
C = 1 implies ω̃ = ±γk = ω; that is, the numerical dispersion relation is
exact, and the discrete solution coincides with the analytical solution at the
grid points.

The solver in src/fdm/Wave1D/steep1/error computes the difference be-
tween the analytical solution (A.34) of the discrete equations and the u`

j

values computed from the numerical scheme. Run this solver with 4 cells,
Courant number 0.7 and integrate to, e.g., t = 294: ./app -n 4 -C 0.7 -t

294. The error should be as close to zero as the machine precision allows.
(We remark that the solver employs programming techniques introduced in
Chapters 1.7 and 3.4.6.) �

A.4.6 Convergence

The numerical scheme is said to be convergent when the difference between
the discrete and continuous problem approaches zero as the grid parame-
ters (h,∆t) go to zero. This is of course a fundamental requirement of any
numerical method, but proving convergence of a scheme is normally a diffi-
cult task. Nevertheless, we managed in the previous analysis, based on exact
representation of the numerical solution, to quite easily show that a numer-
ical wave component converges to the corresponding analytical component
as h,∆t → 0. By means of a famous theorem by Lax, convergence can for-
tunately be established by simple arguments in a wide range of problems
without constructing exact prototype solutions of the discrete equations.

Theorem A.14. The Lax Equivalence Theorem. Given a well-posed math-
ematical problem and a consistent finite difference approximation to it, sta-
bility is a necessary and sufficient condition for convergence.

Proof. See [120] or [133] for a full proof. LeVeque [82, Ch. 10] presents an
intuitive justification of the theorem. ut

To establish convergence, we do not need to show that the error itself goes to
zero; it is sufficient (i) to show that the scheme is consistent, which is normally
quite trivial, and (ii) to find the conditions for stability. Consistency is treated
in Appendix A.4.9, whereas stability is the topic of the next section.

A.4.7 Stability

The concept of stability can be approached in many different ways. Here, we
say that the numerical scheme is stable if the numerical solution

u`
j = A exp (i(kxj − ω̃t`))

A.4. Stability and Accuracy of Difference Approximations 689

mirrors the qualitative properties of the corresponding solution

u(x, t) = A exp (i(kx− ωt))

of the continuous problem. For example, we know that ω is real in our wave
equation example. This means that a wave is neither damped nor amplified
in time. A similar requirement of the numerical solution demands that ω̃ is
real, which is the case when the right-hand side of (A.31) is less than or
equal to unity. Otherwise, the sine function on the left-hand side of (A.31)
has a magnitude larger than unity and the argument of the sine function
must then be complex (recall that sin iψ = i sinhψ). Requiring the right-
hand side of (A.31) to have a magnitude less than or equal to unity leads to
C ≡ γ∆t/h ≤ 1.

We might tolerate a slight damping in the numerical scheme; that is, we
can accept that ω̃ is complex, with a small negative imaginary part. Complex
solutions of (A.31) are possible when the right-hand side is greater than 1 or
less than −1. However, in those cases the roots of (A.31) when C > 1 will
appear in complex conjugate pairs ω̃ = ω̃r±iω̃i. The negative imaginary part
corresponds to damping, but the positive imaginary part leads to exponential
growth, which will dominate the whole solution after sufficiently long time.
This is not in accordance with the properties of the continuous problem and
cannot be accepted. We are therefore left with real roots of (A.31) and the
requirement C ≤ 1. The stability criterion on ∆t becomes ∆t ≤ h/γ. To show
that this criterion is of great practical importance, the reader is encouraged to
run the wave equation simulator from Chapter 1.4.3 with C > 1 and observe
that instabilities grow in time and destroy the solution.

Example A.15. Let us investigate the stability of the numerical scheme for the
3D wave equation treated in Example A.12 on page 687. We see from (A.33)
that ω̃ ∈ IR demands the right-hand side to be equal to or less than unity.
The squared sine functions can at most be unity in size, with a corresponding
magnitude of the right-hand side

C = γ∆t

(
1

∆x2
+

1

∆y2
+

1

∆z2

) 1
2

.

The stability criterion therefore becomes C ≤ 1, and this C is the Courant
number for the 3D problem. �

We remark that stability is also an issue in stationary problems, see
Project 1.5.2.

A.4.8 Accuracy

The optimal measure of numerical accuracy is of course the numerical error
as a function of the grid spacing parameters as well as the space and time

690 A. Mathematical Topics

coordinates. Our wave component analysis provides tools for investigating
the numerical error and will be demonstrated below.

Since we have expressions for the analytical solution of the continuous
and discrete problems, it is natural to define the error at the point (xj , t`) as

e(xj , t`; k, h,∆t) = Aei(kxj−ωt`) −Aei(kxj−ω̃t`)

= Aei(kxj−ωt`)
(
1− ei(ω−ω̃)t`

)
.

The critical quantity in e(xj , t`; k, h,∆t) is then the error in frequency:

Eω(k, h,∆t) ≡ ω(k)− ω̃(k;h,∆t) .

The expression for Eω is normally quite complicated due to the functional
form of ω̃. Thus it is customary to make a Taylor-series expansion of ω̃ in
powers of h and ∆t.

The multi-dimensional extension of e and Eω follows straightforwardly;
it is just a matter of additional independent variables in the Taylor series.

We shall now analyze the accuracy of the 1D wave equation problem from
Appendix A.4.5. There we had

ω̃ =
2

∆t
sin−1

(
γ∆t

h
sin

kh

2

)
.

By means of, e.g., a few Maple commands, we can easily compute the Taylor
series expansion of Eω as

Eω(k, h,∆t) =
1

24
γk3(h2 − γ2∆t2) +O(h2∆t2, h4, ∆t4) .

It turns out that when ∆t = h/γ, i.e. C = 1, all terms in Eω cancel, and the
solution of the continuous problem is obtained at all grid points (recall that
we have evaluated e at the grid points), regardless of the size of h or ∆t.

When C < 1 we see that Eω = O(h2, ∆t2). We say that the scheme is of
second order in h and ∆t. Investigating the error in the numerical dispersion
relation is only one way of determining the accuracy and the order of a
scheme. The most common technique involves the truncation error, which is
covered in Appendix A.4.9.

Let us examine the error Ec in the numerical phase velocity:

Ec =
Eω

k
=

1

24
γk2h2(1− C2) +O(h4, ∆t4) .

Note that we have replaced ∆t by Ch/γ. The shortest wave that can be
represented on the grid has wave length λmin = 2h, with values ±A at the
grid points. The corresponding minimum value of k in a uniform grid is hence
kmin = 2π/λmin = π/h. It is of interest to plot the normalized error Ec/γ as a
function of p ≡ kh ∈ (0, π] for various Courant numbers, see Figure A.2. We

A.4. Stability and Accuracy of Difference Approximations 691

see from the figure or the formula for Ec/γ that the relative error decreases
with increasing C and decreasing p = kh. With C = 0.9 the relative error is
less than two percent for p < 1.5. For practical purposes one needs at least
four grid points per wave length, i.e. λ = 4h, which implies p = π/2 ≈ 1.57.
This is therefore the largest relevant value of p. The important message from
a practical computational point of view is that reducing ∆t increases the
error unless h is reduced correspondingly. The optimal ratio of ∆t and h is to
have C as close to unity as possible. We remark that this information about
the accuracy is not evident from the order of the scheme.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
p

Fig.A.2. Error in numerical phase velocity, normalized by the exact phase
velocity, as a function of p = kh. The different curves correspond to different
Courant numbers; C = 0.9 (bottom curve), C = 0.5, and C = 0.1 (top curve).

Figure A.2 can be used to explain numerical artifacts when solving the
wave equation. Consider the initial function

f(x) =

{
0.5− π−1 arctan(σ(x − 2)), x > 0,
0.5 + π−1 arctan(σ(x + 2)), x ≤ 0 .

(A.36)

Here, σ is a parameter that controls the steepness of f(x). The wave equa-
tion with the above f(x) is solved in an application found in the directory
src/fdm/Wave1D/steep1. The source code is designed according to ideas pre-
sented in Chapter 1.7, but for the present purpose it is not necessary to look
into and understand the program. You can start the program either through
the GUI script gui.py or through a command like

./app -C 0.9 -s 1000 -t 20 -n 60

692 A. Mathematical Topics

The -s option is used to set the σ value, -C is used for the Courant number,
and the -t option assigns the time when the simulation is to be stopped.
Animation of the string movie is enabled by the Visualize button in the GUI or
by the a simple curveplotmovie command. You should observe an undesired
phenomenon: small, nonphysical waves are created. Choosing a smaller σ
value, e.g. σ = 10, leads to a smoother initial profile f(x) and the noise is
much smaller. The script Verify/demo.py runs a series of examples illustrating
the effect of numerical noise.

A feature of the initial condition (A.36) is that the derivative is discon-
tinuous at the origin. An initial profile with a continuous first derivative2,

f(x) = 1− Φ((x − 3)σ), Φ(x) =
1√
2π

x∫

−∞

e−
1
2 τ2

dτ (A.37)

is implemented in the application in src/fdm/Wave1D/steep2. The program
has the same command-line interface as the one in the steep1 directory
so it is easy to repeate the above experiments with the new solver and
a smoother initial condition. The σ controls the steepness of the profile
in (A.37). You can go to the steep2/Verify directory and run the script
../../steep1/Verify/demo.py to automatically execute and visualize some
numerical examples.

The reader is encouraged to play around with the steep1 and steep2

solvers, especially for C < 1, and observe the generation of numerical noise.
Much of the visual effects can be explained by the information in the numer-
ical dispersion relation.

The analytical solution of the discrete equations, taking the initial con-
dition u(x, 0) = f(x) into account, can be viewed as a sum (or integral)
of an infinite number of wave components. The amplitudes of the various
wave components are determined from the initial condition by Fourier series
methods. If f(x) is a smooth function the wave components with small k
(long wave length) will have the dominating amplitudes A(k), whereas A(k)
becomes more significant for larger k values when f(x) has steep gradients.
We know that the numerical error in the phase velocity grows with kh for
a fixed Courant number. Hence, when the initial condition requires short
waves with significant amplitude to build up the steep initial profile, and we
know that short waves move with wrong velocities, the inexact movement
of high frequency wave components becomes visible. This is what we have
demonstrated in our steep1 and steep2 experiments. Lowering the value of
σ decreases the amplitude of the shorter waves, and the wrong velocities of
these waves are more difficult to observe.

2 The Φ(x) function is seen to be the cumulative normal distribution from statistics,
obtained in Diffpack by calling NormalDistr::cum [78].

A.4. Stability and Accuracy of Difference Approximations 693

A.4.9 Truncation Error

Consider a PDE written on the form L(u) = f , where L is a linear partial

differential operator. The corresponding discrete problem reads L̂(û) = f̂ ,
with û being the solution of the discrete problem. If we insert the solution
u of the continuous problem in the discrete equations, the equations will of
course normally not be fulfilled, and we get a residual τ :

τ = L̂(u)− f̂ .

The L̂ and f̂ quantities involve sampling functions at some neighboring
points, which allows us to express L̂(u) and f̂ in terms of Taylor-series ex-
pansions of u and f in powers of the grid parameters. This enables us to
investigate the size of the residual τ as a function of the grid parameters.
Our primary interest is of course the error u − û as a function of the grid
parameters, but this error may be difficult to estimate in many problems,
whereas the residual can always be computed. We refer to τ as the local
truncation error of the numerical scheme. It will be apparent that τ typically
contains the error terms in the finite difference approximations to spatial
and temporal derivatives. The computation of τ is demonstrated through
two examples.

Example A.16. Our first example is a simple two-point boundary-value prob-
lem, −u′′ = f , i.e., L(u) = −u′′, solved by the scheme [δxδxû = −f]i. We

have L(û) = [δxδxû]i and f̂ = [f]i. In the following, it is important to distin-
guish clearly between the expressions [δxδxu]i and [δxδxû]i. The definition of
τ applied to this example becomes

τ = [δxδxu− f]i .

The expression on the right-hand side involves quantities like ui−1, ui, and
ui+1, that is, the analytical solution of the continuous problem, u, sampled
at xi−1, xi, and xi+1. We make a Taylor series of these quantities around the
principal point of the equation, xi. For example,

ui+1 = ui +

[
du

dx

]

i

h+
1

2

[
d2u

dx2

]

i

h2 + · · ·

We then achieve

[δxδxu]i =

[
d2u

dx2

]

i

+
h2

12

[
d4u

dx4

]

i

+O(h4) .

The Taylor-series expansion of fi is of course trivial. The truncation error
hence reads

τ =

[
d2u

dx2
+ f

]

i

+
h2

12

[
d4u

dx4

]

i

+O(h4) .

694 A. Mathematical Topics

The first term vanishes since the differential equation is supposed to be fulfilled
by the solution u at all points in the domain. Therefore,

τ =
h2

12

[
d4u

dx4

]

i

+O(h4) .

We observe that residual tends to zero as h→ 0. Schemes with this property
are said to be consistent. Inconsistent schemes are recognized by the fact that
they do not necessarily solve the original PDE when the grid spacings tend
to zero. The residual also reflects the quality of the approximation; here we
see that τ = O(h2). One can hope that a small residual (truncation error)
corresponds to a small error. For some model PDEs this property can be
proved, see e.g. Chapter 2.10.5. �

Example A.17. Let us consider the 1D wave equation with the numerical
scheme [δtδtη̂ = γ2δxδxη̂]

`
i . Inserting the solution of the continuous problem

yields
τ = [δtδtη − γ2δxδxη]

`
i .

Taylor-series expansion of η around the space-time point (xi, t`) results in

τ =

[
∂2η

∂t2

]`

i

+
∆t2

12

[
∂4η

∂t4

]`

i

+O(∆t4)− γ2

[
∂2η

∂x2

]`

i

− γ2h
2

12

[
∂4η

∂x4

]`

i

+O(h4) .

The second-order derivatives cancel since the solution of the continuous prob-
lem fulfills the PDE at all grid points. We then obtain

τ = O(h2, ∆t2) .

This result is consistent with our previous measures of the quality of the
approximation, obtained from an expression for the real numerical error. �

Table A.3 is useful for calculating the truncation error of finite difference
schemes, since it gives the contribution to τ from many of the common finite
difference operators. Equivalently, this table provides a list of the errors in
finite difference approximations to derivatives.

Exercise A.14. .
Calculate the truncation error of the scheme (A.15) for the 2D heat equa-

tion. �

Exercise A.15. .
Calculate the truncation error of the scheme

[δtu]
`
i,j = κθ[δxδxu+ δyδyu]

`
i,j + κ(1− θ)[δxδxu+ δyδyu]

`−1
i,j

for the 2D heat equation. �

A.4. Stability and Accuracy of Difference Approximations 695

Table A.3. Taylor-series expansions of some common finite difference oper-
ators applied to the solution u of a continuous problem. The table is useful
for calculating the truncation error and for evaluating the error of finite dif-
ference approximations to derivatives.

operator Taylor-series expansion

[δxδxu]i
h

∂2u

∂x2

i

i
+ h2

12

h

∂4u

∂x4

i

i
+ O(h4)

[δ−x u]i
ˆ

∂u
∂x

˜

i
− 1

2

h

∂2u

∂x2

i

i
h + O(h2)

[δ+
x u]i

ˆ

∂u
∂x

˜

i
+ 1

2

h

∂2u

∂x2

i

i
h + O(h2)

[δ2xu]i
ˆ

∂u
∂x

˜

i
+ 1

6

h

∂3u

∂x3

i

i
h2 + O(h4)

[δxu]i
ˆ

∂u
∂x

˜

i
+ 1

6

h

∂3u
∂x3

i

i

`

h
2

´2
+ O(h4)

[λ
x
]i λi + 1

2

h

∂2λ

∂x2

i

i

`

h
2

´2
+ O(h4)

Exercise A.16. .
The truncation error of the 1D variable-coefficient equation (A.14) can

be calculated by expanding λ and u in Taylor series around xi, inserting the
series in the discrete equations, multiplying the series with each other, and
collecting terms with h0, h1, h2, etc. Show that τ = [λ′]i[u

′]i + [λ]i[u
′′]i +

O(h2). The scheme is hence of second order in h. �

Exercise A.17. .
Calculate the truncation error of the following scheme for the 2D wave

equation: [δtδtu = γ2(δxδx + δyδy)u]`i,j . Extend the analysis to the variable-
coefficient case

[δtδtu = γ2(δxλ
x
δx + δyλ

y
δy)u]`i,j .

�

Exercise A.18. .
Set up a finite difference method for the Poisson equation −∇2u = f in

3D and find the truncation error of the scheme. �

A.4.10 Traditional von Neumann Stability Analysis

A popular definition of stability is described next. As model problem we
choose the one-dimensional wave equation

∂2u

∂t2
= γ2 ∂

2u

∂x2

696 A. Mathematical Topics

with initial conditions

u(x, 0) = f(x),
∂u

∂t
(x, 0) = 0 .

The corresponding scheme reads3

[δtδtu = γ2δxδxu]
`
j , u0

j = fj , u−1
j = u0

j +
1

2
C2(u0

j+1−2u0
j +u0

j−1), (A.38)

for 1 ≤ j ≤ n, ` ≥ 0, and C = γ∆t/h. Suppose we perturb the initial
condition by a function ε(x), where ε can represent approximation and round-
off errors in the representation of the initial function. The solution of this
perturbed problem is denoted by v. Intuition tells that the error e = u − v
should be small if ε is small. Hence, we can define stability in terms of the
property that the error e(x, t) should be bounded in space and time. Then
we require the scheme for e to preserve this property.

Let us first indicate that our requirement of bounded e in space and time
is reasonable. By subtracting the equations for u and v, we see that the
function e(x, t) also fulfills the wave equation, but with e(x, 0) = ε(x) and
∂e/∂t = 0 as initial conditions. The solution e(x, t) has the form

e(x, t) =
1

2
ε(x− γt) +

1

2
ε(x+ γt) .

That is, the error is of the same order as the perturbation for all times.
The von Neumann method for stability analysis usually starts with the

discrete problem for the error. The error e is then represented as a Fourier
series of wave components. As explained before, it is sufficient to study one
wave component in a linear problem, for instance,

e`
j = exp (i(kjh− ω̃`∆t)) = ξ` exp (ikjh),

where ξ = exp (−iω̃∆t). Demanding that e`
j is bounded as t → ∞ leads to

|ξ| ≤ 1 as the primary stability requirement. Notice that this is equivalent
with requiring ω̃ to be real in our previous stability analysis. The numerical
scheme for the error is identical to (A.38), with fj replaced by εj . We insert
the exponential form for e`

j in the scheme and find a condition on ∆t from
the requirement |ξ| ≤ 1. The calculations end up with ∆t ≤ h/γ. For more
details on this type of von Neumann stability analysis, or the alternative
matrix method, see Fletcher [43, Ch. 4]. Tveito and Winther’s book [143]
also covers other methods for stability analysis, including energy arguments
and maximum principles.

Alternative versions of the von Neumann stability analysis work with the
original equation for u rather than the PDE for the error. The demand is

3 Contrary to Appendix A.4.9, we drop the special notation û for the numerical
solution. It is only when we compute the truncation error that we really need a
special notation to distinguish between u and û.

A.4. Stability and Accuracy of Difference Approximations 697

then that the discrete u`
j remains bounded as t→∞, leading to |ξ| ≤ 1 when

u`
j = ξ` exp (ikjh). This is a suitable definition for many physical problems,

including the wave and heat equation models dealt with in this appendix.
Note that if the underlying PDE is homogeneous and linear (otherwise the
exponential solution will not work), the discrete equation for u and e are
similar.

This latter von Neumann stability analysis approach is actually mathe-
matically equivalent to our previous method on page 688. This will also be
clear from the example in the next section.

Exercise A.19. .
Go through the details of applying the von Neumann method to the dis-

crete 1D wave equation problem. �

A.4.11 Examples: Analysis of the Heat Equation

The ideas from the previous sections concerning the analysis of finite differ-
ence schemes via dispersion relations are now applied to the heat equation.
An explicit finite difference scheme for the heat equation

∂u

∂t
= κ

∂2u

∂x2

can be compactly written as [δ+t u = κδxδxu]
`
j . We have already seen that

the heat equation allows damped wave solutions according to (A.25). For
calculations regarding stability and accuracy, we can either work with the
form u`

j = A exp (i(kxj − ω̃t`)) or we can utilize the analytical knowledge
that ω is imaginary, which points us to

u`
j = Aξ` exp (ikxj), ξ = exp (−iω̃`∆t),

as a more appropriate form. Inserting the latter expression for u`
j in the

scheme yields

ξ = 1− κ4∆t

h2
sin2 kh

2
(A.39)

and hence

u`
j = A

(
1− κ4∆t

h2
sin2 kh

2

)`

eikxj . (A.40)

As in Example A.13 on page 687, we can easily construct a test problem for
a heat equation solver such that (A.40) is the exact solution, which should
be obtained to machine precision.

The stability of the scheme follows directly from the principle that |ξ| ≤ 1
for the solution to be damped, and this gives

∆t ≤ h2

2κ
. (A.41)

698 A. Mathematical Topics

Working with u`
j = A exp (i(kxj − ω̃t`)), instead of u`

j = Aξ` exp (ikxj),
demands more algebra, but it can be instructive to go through these general
calculations. After inserting the proposed u`

j in the scheme, we solve for ω̃:

ω̃ = i
1

∆t
ln

(
1− κ4∆t

h2
sin2 kh

2

)
.

The argument α ≡ 1− κ 4∆t
h2 sin2 kh

2 in the ln function requires some consid-
erations since we deal with complex variables. We know from the solution of
the continuous problem that the waves are damped. Hence, we should find
ω̃ = ω̃r + iω̃i with ω̃r = 0 and ω̃i < 0. For 0 < α < 1 these requirements are
fulfilled, while α > 1 implies ω̃i > 0, i.e. growth of waves, which is unaccept-
able. When α < 0, the logarithmic function has complex values. In this case,
lnα = ln |α| + iπ. The imaginary term only gives rise to a factor −1 when
inserted in the wave component so it is of no importance. To obtain a numeri-
cal solution that has the damping properties of the solution of the continuous
problem, we must require −1 ≤ α ≤ 1. This results in ∆t ≤ h2/(2κ).

Discussion of accuracy follows the same lines as in the example involving
the wave equation. We can consider the difference Eω = ω − ω̃i between the
continuous and discrete dispersion relations. Taylor-series expansion of lnα
helps us to simplify the expression for ω̃i, such that we get

Eω = −1

2
k4κ2∆t+

1

12
k4κh2 +O(∆t2, h2∆t, h4) .

The scheme is hence of first order in ∆t and of second order in h. This is of
course expected from the approximation properties of the finite differences
involved.

An alternative way of assessing the accuracy of the scheme is to com-
pare the numerical ξ with the exact expression, i.e., we analyze the error
in the damping of the solution. The wave component exp (−κk2t+ ikx) ful-
fills the heat equation. This expression can be written as ξ`

e exp (ikx), with
ξe = exp (−κk2∆t). The subscript e is used to distinguish the exact damping
factor, ξe, from a numerical damping factor ξ. We may thus study the error
measure

ξe − ξ = e−κk2∆t − 1 + κ
4∆t

h2
sin2 kh

2
.

Example A.18. Let us demonstrate the von Neumann method for investigat-
ing the stability of the forward (Euler) scheme (A.15) for the two-dimensional
heat equation. The appropriate form of the wave component is

u`
p,q = ξ` exp (i(kxp∆x+ kyq∆y)) .

By inserting this expression in the scheme and applying useful formulas from
Table A.1, we get

ξ = 1− 4κ∆t

(
1

∆x2
sin2 kx∆x

2
+

1

∆y2
sin2 ky∆y

2

)
.

A.4. Stability and Accuracy of Difference Approximations 699

Requiring −1 ≤ ξ ≤ 1 leads to

∆t ≤ 1

2κ

1

2

(
1

∆x2
+

1

∆y2

)−1

(A.42)

as the stability criterion. �

Example A.19. Let us find ξ associated with a backward (Euler) scheme for
the 1D heat equation,

[δ−t u = κδxδxu]
`
j .

Inserting u`
j = ξ` exp (ikj∆x) in the scheme results in

ξ =

[
1 + κ

4∆t

h2
sin2 kh

2

]−1

.

Since the expression in the parenthesis is real and always greater than or
equal to unity, we see that |ξ| ≤ 1 for all choices of ∆t. The backward scheme
is therefore unconditionally stable. �

Example A.20. For the Crank-Nicolson scheme for the 1D heat equation,

[δtu]
`− 1

2

j =
κ

2

(
[δxδxu]

`
j + [δxδxu]

`−1
j

)
,

we get

ξ =
1− γ
1 + γ

, γ =
1

2
κ

4∆t

h2
sin2 kh

2
.

Because γ ≥ 0, we see that −1 ≤ ξ ≤ 1. The scheme is therefore uncondi-
tionally stable. �

Let us compare the exact damping with the numerical damping from the
Crank-Nicolson scheme and the forward and backward schemes. We choose
∆t = qh2/(2κ), i.e., the time step is q times the stability limit of the forward
scheme. Since the shortest wave in the grid has wavelength 2h, kh ∈ (0, π].
Introducing p = kh, we can now write the damping factors ξ as

ξ = [1 + 2qα(p)]−1 backward scheme (A.43)

ξ = 1− 2qα(p) forward scheme (A.44)

ξ =
1− qα(p)

1 + qα(p)
Crank-Nicolson scheme (A.45)

ξ = e−0.5qp2

exact (A.46)

where α(p) = sin2 p/2. If ξ > 0 the waves are purely damped, whereas ξ < 0
can give rise to oscillations in the solution (recall that the solution behaves
as ξ`eikxj). In Figure A.3a we use a time step equal to the stability limit

700 A. Mathematical Topics

of the forward scheme. With such a small time step, Crank-Nicolson gives a
damping very close to the exact expression, whereas the backward scheme
provides too much damping and the forward scheme leads to oscillations of
short waves. Choosing q > 1 makes ξ < 0 for some p values in the Crank-
Nicolson scheme, whereas ξ is always positive for the backward scheme. This
means that Crank-Nicolson gives nonphysical oscillations in the solution (ex-
emplified in Chapter 1.7.6). With a time step that is 20 times longer than the
largest possible time step for the forward scheme, we see from Figure A.3b
that short waves are hardly damped, and they are damped in an oscillatory
way (ξ < 0), by the Crank-Nicolson scheme. The backward scheme provides
too much damping, but its ξ(p) curve is quite close to the exact one, at least
when compard with the ξ(p) curve of the Crank-Nicolson scheme. The for-
ward scheme cannot be applied when q > 1. The ξ(p) curve for that scheme in
Figure A.3b illustrates that long waves are damped, and waves shorter than
about 12 grid cells (p = 0.5) are amplified (ξ < −1), thus causing unstable
solutions.

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3

q=1

Crank-Nicolson scheme
backward scheme

forward scheme
exact

(a)

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3

q=20

Crank-Nicolson scheme
backward scheme

forward scheme
exact

(b)

Fig.A.3. Illustration of the damping factor ξ for a time step in the Crank-
Nicolson scheme, the forward scheme, the backward scheme, and the exact
solution. (a) q = 1 (∆t is the stability limit of the forward scheme); (b) q = 20
(∆t is 20 times longer than the stability limit of the forward scheme).

Example A.21. The convection-diffusion equation

∂u

∂t
+ v

∂u

∂x
= κ

∂2u

∂x2
,

with constant v and κ, can be discretized by a backward difference in time
and centered differences in space: [δ−t u + vδ2xu = κδxδxu]

`
j . Inserting the

A.5. Exploring the Nature of Some PDEs 701

wave component u`
j = ξ` exp (ikjh) in the scheme leads to

ξ =

(
1 + i

v∆t

h
sin kh+

4κ∆t

h2
sin2 kh

2

)−1

.

The expression inside the parenthesis has a magnitude greater than or equal
to unity when kh ∈ [0, π]. Therefore, |ξ| ≤ 1.

Changing the discretization of the convection term to an upwind difference
(assuming v ≥ 0), i.e. [δ−x u]

`
j , leads to

ξ =

(
1 +

v∆t

h
(1− cos kh+ i sin kh) +

4κ∆t

h2
sin2 kh

2

)−1

.

Knowing that |a−1| = |a|−1 for a complex number a, we get

|ξ| =
((

1 +
v∆t

h
(1− cos kh) +

4κ∆t

h2
sin2 kh

2

)2

+ sin2 kh

)− 1
2

.

Since 1 − cos kh ≥ 0 when kh ≤ π, the sum of the terms inside the square
root is larger than or equal to unity, making |ξ| ≤ 1 for all h and ∆t. �

A.5 Exploring the Nature of Some PDEs

Linear PDEs with first- or second-order derivatives are frequently classified as
hyperbolic, parabolic, or elliptic. The qualitative properties of the solution of a
PDE depend on this classification, which in turn influences the numerical dis-
cretization strategies. We refer to the literature, for instance Fletcher [43], for
precise mathematical approaches to the classification of PDEs. Here we shall
focus on some specific prototype hyperbolic, parabolic, and elliptic PDEs,
and briefly demonstrate the most important characteristic properties of their
solutions.

A.5.1 A Hyperbolic Equation

A typical hyperbolic equation is the wave equation

∂2u

∂t2
= γ2 ∂

2u

∂x2
,

whose physical significance is treated in Chapter 1.4.1. The general form of
the solution reads

u(x, t) = f(x− γt) + g(x+ γt),

where f and g are functions determined by the initial conditions involving
u(x, 0) and ∂u(x, 0)/∂t. From the general form of the solution we see that
the initial u profile, u(x, 0) = f(x) + g(x), is split into two parts, moving in

702 A. Mathematical Topics

positive and negative x direction with speed γ. An important property of the
solution is that the shapes of f and g are preserved in time; the argument x±
γt just leads to a translation of f and g. This means that if the initial profile
is discontinuous, the discontinuity will propagate (with speed γ) through the
domain4. This feature is best demonstrated through visualizing the results
of a simulation, where we start with u(x, 0) as a plug: u(x, 0) = 1 for x ∈
[0.4, 0.6], and u(x, 0) = 0 elsewhere on the unit interval [0, 1]. The boundary
conditions might be taken as u(0, t) = u(1, t) = 0. A suitable simulator for
this problem is located in the directory src/fdm/Wave1D/bc. Running

./app -n 61 -C 1.0 --casename t1

solves the wave equation with 61 grid points and Courant number equal to
1.0. A movie can thereafter be produced by

curveplot gnuplot -f t1.map -r ’.’ ’u’ ’.’ -animate -fps 1

-o ’set yrange [-1.2:1.2]; set data style lines’

Alternatively, you can use the matlab option to curveplot. The script gui.py

provides a graphical user interface for simulation and visualization (using
Gnuplot).

We observe from the animation that the initial plug is split into two parts
with identical shape, but traveling in opposite directions. At the boundary,
the waves are reflected in an anti-symmetric fashion, i.e., u changes sign.

An interesting question is how the solution is affected by changing the
boundary condition at, e.g., x = 1. Let us apply the alternative condition
∂u/∂x = 0 at x = 1. This is enabled by the -b 2 option to the solver (-b
1 is default and implies u(1, t) = 0). The condition can alternatively be set
on a pull-down menu in the GUI (gui.py). (A physical interpretation of the
current problem can be sound waves in a clarinet, where u is the air pressure.
The clarinet is modeled as a straight pipe with a closed end (vanishing air
velocity, ∂u/∂x = 0) at x = 1, where the blowing is done, and an effective
open end (u = 0) at the location x = 0 of an open side hole.)

Making an animation out of the wave motion now shows that the left
component of the initial profile is reflected from x = 0, as in the previous
case, but the right component is reflected from x = 1 in a symmetric fashion.
When the two components meet again, they cancel each other. Figure A.4
compares the two solutions at four points of time. One can clearly see that
a qualitative difference in the wave to the right arises from changing the
boundary condition.

Changing the initial conditions changes the shape of the wave for all times.
In both simulation examples the value of u, at a point xp, is not affected by
the type of boundary condition before the reflected wave propagates into the

4 From a mathematical point of view, discontinuous solutions demand a reformu-
lation of the original PDE [88], such that differentiation of u is avoided.

A.5. Exploring the Nature of Some PDEs 703

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

u(x,0)

(a)

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

u(x,0.333334)
u(x,0.333334)

(b)

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

u(x,0.750002)
u(x,0.750002)

(c)

-1

-0.5

0

0.5

1

0 0.2 0.4 0.6 0.8 1

u(x,1)
u(x,1)

(d)

Fig.A.4. Solution of the wave equation with initial plug profile, ∂u/∂t = 0 at
t = 0, and u(0, t) = 0. The solid line corresponds to a solution with boundary
conditions u(1, t) = 0, whereas the dashed line corresponds to a simulation
with boundary condition ∂u/∂x = 0 at x = 1. (a) Initial condition; (b)
t = 1/3, the two disturbances are moving away from each other, but they
have not yet reached the boundaries; (c) t = 3/4, the two pulses have been
reflected from the boundaries and are approaching each other; (d) t = 1, the
solution is a superposition of the two pulses.

704 A. Mathematical Topics

medium again and hits the point xp. The solution of the wave equation at the
point xp is therefore unaffected by the boundary conditions up to a certain
time point. The wave velocity γ determines how fast information is exchanged
in the model. This is a characteristic feature of hyperbolic equations. Another
feature is that we can solve for new values (at a time level) of u at the grid
points separately, i.e., the finite difference scheme is explicit.

Project 1.5.1 deals with another hyperbolic equation,

∂u

∂t
+ γ

∂u

∂x
= 0,

where the information is transported with speed γ in one direction only.

Example A.22. In many wave applications it is desirable to transmit waves
out of the domain with no reflections. This is enabled by so-called radiation
or open boundary conditions. For the constant-coefficient 1D wave equation,
an exact radiation condition at x = 1 takes the form

∂u

∂t
+ γ

∂u

∂x
= 0 . (A.47)

The solution to this equation is a wave u(x, t) = F (x − γt), i.e., a wave
traveling to the right, while a reflected wave traveling to the left, u(x, t) =
G(x − γt) is not permitted. Equation (A.47) can be discretized by centered
differences in space and time:

u`+1
n − u`−1

n

2∆t
+ γ

u`
n+1 − u`

n−1

2h
= 0 .

Solving this equation with respect to the fictitious value u`
n+1 and inserting

the result in the scheme for the wave equation at the space-time point (n, `),
leads to a special difference formula at x = 1. This formula is activated
in the solver in src/fdm/Wave1D/bc by giving the option -b 3. Run the case
again, but with the new radiation condition at x = 1, and observe from the
movie that the wave traveling to the right leaves the domain without any
reflections. We remark that construction of radiation condititions that work
well for variable-coefficient or higher-dimensional wave equations is a very
difficult task. �

Exercise A.20. .
This is a continuation of Example A.22. Now we want to impose a radi-

ation condition at x = 0. Derive the correct form of this condition and the
corresponding difference equation to be implemented at the space-time point
(1, `). Perform the implementation and demonstrate through an animation
the effect of the two radiation conditions. �

A.5. Exploring the Nature of Some PDEs 705

A.5.2 An Elliptic Equation

The simple equation −u′′(x) = f(x), with boundary conditions at x = 0
and x = 0, is an example of an elliptic equation. In higher dimensions this
equation generalizes to −∇ · (λ∇u) = f , or just −∇2u = f , which are two
“famous” elliptic equations. Let us set f(x) = 2, u(0) = 0, and investigate the
effect of u(1) = 0 or u′(1) = 0, as we did for the wave equation. Straightfor-
ward integration twice, with determination of the integration constants from
the boundary conditions, give u(x) = 1−x2 when u(1) = 0 and u(x) = 2x−x2

when u′(1) = 0. Now, the boundary conditions affect the solution at all points
in the domain, see also Figure A.5. This is a typical feature of elliptic equa-

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

u(1)=0
u’(1)=0

Fig.A.5. Solution of the elliptic equation −u′′(x) = 2 with u(0) = 0 and (a)
u(1) = 0 or (b) u′(1) = 0.

tions. Numerically, we have to solve for all discrete values of u simultaneously,
i.e., the discrete equations are coupled in a linear system. The resulting set of
program statements in the computational algorithm are therefore completely
different from a simulator for the wave equation.

A.5.3 A Parabolic Equation

A time-dependent version of our elliptic model problem, −u′′ = f , can read

∂u

∂t
=
∂2u

∂x2
+ f(x) . (A.48)

This is an example on a parabolic equation. A corresponding multi-dimensional
parabolic equation is

∂u

∂t
= ∇2u+ f . (A.49)

Now we focus on (A.48), with f = 2, in combination with the initial condition
u(x, 0) = 0. The boundary condition at x = 0 reads u = 0. As in the other

706 A. Mathematical Topics

examples, we shall investigate the difference between u = 0 and ∂u/∂x = 0
at x = 1. As t → ∞, the solution u(x, t) becomes independent of time
(∂u/∂t = 0) and (A.48) approaches the elliptic model problem −u′′ = 2 and
the solutions in Figure A.5. A suitable simulator for this test case can be
found in src/fdm/Heat1D. (Numerical methods and software for (A.48) is the
topic of Chapter 1.7.6.) Running

./app -b 1 -n 41 -t ’dt=0.015 [0,3]’ -theta 0.5

corresponds to using Crank-Nicolson-type time scheme (-theta 0.5), u = 0
at x = 1 (-b 1), 41 grid points (-n 41), ∆t = 0.015, and a total time interval
[0, 3] (the -t option). The case ∂u/∂x = 0 at x = 1 is simulated by giving the
option -b 2 and enlarging the time interval to, e.g., [0, 2]. An extra option -i

allows to play with different initial conditions: -i 1 gives u = 0, -i 2 gives
uncorrelated random u values between 0 and 0.1, and -i 3 gives an initial
step function: u = 0.1 for x < 1/2 and u = 0 for x > 1/2. There is also
a graphical user interface gui.py, where the user can perhaps more easily
adjust the input data.

Animation of the resulting curves reveals a smooth development of the
solution from u(x, 0) = 0 towards the stationary profiles in Figure A.5. Again,
we observe that changing the boundary condition affects the solution at all
points and all times. The initial condition influences the solution at all finite
times, but parabolic equations have “fading memory” such that the impact
of the initial condition decreases with time. Different initial conditions end
up with the same stationary solution.

Contrary to hyperbolic equations, parabolic equations quickly smooth dis-
continuities. This property is demonstrated in a two-dimensional problem in
Exercise 3.15 on page 437, where we solve a parabolic equation like (A.49). An
MPEG movie of the evolution of the discontinuities in this example is found
in the file discont3d.mpeg in the directory src/fem/Heat2. More experiments
with discontinuities in a 1D heat equation appear in Chapter 1.7.6. There we
report numerical noise when a scheme with centered differences in time and
space (Crank-Nicolson scheme) is applied to problems with discontinuities.
Such features are explored and analyzed further here, utilizing results from
Appendix A.4.

Running the Heat1D simulator for comparing θ = 0.5 versus θ = 1,
with n = 161 and random initial values, shows clearly different behavior of
the two time-discretization schemes. The rapid oscillations in u are quickly
damped with the backward scheme (θ = 1), while they tend to be only
modestly damped in the Crank-Nicolson scheme (θ = 0.5). We can try the
src/fdm/Heat1D simulator as follows:

./app --casedir BE --casename BE -t ’dt=0.001 [0,0.005]’

-b ’u(1,t)=0’ -p ’f(x)=0’ -i ’u random’ -n 160 -theta 1

./app --casedir CN --casename CN -t ’dt=0.001 [0,0.005]’

-b ’u(1,t)=0’ -p ’f(x)=0’ -i ’u random’ -n 160 -theta 0.5

A.5. Exploring the Nature of Some PDEs 707

compare the two schemes in the same plot:

curveplot gnuplot -f CN/BE.map -f CN/CN.map \

-r ’.’ ’u\(x,0\.005\)’ ’.’

Repeating this experiment for a time step ∆t = 0.0001 as well, gives us the
two plots in Figure A.6. Note that the scale on the y axis is different in the
two plots. We clearly see that the Crank-Nicolson scheme gives oscillations

-0.02

0

0.02

0.04

0.06

0.08

0.1

0 0.2 0.4 0.6 0.8 1

u

BE_u(x,0.005)
CN_u(x,0.005)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 0.2 0.4 0.6 0.8 1

u

BE_u(x,0.005)
CN_u(x,0.005)

Fig.A.6. Plot of u(x, t) computed with θ = 1 (BE) and θ = 1/2 (CN) in a
heat conduction problem with random initial values at 160 grid points. To
the left: ∆t = 0.001. To the right: ∆t = 0.0001.

that are not apparent in the backward Euler scheme. As ∆t is reduced from
0.001 to 0.0001, the two schemes provide the same result within the accuracy
of a plot. Hence, we would believe that the exact solution at t = 0.005 is
smooth and that the solution produced by the Crank-Nicolson scheme with
∆t = .001 is qualitatively wrong. The next paragraph justifies this conclusion
mathematically.

From the analysis in Example A.8 on page 682 it is evident that high-
frequency oscillations in the exact solution u are very quickly damped out.
The random initial condition is realized by drawing independent random
numbers at each grid point. This results in a function with typical wave length
2h, i.e., the shortest possible wave length in the grid. The corresponding k
value is π/h. From the expressions (A.43)–(A.46) for ξ on page 699, with
α(p) = sin2 π/2 = 1, we see that ξ → 1 as ∆t → 0. We also realize that as
∆t grows, ξ tends to zero (the correct value) for the backward Euler scheme,
whereas ξ tends to −1 for the Crank-Nicolson scheme. That is, large∆t values
in the latter scheme fail to damp the short waves in the random signal.
Figure A.7 displays the damping factors for the shortest wave graphically.
Although the damping for ∆t = 0.0001 in the Crank-Nicolson scheme is
much smaller than the exact expression, the effect of 50 time steps with a
damping of (about) −0.9 results in a total damping of 0.005 of the initial
random roughness. This is sufficient for producing a curve with no visible

708 A. Mathematical Topics

random signal in the rightmost plot in Figure A.6. For ∆t = 0.001, the
Crank-Nicolson damping is very close to −1, and the wave nature of the
random initial condition is apparent for a long time. However, as t→∞, the
Crank-Nicolson scheme approaches the correct steady solution (here u = 0).

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.0001 0.0005 0.001

xi_BE
xi_CN

xi_exact

Fig.A.7. Plot of the damping factor ξ of the solution of a heat equation from
one time step to another. The damping factor is evaluated for the shortest
wave in the grid (relevant for a random initial condition) and plotted against
∆t.

From a numerical point of view, parabolic equations like (A.48) can be
solved either by explicit schemes, of the nature we used for the wave equation,
or by implicit schemes, where we need to solve linear systems of equations
at each time level, as in the elliptic model problem. Explicit schemes have
quite strict stability requirements5 on∆t, while implicit schemes can be made
stable for all values of ∆t (cf. Appendix A.4.11).

A.5.4 The Laplace Equation Solved by a Wave Simulator

The Laplace equation ∇2u = 0 in 2D is an elliptic equation whose discretiza-
tion leads to a linear system. Generating and solving this linear system is
considerably more complicated in 2D and 3D than in 1D. (Details about al-
gorithms and implementations are given in Appendices C and D.) However,
looking at the equation,

∂2u

∂x2
+
∂2u

∂y2
= 0

5 In the present problem we have ∆t ≤ h2/2, to be compared with ∆t ≤ h for the
wave equation (when γ = 1).

A.5. Exploring the Nature of Some PDEs 709

and rewriting this as
∂2u

∂y2
= −∂

2u

∂x2

indicates a possible interpretation of the Laplace equation as a wave equation
with “wrong” sign. It could then be tempting to apply a simple explicit finite
difference scheme for solving the Laplace equation. We shall here exploit the
idea in a specific problem, ∇2u = 0 on the unit square (0, 1) × (0, 1), with
u = 1 + x2 − y2 on the boundary. The exact solution is then also given by
u = 1 + x2 − y2.

One immediate problem is that the Laplace equation is associated with
boundary conditions at all points in the 2D (x, y) domain, while the wave
equation in this example requires a condition on both u and ∂u/∂y at y = 0
and no condition at y = 1. Two conditions at y = 0 and none at y = 1 would
also normally be unphysical in problems leading to the Laplace equation.
However, since we have the exact solution, we can straightforwardly calculate
the consistent condition on ∂u/∂y for y = 0. Changing the name of y to t,
leads to the following alternative mathematical formulation of the Laplace
equation problem:

∂2u

∂t2
= −∂

2u

∂x2
, (x, t) ∈ (0, 1)× (0, 1), (A.50)

u(x, 0) = 1 + x2, x ∈ [0, 1], (A.51)

∂

∂t
u(x, 0) = 0, x ∈ [0, 1], (A.52)

u(0, t) = 1− t2, t > 0, (A.53)

u(1, t) = 2− t2, t > 0 . (A.54)

A comparison with, e.g., (1.48)–(1.52) on page 36 reveals that we can apply a
Wave1D-like simulator for solving the present problem – the only modification
is the minus sign in front of the second-order spatial derivative and differ-
ent values in the initial and boundary conditions. An appropriate program
is found in src/fdm/Wave1D/ill-posed. The algorithm consists of solving for
u(x, t) along a line t = t`, one point at a time, and then proceed with the next
line t = t`+1. We stop the simulation when t = 1 and compare the resulting
profile at t = 1 with the analytical solution u(x, 1) = x2.

The simulation program takes two command-line options, -n for the num-
ber of grid points (1 + 1/h) and -C for the Courant number C = ∆t/h.
Alternatively, you can use the graphical interface gui.py with ready-made
visualization commands. Let us first use 21 grid points and run varying ∆t,
corresponding to C = 1, 0.8, 0.05. Figure A.8a shows that the error in the
first two solutions may be acceptable, while the C = 0.05 profile exhibits
significant numerical noise in the form of oscillations. Running 11, 21, and
22 grid points, all with C = 0.8, see Figure A.8b, shows an alarming phe-
nomenon: As we refine the grid, the oscillations grow (!). The problem turns
out to be completely unstable as we go from 21 to 22 grid points. In fact, the

710 A. Mathematical Topics

solution corresponding to 22 grid points has values of magnitude 106. The
particular behavior of the solution, as referred in detail here, may depend on
the hardware and compiler6.

-0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1

error

e(x,1), C=1, n=21
e(x,1), C=0.8, n=21

e(x,1), C=0.05, n=21

(a)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1

error

e(x,1.04), C=0.8, n=11
e(x,1), C=0.8, n=21

e(x,1.02857), C=0.8, n=22

(b)

Fig.A.8. The error in the solution of the Laplace equation in 2D by a wave
equation algorithm. (a) 21 grid points and varying ∆t = Ch; (b) Fixed
Courant number, i.e., ∆t = 0.8/(n − 1) for varying n. The solution curve
in plot (b) that corresponds to n = 22 leads to values of order 106 and is
hence not visible in the plot.

The reason for the observed instability could be bugs in the implemen-
tation, a too large ∆t in the numerical scheme (i.e. numerical instability),
or that the underlying mathematical problem is unstable. That we run into
problems, should not come as a big surprise. We said that all boundary val-
ues influence the solution of an elliptic PDE at any point in the domain, but
here we applied an algorithm where no information about u at y = 1 had a
chance to be communicated throughout the domain.

The Laplace equation problem, with boundary values on all parts of the
boundary, is a stable problem in the sense that if we perturb the boundary
values, the perturbation in the solution is bounded. (The precise form of this
stability estimate follows from Theorem 2.5 on page 237 and Exercise 2.22
on page 242, if we transform ∇2u = 0 with u = g on the boundary to the
form −∇2v = f = ∇2g with v = 0 on the boundary (v = u− g).) However,
when we try to solve the Laplace equation problem as an initial-boundary
value problem (A.50)–(A.54), small perturbations in the “initial” conditions
at y = 0 (t = 0) can give arbitrary large perturbations in the solution at y = 1

6 I used an Intel PC running Linux and the GNU C++ compiler.

A.5. Exploring the Nature of Some PDEs 711

(t = 1). To show this, we first set the right-hand sides in (A.51)–(A.54) to
zero. This results in the trivial solution u = 0. Then we perturb the condition
(A.52) sligthly,

∂

∂t
u(x, 0) =

sinnπx

nπ
, x ∈ [0, 1],

which is close to zero for large n. The function

u(x, t) =
sinhnπt sinnπx

n2π2

is easily verified to be a solution of the perturbed problem. Although the per-
turbation is small for t = 0 (if n is large), the perturbation is proportional to
exp (nπ) at t = 1, which is definitely large when n is large. The mathematical
problem is therefore unstable. Small perturbations, e.g., due to finite precision
arithmetic, are always present in a numerical simulation, and such perturba-
tions will then destroy the solution. This means that it does not make sense
to apply a modified wave equation solver to the Laplace equation. Zauderer
[152, p. 139] presents an alternative analysis of the present problem in terms
of dispersion-relation tools (of the kind we cover in Appendix A.4).

A.5.5 Well-Posed Problems

An initial-boundary value problem is said to be well-posed mathematically if
the following three conditions are fulfilled: (i) the solution exists, (ii) the solu-
tion is unique, and (iii) the solution depends continuously on the input data.
The latter requirement means that small changes in the initial or boundary
data, or in the coefficients in the PDEs, should only lead to small changes
in the solution. Before we can start finding numerical solutions to PDEs,
the underlying mathematical problems must obviously be well-posed. If the
solution of the continuous problem does not exist, there is nothing to com-
pute. Fundamental algorithmic problems arise if the solution is not unique.
Finally, if the third condition is not fulfilled, small round-off errors, due to
finite precision in arithmetic operations, can alter the solution dramatically.

When a well-posed mathematical problem is discretized by numerical
methods, we must ensure that also the resulting discrete problem is well-
posed. That is: (i) the discrete solution exists, (ii) the discrete solution is
unique, and (iii) the discrete solution depends continuously on the approxi-
mate representation of initial/boundary data and prescribed functions in the
PDEs. In addition, we want the discrete solution to be close, in some sense,
to the solution of the continuous problem.

Unfortunately, well-posedness has only been established for rather simple
model problems. With the lack of such fundamental theoretical results, one
must approach computer experiments with care. One of the major challenges
in scientific computing is therefore to interpret the computational results in
light of knowledge from physics, numerical analysis, mathematical analysis,
and previous experience in order to determine the quality of the results.

Appendix B

Diffpack Topics

B.1 Brief Overview of Important Diffpack Classes

Table B.1. List of the most important classes in Diffpack simulators. The
table is continued on the next page.

classname description

VecSimplest C++ encapsulation of a primitive C vector
VecSimple VecSimplest with operator=, print, and scan

VecSort VecSimple with sort functionality
Vec VecSort with numerics (inner product etc.)
ArrayGenSimplest VecSimplest with multiple indices and free base index
ArrayGenSimple ArrayGenSimplest with VecSimple functionality
ArrayGen Vec with multiple indices and arbitrary index base
ArrayGenSel ArrayGen with ghost (fictitious) boundary
Vector base class for Vec, ArrayGen, ArrayGenSel
MatSimplest C++ encapsulation of a primitive C matrix
MatSimple MatSimplest with operator=, print,
Mat MatSimple with numerics (matrix-vector product etc.)
MatDense synonym for Mat

MatTri tridiagonal matrix
MatDiag diagonal matrix
MatBand banded matrix
MatStructSparse structured sparse matrix (nonzeroes on diagonals)
MatSparse general sparse matrix
Matrix base class for Mat, MatTri, MatSparse, etc.
GridFE ordinary finite element grid
GridFEAdB adaptive finite element grid, box elements
GridFEAdT adaptive finite element grid, triangles/tetrahedra
GridDynFE dynamic finite element grid (lists of nodes/elements)
BasisFuncGrid GridFE overlay for, e.g., mixed interpolation
Field abstract base class for scalar fields
Fields abstract base class for vector fields
FieldFunc explicit function (formula) as scalar field
FieldsFunc explicit function (formula) as vector field

714 B. Diffpack Topics

FieldFE scalar field over GridFE

FieldsFE vector field over GridFE

FieldsFEatItgPt fields at discrete (integration) points in elements
FieldPiWisConst scalar field, constant over materials or elements
FieldsPiWisConst vector field, constant over materials or elements
GridLattice (finite difference) lattice grid with uniform partition
FieldLattice scalar field over GridLattice

FieldsLattice vector field over GridLattice

DegFreeFE mapping: field d.o.f. ↔ linear system d.o.f.
LinEqAdmFE simple interface to linear systems and solvers
LinEqSummary summary statistics of linear solver performance
NonLinEqSolver solvers for systems of nonlinear algebraic eq.
NonLinEqSolver prm governing parameters for NonLinEqSolver

NonLinEqSolverUDC interface to nonlinear solvers
NonLinEqSolvers flexible switch between NonLinEqSolver objects
NonLinEqSolvers prm governing parameters for NonLinEqSolvers

NonLinEqSummary summary statistics of nonlinear solver performance
TimePrm ∆t, time interval for simulation, etc.
SaveSimRes administrator for storing fields on simres files
SimRes2xxx filters simres data to visualization package xxx

FEM base class for and interface to finite element solvers
ErrorNorms tool for error computations
ErrorRate estimation of convergence rates
MenuSystem reading input data from a menu
SimCase general interface to a simulator
MultipleReporter tool for automatic report generation

Table B.2. Overview of the most important features in some central Diffpack
classes. See the man page for each class for more detailed information. The
table is continued on the next pages.

class MenuSystem

addItem defines a menu item
addSubMenu starts a submenu
get("length") returns menu answer for item length as String

forceAnswer specifies menu answers inside the program
multipleLoop controls program execution
init initialization of a menu system object

class String

const char* c str() returns string as a standard C char array

B.1. Brief Overview of Important Diffpack Classes 715

contains("bit") returns true if string contains the word bit

int getInt() extracts an integer
real getReal() extracts a real
bool getBool() extracts a boolean
bool operator== true if two strings are equal

class FEM

makeSystem standard finite assembly algorithm
calcElmMatVec computes element matrix and vector
numItgOverElm numerical integration over element
integrands samples the integrands at a point
numItgOverSides numerical integration over sides of an element
integrands4side ”integrands” function for numItgOverSides

makeFlux compute smooth flux −k∇u from u
makeMassMatrix makes a mass matrix

global functions

initDiffpack init function for all Diffpack codes
initFromCommandLineArg defines a command-line option and reads its value
warningFP issues a warning
errorFP issues an error message
fatalerrorFP issues an error message and abort execution
readOrMakeGrid reads grid from file or run a preprocessor

class OpSysUtil

execute("cmd") executes the operating system command cmd

removeFile("f1.p") removes the file f1.p

renameFile("f1.p","f2.p") moves the file f1.p to f2.p

makeDir("myplots") makes a subdirectory myplots

fileExists("f3.p") returns true if file f3.p exists
dirExists("myplots") returns true if subdirectory myplots exists
appendFile("f4.p","fold.p") appends file f4.p to fold.p

class FieldFE

Vec(real)& values() returns nodal values vector
fill(5.3) sets all nodal values to 5.3
valueFEM evaluates the field at a point in an element
valuePt evaluates the field at an arbitrary global point
derivativeFEM as valueFEM, but for the gradient
derivativePt as valuePt, but for the gradient
GridFE& grid() returns access to the underlying grid

class FieldLattice

Vec(real)& values() returns vector of grid-point values
fill(5.3) sets all grid-point values to 5.3

716 B. Diffpack Topics

valueFEM evaluates the field at a point in an element
valuePt evaluates the field at an arbitrary global point
derivativeFEM as valueFEM, but for the gradient
derivativePt as valuePt, but for the gradient
GridLattice& grid() returns access to the underlying grid

class GridLattice

real Delta(int i) returns cell size in xi direction
int getBase(int i) start index in xi direction
int getMaxI(int i) maximum index in xi direction
real xMin(int i) minimum xi value in grid
real xMax(int i) maximum xi value in grid
int getDivisions(int i) number of cells in xi direction
int getPt(int k, int i) xk coord. of grid-point i in k dir.
int getNoPoints() returns number of grid points

class GridFE

int getNoSpaceDim returns number of space dimensions
int getNoNodes returns number of nodes
int getNoElms returns number of elements
int getNoNodesInElm returns the number of nodes in an element
String getElmType returns the ElmDef class name of an element
bool boNode checks if a node is subject to boundary indicators
getCoor extracts the coordinates of a node
getMinMaxCoord computes a hypercube surrounding the grid
addBoIndNodes adds nodes to a boundary indicator
redefineBoInds redefines boundary indicators
addMaterial defines a patch of elements as a new material
getMaterialType gets the material number of an element
setMaterialType sets the material number of an element
scanLattice inits GridFE object by a GridLattice init string
isLattice true if the grid is actually a lattice
getLattice extracts underlying GridLattice object (if lattice)
move deforms the grid according to a displacement field
findElmAndLocPt finds element and local coord. of a global point
int getNoPoints() returns number of grid points

class FiniteElement

setLocalEvalPt specifies evaluation point in local coordinates
getGlobalEvalPt finds current eval. point in physical coordinates
getLocalEvalPt gets current eval. point in local coordinates
real N(int i) returns value of Ni at current eval. point
real dN(int i, int j) returns value of ∂Ni/∂xj

B.1. Brief Overview of Important Diffpack Classes 717

real detJxW() returns det J times numerical integration weight
int getNoBasisFunc() returns number of basis func. in element
bool boSide checks if a side is subject to a boundary indicator

class DegFreeFE

initEssBC init object, destroy previous information
fillEssBC assigns known values to degrees of freedom
getEssBC extracts known values of degrees of freedom
insertEssBC inserts known values of degrees of freedom in a vector
vec2field transforms vector to field representation
field2vec transforms field representation to vector
loc2glob transforms local d.o.f. number to global d.o.f.
GridFE& grid() gets access to underlying grid

class TimePrm

real Delta() returns current ∆t
real time() returns current time
setTimeStep sets new ∆t value
initTimeLoop inits object for monitoring a time loop
getTimeStepNo returns the time step number
increaseTime updates t, time step number, etc.
bool finished() is the time loop finished? true if t > tstop
stopTimeLoop forces next finished call to return true
stepBack t← t−∆t, ready to increase time with new ∆t

class Prepro

smooth smooths an unstructured grid
triangle2prism extends a 2D grid to a 3D volume

class FieldFunc

valuePt evaluates field formula at an arbitrary global point
derivativePt gradient at a point (formula or difference approx.)

718 B. Diffpack Topics

B.2 Diffpack-Related Operating System Interaction

B.2.1 Unix

Customizing Your Unix Environment. To get access to Diffpack, you need to
go through the following steps once. The specific actions to be made depends
on whether your default Unix shell is bash, sh, csh, or tcsh (type echo $SHELL

to see your current shell).

– bash:
Load your $HOME/.bashrc file into a text editor and add the line

source pathdp/NO/etc/setup/dpshrc

at the end of the file.

– sh:
Load your $HOME/.profile file into a text editor and add the line

. pathdp/NO/etc/setup/dpshrc

at the end of the file. The opening dot in this statement is important!

– csh, tcsh:
Load your ~/.cshrc file into a text editor and add the line

source pathdp/NO/etc/setup/dpcshrc

at the end of the file.

In these instructions, the string pathdp is a textual representation of the path
to the Diffpack installation on the system1. For example, pathdp could be
/usr/local/diffpack. Never just type the characters “pathdp”! To activate
the set up, either make a new window (i.e. start a new shell) or log out
and in again. Then type echo $NOR and check that the output equals the
proper Diffpack path (pathdp/NO). We remark that prior to the initialization
command listed above, you need to set the environment variable MACHINE TYPE

to a proper value2. Consult the Diffpack installation instructions for your
operating system type or ask your computer system manager.

1 More precisely, the complete package is located in the directory tree pathdp/NO.
2 MACHINE TYPE reflects the C++ compiler and operating system type.

B.2. Diffpack-Related Operating System Interaction 719

Utilities Required by Diffpack. Diffpack consists partly of C++ code, collected
in large libraries, and partly of scripts written in Bourne shell, Perl, and
Python. The scripts make use of several software packages that must be
installed for the scripts to work. Failure of successfully reproducing examples
in this book is most likely due to missing software packages. The following
packages are required:

– Gnuplot v3.7.1 or later,

– Perl v5.6.0 or later, with the Tk module,

– Python v2.2 or later, with the Numeric, Tkinter, and Pmw modules,

– an MPEG movie player (e.g., mpeg play, xanim, gtv, vlc, or plaympeg),

– mpeg encode,

– Plotmtv v1.4 or later,

– Ghostscript v6.50 or later,

– ImageMagick v4.2.8 or later,

– Bourne shell,

– Gawk.

For visualization, it will be good to have Vtk, Matlab, IRIS Explorer, or AVS
installed.

Copying a Directory. Say you want to copy a directory from this book, for
example src/fem/Poisson0, to your own directory tree such that you can edit
and compile the files and run the application. You must then recall that all
paths in this book are given relative to the root $NOR/doc/Book. The proper
copy command is therefore

cp -r $NOR/doc/Book/src/fem/Poisson0 .

The -r option copies the Poisson0 directory and all its subdirectories, and
the final dot specifies that the files are to be copied to your current working
directory.

Cleaning up the Disk. Diffpack applications tend to fill up the disk space,
unless you have installed Diffpack with shared libraries. You should therefore
remove your big app files regularly. Diffpack offers a cript Clean for automatic
removal of app files as well as lots of other redundant files3 recursively in a
directory tree: *~, *.bak, core, *tmp, tmp*, to mention a few (the wildcard
* in a filename denotes any sequence of characters). Executing the Unix
command Clean dir results in a clean up of files in the directory dir and
all its subdirectories. For instance, Clean $HOME starts in your home directory

3 If you think Clean removes too many files, you can adjust the file specification
in $NOR/bin/Clean, see the initialization of the targetnames array.

720 B. Diffpack Topics

and cleans all your directories. If you make temporary files that you need for
a while, but that should be automatically removed at some later stage, you
can use tmp at the beginning or end of a filename, since the Clean command
removes all such files.

Compiling and Linking Diffpack Applications. Compilation is performed us-
ing the Make script, which is nothing but an intelligent search for and execu-
tion of GNU’s make program. If you know the path to GNU’s make program
on your computer system, you can always substitute Make by this path. The
Make command allows several options:

– MODE=opt turns on compiler optimization. All safety checks of, e.g., array
indices and null pointers in Diffpack are turned off.

– MODE=nopt (default) turns on internal safety checks in Diffpack and can
thereby detect, for example, array indices out of bounds or null pointer
handles4. Moreover, MODE=nopt also generates debugging information so
that you can run the program inside a debugger and set breaks, examine
variables, etc. Always use the MODE=nopt option during program develop-
ment!

– CXXUF= specifies the user’s flags to the C++ compiler, as in Make MODE=opt

CXXUF="-DDP DEBUG=2", where the compiler option -D is used to define the
preprocessor variable (macro) DP DEBUG5. When you mix C++ code with
C or Fortran codes, there are similar flags CCUF and FFUF for the C and
Fortran compilers. The LDUF= option is used for specifying flags to the
linker.

The FAQ [71] contains information on how to change the default compiler
flags permanently.

– clean removes files that can be regenerated by Make (e.g., app and .o files).

Compiling in Emacs. We strongly recommend compiling programs inside the
Emacs editor, since Emacs automatically moves to the line in the source code
files where a compiler error has occured. This makes it very easy to locate
and correct errors. To compile in Emacs, write M-x compile, where M-x is
usually typed as ESC x, and edit the compilation command to the form you
would have used on the Unix command line, e.g., Make. If the compilation
results in errors, type ctrl-x ‘ (control-x and then a backquote) to move the
cursor to the file and line where the error occurred. More information about
compilation inside Emacs can be found in [89, p. 77].

4 MODE=nopt defines the macro SAFETY CHECKS that is used in preprocessor direc-
tives to enclose tests on array indices, null pointers, and other checks for consis-
tency. You can use this macro in your own simulators as well.

5 See page 330 for examples on how to use DP DEBUG for debug output.

B.2. Diffpack-Related Operating System Interaction 721

Profiling. Unix systems offer programs, called prof or gprof, for analyzing
the CPU-time consumption of the various functions in an application. Such
analysis is referred to as profiling and constitutes an indispensable tool for
optimizing numerical codes. Profiling can point out computational bottle-
necks and thereby direct the programmer’s attention to a few critical parts
of the code. To allow for profiling, the code must be compiled and linked with
a special option, normally -p or -pg. This can be done either by the command
Make MODE=prof or more manually by

Make MODE=opt CXXUF=-p LDUF=-p

Note that some compilers require the option -pg instead of -p. Run the
program with input data that give a CPU time of at least 20 seconds. Then
you can produce the profile by gprof app or prof app. The amount of output
is quite comprehensive so printing only the first 30 lines can occasionally be
convenient, e.g.,

gprof app | head -30 > profile.tmp

The file src/fem/Heat2/Verify/testprof.sh contains a test case involving the
steps in profiling. We refer to Appendix B.7 for various ideas regarding opti-
mization of Diffpack applications.

Customizing Makefiles. The Diffpack makefiles should never be edited, be-
cause they are under constant improvement, and new versions of Diffpack
usually require all the old makefiles to be replaced by new ones (using the
script CpnewMakefiles, which automatically copies the right makefiles from
the repository $NOR/etc/Makefiles to the actual application directories). Cus-
tomization of makefiles takes place in two separate files, named .cmake2 and
.cmake1, which are found in every Diffpack application directory (generated
by Mkdir). In these latter files the user can set various makefile variables and
in this way customize the compilation. This is seldom necessary for the av-
erage Diffpack user. More information about makefile variables can be found
in [71] and in the .cmake2 and .cmake1 files.

B.2.2 Windows

Customizing the Visual C++ Environment. The description given here as-
sumes that you are using the Microsoft Visual C++ compiler 5.0 or newer.

First, you have to set the paths used when searching for header files.
Choose the menu item Options from the Tools menu. This pops up a new
window with several tabbed property pages. Choose the property page labeled
Directories. To the right you have a list of categories, from which you should
choose Include files. In the list of include directories enter:

– pathdp\WinDP\src\bt\include

722 B. Diffpack Topics

– pathdp\WinDP\src\la\include

– pathdp\WinDP\src\dp\include

– pathdp\WinDP\src\extern\include

Here, pathdp should be replaced by the name of your installation’s root di-
rectory, e.g. C:\Program Files.

Moreover, you have to provide paths leading to the library files. From the
same window, choose the category Library files and enter:

– pathdp\WinDP\src\bt\lib

– pathdp\WinDP\src\la\lib

– pathdp\WinDP\src\dp\lib

– pathdp\WinDP\src\extern\lib

still replacing pathdp with your installation’s root directory.
After these simple steps, your C++ compiler is all set for Diffpack devel-

opment, and you can try the example applications located in the directory
pathdp\WinDP\src\extern\projects.

For the rest of this description, we assume that you are working with
the application located in a typical Diffpack finite element solver, e.g., the
Poisson2 application.

Load the Visual Studio workspace by double-clicking the file DP.dsw or
using the Open Workspace option from the File menu. In the subdirectory Sim

you will find the application code for this problem. Notice that this is only
the Diffpack application code, which with a few exceptions is identical to its
Unix counterpart. When compiling the application (using the Build menu)
it is linked to the Diffpack GUI library, thus leading to an application with
integrated visualization and a fully functional GUI. The compiled executables
have the file extension .exe and are located in the subdirectories Debug and
Release, respectively for the debug and release compilation modes.

Naturally, this procedure can be repeated for any of the supplied demo
applications.

Creating a New Diffpack Application. When making an application on your
own, you should start by copying the directory GUI Application Template. In
the subdirectory Sim you will find a dummy application that can be replaced
by your own code (or files). If you introduce new files, add them to the project
description using the option Add To Project/Files from the Project menu, and
repeat the compilation procedure sketched above.

If you want to lay out the workspace yourself, please make sure that the
following preprocessor macros are defined:

– Debug mode: DEBUG,WIN32, WINDOWS, AFXDLL,MFCDP MENUS, NUMT=double,

VTK GRAPHICS, SAFETY CHECKS

B.2. Diffpack-Related Operating System Interaction 723

– Release mode: NDEBUG,WIN32, WINDOWS, AFXDLL,MFCDP MENUS,NUMT=double,

VTK GRAPHICS, POINTER ARITHMETIC

Also, you have to link to MFC and use multi-threaded versions of the
system libraries. This can be set using the option Settings from the Project

menu. This menu choice results in a window in which you should select the
property page named C/C++ and the category called Code Generation.

If you want to create a console application without the graphical user in-
terface, omit the definition of the preprocessor macro MFCDP MENUS and disable
linkage to MFC. Further details are given below.

Moving a Diffpack Application from Unix to Windows. First, you should
either make a copy of a template project or create a new project from the
File menu in Visual Studio. Then, place your Unix application source code
in the subdirectory Sim. Check that the file extension of all implementation
files is *.cpp. All source code files can now be added to your project using
the option Add To Project/Files from the Project menu.

Depending on the type of application you are going to make, you will
have to impose a few minor adjustments to the application code. These ad-
justments are explained below.

Win32 Console Applications. Edit the file containing your application’s main

function and insert the include directive

#include <dpgui/LibsDP.h>

This include file contains special instructions on which libraries to link with.
Make sure that your project defines the preprocessor macros listed above,
except for MFCDP MENUS which should be left undefined. In case you started
out by creating a new Win32 console application project, you will only have
to define NUMT=double, and if you also want internal Diffpack consistency
checks in a non-optimized version, SAFETY CHECKS must be defined.

Your project must link the multi-threaded version of the Windows run-
time libraries, otherwise you will encounter duplicate definitions of run-time
symbols during linkage.

MFC-Based Applications with a GUI. In order to utilize the graphical user
interface, add the MFCDP MENUS preprocessor macro to your project settings.
You also have to:

– Rename your main(int, char**) function to GUImain(int, char**).

– Add the include directives

// MFC Specific includes

#include <dpgui/stdafx.h> // For precompiled header

#include <dpgui/WinDPGlobals.h>

#include <dpgui/LibsGUI.h>

724 B. Diffpack Topics

to the file containing the function GUImain. Note that you should now
use the include file LibsGUI.h instead of LibsDP.h which is used for the
console applications.

– For each of the *.cpp files, insert the following include directives at the
beginning of the file:

// MFC Specific includes

#include <dpgui/stdafx.h> // For precompiled header

#include <dpgui/WinDPGlobals.h>

– In the header file for your simulator’s base class (typically derived from
class FEM), add the include statement

// MFC specific includes

#if defined(WIN32) && defined(MFCDP_MENUS)

#include <dpgui/GUIGlue.h>

#endif

and add GUIGlue as a public base class to the simulator class.

Optionally you may add calls to the functions synchronize (needed to
update the status of the simulation thread) and setProgressCtrlData. See
one of the supplied examples for further details.

Once the listed modifications are done, you can compile your application.
With a little practice you will be able to port a Unix application to a fully
fledged Windows GUI application in the matter of minutes.

A Quick Tour of the Diffpack Application GUI. The Diffpack GUI has three
main window areas. At the top there is a browser for Diffpack simulation
results integrated with the visualization rendered in the bottom right window.
To the left you will find property pages for control of the simulator and for
different visualization options, see Figure B.1.

Most of the GUI widgets have associated tool tips. Let the mouse pointer
rest for half a second over a button or list item to view a short description of
its functionality.

The Toolbar. In the toolbar there are two special buttons to the right giving
you online access to the web server with Diffpack information. The rightmost
button will load the online reference manuals. This functionality requires the
presence of Internet Explorer 3.01 or newer.

The Simres Browser Window. From the simres browser window you can load
data for visualization in the rendering window. Notice that the scale factors
for scalar and vector data manipulates the data set by multiplying the field
values by the specified factor. Using the check box below the rendering button
allows you to toggle between processing of vector fields or viewing a single
component of the vector data as a scalar field.

B.2. Diffpack-Related Operating System Interaction 725

Fig.B.1. An example of a Diffpack application using the MFC-based graph-
ical user interface.

The Simulation Control Window. From the simulation control window you
can choose and edit input files to the menu system. Pressing the Run Simulator

button invokes the menu system dialog in which you can give values to the
individual menu items. Please notice that when you change a menu item you
have to explicitly accept the change by clicking the button labeled Click to

accept new value.

The Visualization Control Window. In the visualization control window you
can choose between different tools:

General: From this page you have the possibility of adding a bounding box for
your data set and axes to show the orientation of the scene. The origin of
the axes is always placed in the corner of the bounding box corresponding
to the minimum value in each spatial direction.

This property page also provides information on the type of data set
currently loaded in the rendering window.

Camera: You can choose between a number of predefined camera positions
or move (with immediate rendering) the camera through different angles.

726 B. Diffpack Topics

The three buttons at the bottom of this property page give you the
possibility of zooming in or out step by step or resetting to normal view.

Light: You have the possibility of choosing between an infinite light model
(default) or positional light. In each case you can vary the intensity of
the light. For positional lighting you can also set the source point and
the focal point. Any movement of the scene will switch back to infinite
lighting.

Color preferences: Depending on whether you have chosen Light or Background

you can set the color of the light source and the background, respec-
tively. Each color channel (red, green, blue) can be adjusted individually.
Checking the Lock channels option causes all channels to be simultaneously
adjusted to identical values, resulting in different grayscale levels. There
are also two buttons for shortcuts to black and white colors, respectively.

Colormap: Using the sliders you can set the minimum and maximum values
of the colormap. By default, these values correspond to the range of
the visualized data set. The bottom slider sets the range for the two
other sliders by specifying an enlargement factor of the data range. If
this factor is one, the sliders for minimum and maximum values of the
colormap will be limited to the data range. The reset button reverts the
extreme colormap values to the range of the chosen data set and sets the
enlargement factor to 2.

Extract: From this page you can extract a subdomain of your data set by
setting minimum and maximum values of the interesting volume either
in x, y, z coordinates (unstructured data) or as I, J,K indices (structured
data). The button labeled Apply must be switched on to have immediate
rendering effect. To get an impression of the location of the subdomain,
turn on the bounding box for the complete data set.

Surface: You can scale the surface depicting a scalar field by using the slider
or supplying a numerical value as text input. The reset button reverts to
scale value 1.

Contour/isosurface: This option gives you the possibility of providing a min-
imum and maximum value to be used for computation of contour curves
(2D scalar data) or isosurfaces (3D scalar data). You can also vary the
number of contours/isosurfaces to be computed. In order to render the
result you have to click the Apply button. Leaving the Apply button on
gives immediate rendering of the contour curves and isosurfaces.

Slice: For 3D scalar data sets you can render plane slices by specifying the
origin (a point located in the slice plane) and the normal of the slice
plane. You must click the Apply button to render the slice.

Vector: As for the surface rendering, you have the possibility of scaling the
vector data by numerical text input or a slider. The Reset button reverts
to scale value 1.

B.3. Combining Diffpack with Other Types of Software 727

You are also allowed to switch between different vector visualization tech-
niques like hedgehogs, stream ribbons, and stream tubes. For the latter
case, there is also a slider setting the number of sides used for the tube
profile. The effect of these visualization modes depends heavily on the
current data set and the scaling used for its presentation.

Animation: By providing a root file name (using a relative path such as
..\Data\Anim\lat2D) and the number of the first and last frame, a click on
the Apply button shows an animation based on the data files. All frames
must be stored as Vtk data files.

Export field(s): You can export one or more fields to different file formats
including Plotmtv, UCD (used by IRIS Explorer and AVS), Vtk, and
VRML. See Projects\Data\VRML for samples generated this way.

Save Image(s): Here, you can save one or more fields as PPM images. These
images can be processed by several Unix utilities or the Windows share-
ware program LViewPro.

The Rendering Window. This is a standard Vtk rendering window. You can

– move the object when pressing the left mouse button,

– zoom when pressing the right mouse button,

– pan when holding the shift key and pressing the left mouse button,

– switch to wireframe rendering by pressing the W key,

– switch to surface rendering by pressing the S key,

– resetting the scene by pressing the R key.

B.3 Combining Diffpack with Other Types of Software

This section explains how to couple Diffpack with other applications or li-
braries. First we explain how to call external software from a Diffpack ap-
plication, and then we explain how other applications can call Diffpack as a
library.

B.3.1 Calling Other Software Packages from Diffpack

Calling software written in C, C++, or Fortran is easy from Diffpack. This
section explains the basic technicalities of the call syntax as well as the actions
required to compile and link such software.

Compiling and Linking a Set of Files. In the case in which you have a col-
lection of files with non-Diffpack software, say

file1.f file2.h file2.c file3.h file3.cpp

728 B. Diffpack Topics

you can just place these in the Diffpack application directory. The Diffpack
Makefile will detect all C, C++, and Fortran files from the filename ex-
tensions (.f for Fortran 77, .c for C, and .cpp for C++). The files will be
compiled and linked with your Diffpack files. The choice of compilers and
associated options can be controlled by arguments to Make, e.g.,

Make MODE=opt F77=g77 CXX=g++ CC=gcc FFUF="-O1"

The F77 flag specifies the Fortran 77 compiler, the CXX flag specifies the C++
compiler, and the CC flag specifies the C compiler. F77 compiler options are
set by the FFUF flag (similar flags for the C and C++ compilers exist, CCUF
and CXXUF, see page 720).

C, C++, or Fortran files in another directory can be compiled and linked
with your Diffpack application using the AddMakeSrc script (see page 306).

Linking with Libraries. Sometimes you may want to link your Diffpack ap-
plication to C, C++, or Fortran libraries. The library names are specified by
the LIBS variable in the Diffpack makefiles and can be set in the file .cmake2,
which resides in the application directory and is included in Makefile (see
page 721). As an example, suppose you want to link the application to the
libraries libmylib1.a and libmylib2.a. You can then write, in the .cmake2

file, one of the following three assignments to LIBS:

add additional libraries to the end of the LIBS list:

LIBS += -lmylib1 -lmylib2

add to the end of the LIBS list (equivalent):

LIBS = $(LIBS) -lmylib1 -lmylib2

add to the start of the LIBS list:

LIBS = -lmylib1 -lmylib2 $(LIBS)

The linking command will not be successful unless the new libraries are found
in one of the directories specified by the -L flags. Suppose the mentioned li-
brary files are located in a directory $mysoft/lib, where $mysoft is an environ-
ment variable. You then need to add -L$mysoft/lib in the linking command.
The LDPATH variable in the makefiles holds the -L options, so you can, in the
.cmake2 file, add the line

LDPATH += -L$(mysoft)/lib

You can now type Make and inspect that the new options are inserted correctly
in the commands appearing on the screen. Instead of launching a compilation,
you can write

Make vars

to let the makefile dump the contents of important variables (including LIBS

and LDPATH).
Diffpack always sets up the directory

B.3. Combining Diffpack with Other Types of Software 729

$DPEXTSOFT/$MACHINE_TYPE/lib

as part of the LDPATH variable. Putting library files of external software pack-
ages in this directory thus eliminates the need for extending the LDPATH vari-
able. The DPEXTSOFT environment variable is set when initializing Diffpack in
the shell set-up file (page 718). DPEXTSOFT normally equals $NOR/ext.

Calling C++ Code. Calling non-Diffpack C++ code from Diffpack follows
the same strategy as calling native Diffpack code; just include the relevant
header files and write the calls. For the linking phase you need to set the LIBS

and LDPATH variables as explained above, unless the non-Diffpack source files
are compiled with the application.

Calling C Code. Calling C code from Diffpack is almost as easy, but the C
functions must be prototyped inside an extern "C" statement. Suppose you
want to call a C function

void add1 (int *a, int *b, int *a_plus_b)

{

return *a + *b;

}

This function may be prototyped in C++ as

extern "C" {

void add1 (int* a, int* b, int* a_plus_b);

}

Then you can make the call

int p=3, q=2, r;

add1 (&p, &q, &r);

from C++. Again the C code must be compiled (use AddMakeSrc to notify
Make where the source is), or if the C code is pre-compiled in a library, the
library must be linked with Diffpack (set LIBS and LDPATH).

In many cases you can just write #include <somelib.h> inside the extern

statement and thereby make all functions prototyped in a C header file
somelib.h available to C++.

Arrays are transferred to C functions as pointers. The Diffpack family
of vector classes (Vec, ArrayGen, VecSimple, etc.) all have a function getPtr0,
which returns a plain pointer to the memory segment containing the array
entries. The following example illustrates how to send an ArrayGen(real)

array to a C function:

730 B. Diffpack Topics

extern "C" {

real norm (real* a, int n);

}

ArrayGen(real) a(4,6); a = -1.1;

real a_norm = norm(a.getPtr0(), a.size());

Note that the ArrayGen object is treated as a single-indexed vector in the C
code.

Diffpack objects of dense matrix type (Mat, MatSimple, MatSimplest) can
be sent to the norm function by calling the matrix object’s getData() function,
which extracts a pointer to the beginning of the memory segment containing
the matrix entries. One can also extract the underlying double-pointer in
matrix classes (call getPtr1()) and send it to C functions requiring real**

type of arguments. However, the double-pointer is manipulated such that
[1][1] is the first entry in the matrix. Most C libraries assume that [0][0]

is the first entry, so be careful with sending double-pointers.

Calling Fortran Functions. Normally, Fortran is a bit more cumbersome to
call than C, because some compilers add an underscore to Fortran subroutine
and function names while others do not. Diffpack has a macro FORTRANname

that eliminates the need to puzzle with underscores, making calls to Fortran
as simple as calls to C code. For example, a Fortran subroutine ADD1,

SUBROUTINE ADD1(A,B,A_PLUS_B)

INTEGER A,B,A_PLUS_B

A_PLUS_B = A + B

RETURN

END

can in the C++ code be prototyped as

extern "C" {

void FORTRANname(add1,ADD1) (int* a, int* b, int* a_plus_b);

}

That is, all Fortran subroutine or function arguments are considered as point-
ers. The FORTRANname macro takes the subroutine or function name in lower
and upper case letters as arguments and translates the name into add1, add1 ,
ADD1, or ADD1 , depending on the compiler6. The call to ADD1 from C++ may
take the form

int p=3, q=2, r;

FORTRANname(add1,ADD1) (&p, &q, &r);

6 Look in $NOR/bt/include/Dpmacros.h to see how FORTRANname is defined, in case
you need to tweak the definition on your platform.

B.3. Combining Diffpack with Other Types of Software 731

The prototyping of Fortran subroutines and functions can be done in a
more informative way. Instead of declaring the arguments as pointers, we can
use references for output variables and constant references for input variables.
The current example would then read

extern "C" {

void FORTRANname(add1,ADD1)

(const int& a, const int& b, int& a_plus_b);

}

Array arguments are handled as in C; that is, we just transfer a pointer to
the underlying memory segment. The principal steps are illustrated next.

extern "C" {

real FORTRANname(norm,NORM) (const real a[], int n);

}

ArrayGen(real) a(4,6); a = -1.1;

real a_norm = norm(a.getPtr0(), a.size());

More details about calling Fortran from C++ can be found in the report [26].
There is a complete example on calling Fortran code from a Diffpack

simulator in src/fdm/Wave2D/optimize (see also Appendix B.7.4).

B.3.2 Calling Diffpack from Other Types of Software

The standard way of creating applications in this book is to make a separate
directory with Mkdir and use an automatically generated Diffpack-specific
makefile. This set-up is less attractive if you already have non-Diffpack ap-
plication with a special makefile and want to call Diffpack functionality from
this application. What you then need is some information in your makefile
on how to compile code with Diffpack calls and how to link your application
with the Diffpack libraries. Fortunately, the Diffpack makefiles have a feature
that writes this type of information for inclusion in other makefiles.

We shall, through a very simple example, illustrate the basic steps of call-
ing Diffpack from another application. Consider the following non-Diffpack
C++ main function in a file main.cpp:

#include <iostream>

double dpnorm (double* a, int n); // use Diffpack for computing

int main()

{

#define N 4

double a[N];

732 B. Diffpack Topics

int i;

for (i=0; i<N; i++) { a[i] = i-2; } // fill vector a

double norm = dpnorm(a, N);

std::cout << "\nnorm=" << norm << std::endl;

}

Here we call a function dpnorm, which is supposed to wrap the a array in a
Diffpack vector class Vec(real) and call an appropriate member function of
Vec(real) to compute the norm of the vector. The dpnorm function can be
available in a separate file dpnorm.cpp, containing the lines

#include <Vec_real.h>

real dpnorm(real* a, int n)

{

Vec(real) a_dp(a, n, 0); // lend a to a_dp

a_dp.print(s_o, "a_dp");

real norm = a_dp.norm(l2);

return norm;

}

We remark that the construction of a dp utilizes a as the underlying memory
segments. Changing a changes a dp and vice versa.

We can compile main.cpp by the very simplest compilation command,
but dpnorm.cpp needs to be compiled with options specifying where Diffpack
header files are found (among other things). The linking step also requires
information about the names and locations of the Diffpack libraries.

Go to a Diffpack application directory and write

Make MODE=opt link2dp > DpMakefile.defs

This command dumps a segment of a makefile for inclusion in other make-
files. The segment contains variables reflecting Diffpack libraries, location
of header files, etc. The variables are explained in the output – just read
DpMakefile.defs. For example, DP CXX reflects the compiler used to compile
Diffpack on the current platform, DP LD is the linker, DP CXXFLAGS contains
all compiler flags, DP LDFLAGS contains all linker flags, DP LIBS lists the Diff-
pack libraries, whereas DP SYSLIBS holds the system libraries demanded when
linking the Diffpack libraries.

We can now write a simple makefile based on these variables:

include DpMakefile.defs

comp:

$(DP_CXX) $(DP_CXXFLAGS) -c dpnorm.cpp

$(DP_CXX) -O -c main.cpp

$(DP_LD) $(DP_LDFLAGS) -o app main.o dpnorm.o \

$(DP_LIBS) $(DP_SYSLIBS)

B.4. Basic Diffpack Features 733

In practice, one will insert similar type of commands in an existing makefile
for the application calling Diffpack. Readers having experience with makefiles
will hopefully see how to extend this example to suit their own needs.

The source code files for the example in the present section can be found
in the directory src/examples/call-Dp.

B.4 Basic Diffpack Features

B.4.1 Diffpack Man Pages

Every Diffpack class has an associated manual page (“man page”) where
technical details of the class are documented. The man page is automatically
generated from information in the corresponding header file. To invoke the
man page for class X, load

$NOR/html/class_X.html

into a Web browser or invoke the index

$NOR/html/classes.html

and click on the link X. The man page for parameterized classes, like Vec(real),
appear with the name Vec Type in the index or in the file class Vec Type.html.
The nice thing with the HTML class documentation is that you get a full
overview of the base and subclasses of a particular class. You can also get a
list of all the available functions in a class, i.e., all the member functions plus
the ones inherited from base classes.

Man pages might be difficult to read for novice Diffpack programmers.
However, extracting useful information from comprehensive documentation,
far beyond one’s own competence, is in general a very important ability to
develop.

B.4.2 Standard Command-Line Options

Diffpack programs automatically process several command-line options:

• --help writes an updated list of the standard command-line options in
Diffpack. Options related to initFromCommandLineArg calls or the menu
system are not listed (run the command DpMenu --HTML to obtain docu-
mentation of these simulator-dependent command-line options).

• --casename sets a casename for the run. The global variable casename is
a String object that contains the current casename. The casename is au-
tomatically manipulated in multiple loops, being in the form casename mX

in run no. X (the global variable casename orig then contains the original
casename as given by the --casename command-line option).

734 B. Diffpack Topics

• --casedir mydir changes the application’s current working directory to
mydir. That is, all files generated by the application are stored in the
subdirectory mydir.

• --tolerance sets the global variable comparison tolerance used for the
eq, lt, gt, and also some operator== functions in Diffpack. For example,
the statement if (lt(a,b,comparison tolerance)) actually performs the
test if (a<b-1.0e-4), if we have given the option --tolerance 1.0e-4 to
app. The man pages for Ptv and genfc list some useful eq, lt, and le

functions. A suitable size of the tolerance is often governed by the spatial
scales of a problem, e.g., the smallest element size divided by a factor.
The function GridFE::calcTolerance returns a suggested tolerance based
on a finite element grid7.

• --advice turns on some internal analysis in Diffpack for checking if in-
appropriate numerical methods or Diffpack options are being used. For
example, --advice can detect if banded Gaussian elimination is used on
an unstructured grids with large bandwidth – one of the most common
reasons for extreme CPU times and memory consumption.

• --nowarnings turns off all warning messages.

• --nounix avoids execution of operating system commands and saves them
in a file casename.unix, which can be executed after the simulation, e.g.,
on another machine. This option works only if you run operating system
commands through OpSysUtil::execute. Always use this function and
avoid the C library’s system function. The global variable nounix is set to
true if --nounix is present as command-line argument.

• --noreport avoids automatic report generation by turning off calls to
the simulator class’ openReport, closeReport, and resultReport functions
from the MenuSystem::multipleLoop function. This can save substantial
execution time, especially during debugging of small test problems, where
the generation of reports take much longer time than computing the
numerical results. For this option to work, the main program must run
the code through a multipleLoop call. The global variable noreport is set
to true if --noreport is present as command-line argument.

• --nographics turns off generation of graphics during executions. All the
associated graphics commands are available in an executable script, which
after the run has the name casename.makegraphics. The global variable
nographics equals a true value if the --nographics option is present as
command-line argument.

The combination of --nounix and --nographics can be used to suppress
execution of time-consuming operating system and visualization tasks

7 Some grid generation algorithms test if two spatial points are identical, using
comparison tolerance. If the characteristic length of the grid is several orders
of magnitude different from unity, one should adjust the global tolerance variable,
either on the command line or in the program.

B.4. Basic Diffpack Features 735

during a simulation. The options are also useful for batch runs on high-
performance computers where there is no appropriate visualization sup-
port. Once the simulation is finished, the scripts can be run (first the
operating system commands, then the graphics commands) to complete
plots etc.

• --verbose N triggers extra output from the Diffpack libraries, often aimed
at debugging or getting detailed information about numerical actions.
The amount of output increases with increasing value of the integer N. The
option --verbose 1 results in messages about major steps in numerical
solution of PDEs, for example, LU factorization, (R)ILU factorization in
preconditioners, linear system assembly, and linear system solution. This
information, combined with output of memory usage from --allocreport,
is useful when optimizing the code.

The integer verbose is a global variable containing the value of N. By
default, N is zero. You can use verbose in applications to turn debug
output on or off at run time8.

• --allocreport N reports allocation and deallocation of int and real ma-
trices and vectors that are larger than N megabytes. This option is useful
for tracking the memory usage of large-scale numerical applications. We
recommend using the option together with --verbose 1 as the total out-
put is then more readable.

• --GUI turns on a graphical user interface in the menu system.

• --batch (or --iscl) turns on the command-line mode for reading menu
answers.

• --prompt (or --iss) turns on the terminal (standard input) prompt mode
for reading menu commands and answers (this is the default menu system
interface).

• --nodump turns off all dumping of field and grid data structures from the
SaveSimRes class. The feature is useful for saving disk space and CPU
time when you run large-size numerical experiments and do not need the
complete fields afterwards. There is an associated global variable nodump,
which is true if the --nodump option appears on the command line.

• --exceptions T tells Diffpack how to handle error messages (exceptions).
When T equals LIBRARY (default), the Diffpack libraries try and catch
exceptions, i.e., error messages are reported directly in textual form from
the libraries. With T as USER, the libraries throw exceptions and the user
(application programmer) is responsible for the try and catch statements.
See the FAQ [71] for more information about various types of exceptions
thrown by your current Diffpack version. A corresponding global integer

8 This represents an alternative to the DBP macros and #ifdef DP DEBUG preproces-
sor directive outlined on page 330, which turn debug output on or off at compile
time.

736 B. Diffpack Topics

variable exceptions equals 0 if the libraries handle exceptions or 1 if it
is the responsibility of the application programmer. You can use this
variable to enforce a particular exception behavior in an application.

B.4.3 Generalized Input and Output

The Background for Generalized I/O. As Diffpack programmer you can deal
with I/O in basically three different ways: (i) use basic printf-like C func-
tions, (ii) use iostream classes in the standard C++ library, or (iii) use Is and
Os classes in the Diffpack library. We recommend that you use the Is and Os

classes since they are more flexible and general than the other alternatives.
The background for the Is and Os classes was that C++ I/O syntax is

different for iostream, strings, and C files. Ideally, a programmer would like
to write a single print function that can be applied to various output sinks,
such as ostream (standard output), ofstream (files), strings (Diffpack’s String
class), and file pointers in C. Using only standard C++, we would need to
write several overloaded print functions to support these different output
media.

Class Os is an interface to various output sinks and offers a unified syntax
to ostream, ofstream, strings, and C file pointers. Moreover, output in ASCII
and binary format is transparent in class Os. In case of the C file pointer one
can employ the xdr binary format9.

Similar functionality for reading input sources like istream, ifstream,
strings, and C file pointers is provided by class Is.

Many of the library classes in Diffpack provide general print(Os) and
scan(Is) functions for writing and reading the contents of the class.

Example on Writing scan and print Functions. Let us assume that we want
to write a class MyClass that holds the following data: an interval [a, b], a real
vector, and an integer vector. The class is to be equipped with read and write
functionality based on the following format.

6 numbers in [0,2]

1.1 1.2 1.4 1.6 1.65 0.1

0 1 4 2 8 9

The two last rows contain the real and integer vectors and should be written
or read in binary format if the output or input medium is set in binary
mode. The first line should always be in ASCII form10. For full flexibility in
the choice of input and output media we use the Is and Os classes. As the

9 The xdr format is hardware independent and makes it easy to exchange binary
files between different platforms.

10 Only sequence of numbers should be written in binary format, whereas strings
should always be in pure ASCII, since the string termination character ’\0’ can
only be properly treated in the ASCII format.

B.4. Basic Diffpack Features 737

reader will notice, the interface to the Is and Os tools is much inspired by
the interface to the iostream library [112, Ch. 15]. The move from standard
input and output in C++ to our Is and Os classes should therefore be trivial.
The following code illustrates some of the most important functions in the
Is and Os classes.

class MyClass {

real a,b;

VecSimple(real) reals;

VecSimple(int) ints;

public:

void init (int n, real a=0, real b=1);

void scan (Is is);

void print (Os os) const;

};

void MyClass:: scan (Is is)

{

// first part is in ASCII (save format of is)

Format_type orig_format = is->getFormat();

is->setFormat(ASCII); // force ASCII output format

int n; is >> n;

is->ignore(’[’); // ignore all text up to [(including [)

is >> a; // or is->get(a); read a from is

is->ignore(’,’); // ignore all text up to next comma

is >> b; // or is->get(b); read b from is

is->ignore(’]’);

reals.redim(n); ints.redim(n);

is->setFormat(orig_format); // set back to original format

reals.scan(is); ints.scan(is); // read vectors (binary or ASCII)

}

void MyClass:: print (Os os) const

{

// first part is written in ASCII

Format_type orig_format = os->getFormat();

os->setFormat(ASCII);

os << oform("%d numbers in [%g,%g]\n",reals.size(),a,b);

os->setFormat(orig_format);

if (os->getFormat() == ASCII) os << ’\n’;

reals.print(os); // write in ASCII/BINARY format

if (os->getFormat() == ASCII) os << ’\n’;

ints.print(os);

if (os->getFormat() == ASCII) os << ’\n’;

}

738 B. Diffpack Topics

Example on Using Is and Os. Here is an example demonstrating the flexi-
bility of the scan(Is) and print(Os) functions.

MyClass t;

t.scan (cin); // read from std input (istream)

t.scan (s_i); // read from std input (=cin)

String s = "2 [4,9] 4.1 4.2 8 9";

t.scan (s); // read from string

t.scan ("FILE=td.2"); // read from file "td.2"

t.scan (Is("td.2",INFILE)); // read from file "td.2"

ifstream ifile ("td.2",ios::in);

t.scan (ifile); // read from file "td.2"

Is ixdr1 ("td.2",BINARY,INFILE,true); // binary xdr file source

t.scan (ixdr1); // read from file using C file ptr

Is ixdr2 ("td.2",ASCII,INFILE,false); // ordinary C file (ASCII)

t.scan (ixdr2); // read from file using xdr format

Is ixdr3 ("td.2",BINARY,INFILE,false); // ordinary C file (BINARY)

t.scan (ixdr3); // read from file using C file ptr

t.print (cout); // print to std output (ostream)

t.print (s_o); // print to std output (=cout)

t.print (Os("td.2.Os",NEWFILE));// print to file "td.2.Os"

t.print (Os("td.2.Os",APPEND)); // append to file "td.2.Os"

Os ofile ("td.2.Osb",NEWFILE); // declare output file "td.2.Osb"

ofile->setFormat(BINARY); // binary output format

t.print (ofile); // write t in binary format

Os oxdr1 ("td.2.Osxdr",BINARY,NEWFILE,true); // xdr file

t.print (oxdr1); // print to file in xdr format

Os oxdr2 ("td.2.OsC",BINARY,NEWFILE,false); // standard C file ptr

t.print (oxdr2); // print to file in BINARY format

When you write to strings, the appropriate syntax is as follows:

String s = ""; // we intend to write to s

Os ostr (s); // output destination as a string

t.print (ostr); // append output to string s

The observant reader has probably noticed that there is automatic type
conversion to Is and Os from the standard I/O objects such as istream,
ifstream, ostream, ofstream, String, as well as const char* strings.

If you have a file tied to an Os object, e.g. Os ofile ("myfile",APPEND), the
file will be closed when ofile goes out of scope, or you can close it manually
by ofile->close().

The Input/Output Class Hierarchies. The classes Is and Os are basically
pointers (handles) to class hierarchies for input and output. Figure B.2 de-
picts the relations between the classes for input. This explains why most of

B.4. Basic Diffpack Features 739

Is_istream

Is_base

Is_String

Is_ifstream

Is_xdr

Is

Fig.B.2. Sketch of the class hierarchy for generalized input.

the Is and Os functionality must be accessed by an arrow ->; the class Is

has a pointer to class Is base, which serves as base class, defining the gen-
eralized input interface. Various subclasses represent different input sources:
Is istream is an encapsulation of the standard istream class that comes with
C++, Is ifstream is the corresponding encapsulation of class ifstream for
file handling in C++, Is String offers reading of Diffpack String objects
(through the Is base interface), and Is xdr offers reading of files, using C file
pointers, possibly combined with the binary xdr format. The design of gen-
eralized output is similar: Class Os has a pointer to class Os base, which acts
as base class for Os ostream, Os ofstream, Os String, and Os xdr. The man
page for class Is contains most of the information about generalized I/O in
Diffpack.

The Is and Os classes do not give access to all the features of the iostream

library. Suppose you work with an ifstream object hidden by an Is ifstream

object and accessed by a general Is object. If you want to use the seekg

function, this is not supported by our generalized input interface, and you
will need to extract the underlying ifstream object and call its seekg function.
This is accomplished by casting the Is object’s pointer to the Is base class
to the Is ifstream subclass object. The latter object contains an ifstream

member that can be accessed directly. Here is an appropriate code segment:

// we have Is inp, check if it is really an Is_ifstream:

if (TYPEID_REF(inp.getRef(),Is_ifstream)) {

Is_ifstream& inps = CAST_REF(inp.getRef(),Is_ifstream);

// inps.inputfile is now a reference to an ifstream object:

ifstream& file = inps.inputfile;

// call, e.g., file.seekg

Similar casts can be performed for other input and output media.
The tools TYPEID REF and CAST REF enable run-time checking of the class

type and safe downward casting from a base class object (here Is base) to a
subclass object (here Is ifstream). With the corresponding TYPEID PTR and
CAST PTR one can also check and cast pointers instead of references. Other
useful type identification tools cover TYPEID NAME(p), which returns a const

char* string containing the name of the class object being pointed to by p,

740 B. Diffpack Topics

and TYPEID STR(FieldFE), which converts the class name FieldFE to a const

char* string11.

B.4.4 Automatic Verification of a Code

The Make command has a convenient feature that allows automatic verifica-
tion of a program in terms of regression tests. Suppose you have developed a
program and made a test example with results that are thoroughly verified.
You can then use this test case to check that future versions of the program
produce results that are in accordance with the verified results. The following
steps implement the automatic verification procedure.

– Make a subdirectory Verify of the application directory. Move to Verify.

– Choose a name for your test example, say myex1.

– If needed, make an input file (to the program) for the test example:
myex1.i.

– Make a script myex1.sh that executes ../app for this example and collects
all the relevant results in a file myex1.v. Here is an example on such a
script, written in plain Bourne shell:

#!/bin/sh

../app --casename myex1 < myex1.i > myex1.v

append key results:

simres2summary -f myex1 -n u -s -A >> myex1.v

cat myex1.dp >> myex1.v

As long as the filename ends in .sh, you can use any scripting language
inside the script, for example, Bourne shell, C shell, Korn shell, Perl,
Python, or Perl. The first line specifies the interpreter to be used and
thereby the language of the script.

– Run the script myex1.sh. If you believe the results are correct, copy
myex1.v to myex1.r. This latter file will be the reference file for later
verifications.

You can have many *.i, *.r, and *.sh files in the same Verify directory, or
you can collect files in subdirectories of Verify.

Numerical results will normally change slightly when you run the program
on different hardware. It may therefore be convenient to mark the result files
with the machine type; that is, one can work with myex1.v-$MACHINE TYPE

instead of myex1.v. This ensures that new results of the test are always com-
pared to old results on the same hardware. A more sophisticated approach to

11 Note that this works for TYPEID STR(MatBand(Type)), while simply putting
quotes around MatBand(Type) will not work!

B.5. Visualization Support 741

handling round-off errors in results files is offered by the Regression Python
module mentioned at the end of the present section.

To perform the verification, issue the command Make verify. The make
program will now look for *.sh files in the Verify directory, and all its subdi-
rectories, execute each one of them and compare the recently generated *.v*

files with the reference files *.r*. The differences are detected by the standard
Unix command diff, and the output of diff is stored in the file verify.log

in the application directory. Sometimes you have changed the output format
or the amount of output from your program. This will result in differences
reported in the verify.log file. If these differences are expected to be perma-
nent, it is necessary to use the new results in *.v* as reference results. The
command Make newverify copies the present *.v* files to their corresponding
.r files.

Making Verify directories for all your applications enables easy checking
of whether new versions of the program work satisfactorily or not. Further-
more, the perhaps most practical application of the verification procedure
described above is for documenting the usage of your code; each *.sh file tells
others how to run your program, how input data can look like, and where to
find the expected results of the test case.

A more comprehensive approach to code verification is offered by the
Python module Regression, explained in detail in [68] and available in the
software collection that comes with [68]. The verification scripts are then
written in Python, and recursive run of tests is performed by a Python script
instead of Make. The test results are available in HTML reports with lots of
hypertext links to ease navigation. There is also a framework for comparing
floating-point numbers in result files generated on different hardware. Ver-
ification of the Diffpack libraries and core applications is based on Python
scripts the Regression module.

B.5 Visualization Support

Simulation software for numerical solution of PDEs tend to generate very
large amounts of data. The user therefore needs tools for browsing large data
sets and selecting a fraction of the data for visualization. Diffpack supports
storage of data for later browsing and visualization. The tools aim at two
different classes of simulation data:

– curves y = f(x),

– stationary or time-dependent scalar and vector fields.

This classification is motivated from a purely practical point of view, because
the visualization tools for curves and fields are usually quite different. For
curves one applies sophisticated curve-plotting programs, like Matlab, Gnu-
plot, or Xmgr, which offer axes, labels, titles, multiple curves in the same
plot, etc. Visualization of fields normally requires a real visualization system,

742 B. Diffpack Topics

like Vtk, Matlab, IRIS Explorer, or AVS. These are big codes, offering ad-
vanced visualization algorithms for 2D and 3D fields. Simpler programs, like
Plotmtv, can be used for fast 2D visualization. Some curve-plotting programs,
e.g. Gnuplot, also offer primitive visualization of 2D functions z = f(x, y),
and some visualization systems support curve plotting (e.g. Matlab and AVS).

The programmer of a Diffpack application can anywhere in the simulator
simply dump a curve or a field to a special graphics database. Examples on
relevant calls are found in the wave equation simulator from Chapter 1.4,
where curves are dumped using the CurvePlot class directly. Storage of scalar
and vector fields is exemplified in the Poisson1 simulator from Chapter 3.2,
where the SaveSimRes utility is used to dump the fields.

The dumped fields and curves are stored in a database, represented as
a collection of files. Normally, the compact storage format for fields cannot
be directly used in visualization programs. After having selected the fields to
be plotted, one must run a filter to transform the Diffpack-specific storage
format to a format that the visualization system can interpret. For curves
such format transformation is seldom required.

Below we describe some details of the basic tools in Diffpack for storing
curves and fields and browsing the stored data sets. The reader should be
familiar with the corresponding tutorial material in Chapters 1.4 and 3.3.

B.5.1 Curves

The term curves is used for data consisting of (x, y) pairs, and visualization
implies, e.g., drawing a line between the data points. Diffpack applies the class
CurvePlot to represent a single curve. Since there might be hundreds of curves
from a simulation, a managing class CurvePlotFile is used to administer
the storage of the individual curves. We normally recommend to use one
CurvePlotFile object in a simulator such that all curves appear to be in
the same database. Any CurvePlot object needs to be linked to a managing
CurvePlotFile object. Class SaveSimRes contains a data member cplotfile

of type CurvePlotFile that can be used as managing object, especially in
finite element simulators, which normally contains a SaveSimRes object (see
class Poisson1). Simpler applications, such as those from Chapter 1.4, need
to declare and store a CurvePlotFile object explicitly.

Dumping Curves. A curve database with name casename is declared and
initialized according to

CurvePlotFile cplotfile; cplotfile.init(casename);

To make a specific curve, one first declares a CurvePlot object and binds it
to a CurvePlotFile managing object:

CurvePlot cp; cp.bind(cplotfile); // or: CurvePlot cp(cplotfile);

B.5. Visualization Support 743

A curve is recognized by three items: the title, the function name (sometimes
also referred to as curve name), and a comment. These data are set in the
initialization call to cp.initPairs, e.g.,

cp.initPairs ("Displacement", "u", "t", aform("u(t=%g)",t));

This is an appropriate initPairs call if the curve would be mathematically
written as y = u(t), and u has the interpretation of being a displacement.
Hence, the title is Displacement, the curve name is u, the name of the inde-
pendent variable is t, and the final argument to initPairs is the comment. As
soon as the curve is initialized, we can dump pairs to cp by calling addPair:
cp.addPair(t,u(t)). Each addPair call adds a new discrete point to the curve.
When all pairs are dumped, the curve is closed by the call cp.finish().
The CurvePlot object can then be reused for a new curve, starting with a
cp.initPairs call.

CurvePlot objects can be used for spatial 1D functions, time series, conver-
gence rates, time step evolution, and so on. Some of the curves are therefore
declared and dumped locally in a simulator, while others are open through
the whole simulation. Sometimes it is necessary to work with n related curves
throughout the whole simulation. This is straightforwardly done by working
with a vector of CurvePlot objects: VecSimplest(CurvePlot).

When dumping a 1D field, there is a simplified interface to CurvePlot,

SimRes2gnuplot::makeCurvePlot

(v, // 1D FieldLattice or FieldFE object

cplotfile, // CurvePlotFile manager

"velocity", // title of plot

"v", // curve (function) name

aform("v at t=%g",t)); // comment

which was used in the Wave1D solver in Chapter 1.7.4. This function declares
its own local CurvePlot object and performs the initialization, add, and finish
steps. The pairs of (x, v(x)) are dumped, and v can be a one-dimensional
FieldLattice or FieldFE object.

The CurvePlot object stores the data pairs in a file. Each curve has its
own file, whose name is generated by the managing CurvePlotFile object.
The stem of the filename is specified when initializing the CurvePlotFile

object. Say the stem is S. The data pairs of curve no. 15 handled by this
CurvePlotFile object are then stored in the file .S 15. The CurvePlotFile

object keeps track of all its curves in a mapfile, whose name is S.map. The
contents of this file is a list of all the dumped curves, with the data file name,
title, function name, and comment written line by line12. Class SaveSimRes

applies the stem .casename.curve for its CurvePlotFile object cplotfile, so

12 The data items are separated by the special symbol so it is easy to extract the
items by using, e.g., Awk, Perl, or Python to split each line with respect to .

744 B. Diffpack Topics

with a casename mc1, the map file has the name .mc1.curve.map and curves
are stored in ..mc1.curve X, X being the curve number.

Generation of hundreds of curves in a simulation causes a blow-up of data
files in the directory. In practice it is difficult for a programmer to assign
sensible filenames to all these curves, and a system as we have described
above is then useful. Notice that the name of all data files starts with a dot
such that the files are “invisible” in standard Unix directory listings. This is
convenient when a large number of curves are generated.

Browsing and Selecting Curves. The reader is encouraged to compile and run
an application that dumps curve plots, e.g., the simulator from Chapter 1.4,
the Wave1D simulator from Chapter 1.7.4, or one of the simulators from Chap-
ter 3. Take a look at the mapfile (the mapfile syntax might be a bit odd since
it is aimed at being interpreted by an awk or perl script; you can run the
script cmappr, with the mapfile name as argument, to get a nice output of the
contents of the mapfile).

There are four ways of plotting the curves: (i) using the graphical inter-
face, curveplotgui .mc1.curve.map, or the similar functionality in the GUI on
Windows platforms, (ii) using the Diffpack curve-plotting script curveplot,
(iii) plotting curve files (..mc1.curve 13 etc.) directly in a plotting program,
and (iv) making your own tailored script13 for collecting curves in a plot.

After having gained access to the list of all stored curves, the next step is
to select a few curves for plotting. The selection can be performed by clicking
on the desired curves in the graphical interface or by specifying regular ex-
pressions for the title, function name, and comment of a set of curves. Both
procedures are briefly described in Chapter 1.4. Here, we dive a bit more into
the specification of regular expressions, because this is a powerful tool and
because this is the way we select curves in the Diffpack curve-plotting scripts.

Suppose you specify the following regular expressions for the title, the
function name, and the comment:

’.’ ’f[(]x=0,t=[3-6]\.0’ ’.’

The first ’.’ matches everything, and the plot title can therefore be arbitrary.
The next pattern specifies that the function name must start with f(x=0,t=

(notice that the parenthesis () are special characters in regular expressions
so we need a backslash or brackets to turn off their special interpretation,
e.g. as in f\(x or f[(]x). The next characters in the function name must
be among the numbers 3, 4, 5, or 6, followed by a dot (which has a special
interpretation of matching everything, so when we mean the character ’.’ it
must be preceded by a backslash) and 0. No more specification of the function
name is given. Examples on names that match the given regular expression
are

13 This is explained in detailed in the book [68]. See in particular the src/pse

directory associated with [68].

B.5. Visualization Support 745

f(x=0,t=3.0) f(x=0,t=3.01) f(x=0,t=6.03253)

This is perhaps not what we intended. If the goal was to extract the curves
with names

f(x=0,t=3.0) f(x=0,t=4.0) f(x=0,t=5.0) f(x=0,t=6.0)

we should add a quoted) at the end of the regular expression. We refer to
[146, Ch. 2] and [46] for a thorough explanation of regular expressions and
their many applications in modern software development.

If you intend to produce plots in batch, in a program during execution or
from a script, you will need to access the scripting interfaces to curve plot-
ting in Diffpack. These interfaces are briefly demonstrated in Chapter 1.4.4.
Diffpack offers a script curveplot for selecting and plotting curves, interac-
tively or in batch. The important advantage of this script is that the plotting
program is just a parameter; that is, the script provides a unified interface
to several plotting programs. The script allows for single plots or anima-
tions (both with multiple curves). The visualization is shown on the screen
or stored in PostScript format. From the PostScript files one can easily gen-
erate MPEG movies or animated GIF images (see Chapter 1.4.4). Here is a
list of the most common options to the curveplot script.

-f mapfile specifies the mapfile that should be used when searching for
curves.

-r title funcname comment specifies three regular expressions, for the plot
title, the function name, and the comment, of the curves to be selected
for visualization.

-g WxH+X+Y specifies the geometry and position of the window (in standard
X11 syntax).

-ps psfile indicates that the plot is not to be shown on the screen. Instead,
a PostScript file psfile, containing the plot, is produced. Some plotting
programs, such as Xmgr and Plotmtv, offer buttons in their plotting
window for dumping the graph in PostScript format. However, the -ps

option suppresses the graphical interface of the plotting program and is
hence convenient for non-interactive plotting.

-c commandfile specifies that the plotting program-specific commands used
to produce the plot are to be stored in a file commandfile. By default,
the curveplotgui and curveplot store the actual plotting commands in a
file .prog.commands, where prog means the name of the plotting program
(Gnuplot, Xmgr, or Plotmtv). The command file can be used for examin-
ing or editing the plotting commands, which is particularly useful when
you need to adjust the fine details of a plot. Studying this file also helps
to learn the basics of the plotting programs. When running curveplot

matlab, -c is used to set the name of the resulting Matlab script file
(dpc.m by default, see below).

746 B. Diffpack Topics

-o ’plotting program specific commands’ is an option that enables the user
to give some plotting program-specific commands regarding the plot. For
example, when using curveplot gnuplot one might say

-o ’set title "F-curve"; set xrange [-1:1];’

-animate makes an animation (only available if first argument to curveplot

is gnuplot or matlab).

-psanimate works as -animate, but instead of displaying the movie on the
screen, all plots (frames) are stored consecutively in PostScript files with
names tmpdpcNNNN.ps, where NNNN is a four digit number. Having gen-
erated the PostScript files, one can run ps2mpeg tmpdpc*.ps to produce
an MPEG movie movie.mpeg or use the convert program to create an
animated GIF file (see page 45).

Sometimes you want to build the movie with a special opening page, e.g.,
with a sketch of the problem being solved, values of various parameters,
etc. You can then create a PostScript file with the front page in a drawing
program and save the file as, e.g., front.ps. Rebuilding the movie with
front.ps as the first frame is then accomplished by the command ps2mpeg

front.ps tmpdpc*.ps. Several front pages are trivially added if desired.

-fps N results in an animation visualized with N frames per second. This
option is useful for playing movies in slow motion. Notice that inside
Matlab, you can issue the command movie(M,N,FPS) for playing the movie
M N times at FPS frames per second.

-fg runs the plotting program in the foreground, i.e., the curveplot script
halts until you have quit the plotting program. This is the preferred mode
if you want to display several animations after each other.

-bg runs the plotting program in the backround, i.e., you get the Unix com-
mand prompt right after you have issued the curveplot command and
can go on with other tasks. This is the default behavior and is convenient
when showing many plots on the screen at the same time.

-stop avoids starting up the plotting program. All the commands are avail-
able in a script file (.prog.commands or dpc.m, see the -c option above).

When using curveplot with matlab as first argument, the plotting session is
available in a Matlab script, with default name dpc.m (can be set by the -c

option). Matlab is run silently if you request hardcopy plots in PostScript
format. Otherwise Matlab is invoked by with the -nodesktop option such
that you get the Matlab command prompt, but no graphical desktop. At the
command prompt, you can rerun the plotting session by typing the name of
the script file (dpc). All the curve data are stored in internal Matlab variables
and can be manipulated and used in various ways. The script file provides
documentation of the meaning of these variables. If you apply curveplot

B.5. Visualization Support 747

matlab for animation, the movie is available as the variable M, such that you
can replay the movie by movie(M), perhaps augmented with extra arguments
for controlling the speed and the number of repetitions.

The curve-plotting tools in Diffpack are built in layers. The curveplotgui

interface is a fairly short script that calls curveplot, which builds a command
file for the actual plotting program. A user has of course the possibility to
invoke the most convenient layer for the problem at hand. For example, in
an application where you know exactly the names of the curve files to be
plotted, you can create sophisticated commands as we demonstrate in the
xmgr.pl and xmgr.py scripts in src/app/SqueezeFilm/coupling. Such tailored
plotting scripts offer a degree of user control that is of course not possible
with tools like curveplot or curveplotgui. However, one can use the latter
scripts to simply generate a basic command file (with the -c) option and
then develop this file manually or through a script to the desired level of
sophistication. Examples are provided in Chapters 1.4.5, 3.6.5, and 3.13.6.

Run-Time Plotting of Curves. Sometimes it is desirable to plot curves during
the simulation. If the curve is already stored on file by a CurvePlot object,
one can execute a standard curveplot command. For example,

OpSysUtil::execute

(aform("curveplot gnuplot -f .%s.curve.map -r ’.’ ’u’,"

casename.c_str()));

Class CurvePlot can also store the data pairs in internal arrays, which can
be sent directly to a curve-plotting program. Xmgr and Matlab allow data
to be piped, i.e., the arrays can be visualized directly as soon as they are
computed.

B.5.2 Scalar and Vector Fields

The support for visualization of scalar and vector fields in Diffpack enables
fields to be dumped in a compact binary- or ASCII-based file format anywhere
in the simulator. It is also easy and efficient to locate and retrieve a partic-
ular group of data from the file. The connection to visualization programs is
constructed in such a way that one can select among several programs for
visualizing the data. Interactive visualization during the simulation is also
supported.

File formats for visualization programs can be classified in two categories:
geometric formats containing lists of geometric primitives, like points, lines,
and triangles, and field formats containing specification of field values (scalar
or vector) over a grid. Data in a field format are usually piped through
some sort of drawing algorithms, whose output is in a geometric format.
The drawing algorithms and the associated transformation of field data to
geometric data are performed inside the visualization system. The normal

748 B. Diffpack Topics

SimRes2mtv

SimRes2matlab

SimRes2vtk

SimResFilter

SimRes2ucd

Fig.B.3. Sketch of the class hierarchy for simres filters.

way of visualizing Diffpack fields is therefore to filter Diffpack’s field format
to a visualization program specific field format and then handle the whole
visualization process over to the visualization system.

The simulation program can write field data to file in the Diffpack-specific
simres format using class SaveSimRes. There exist a number of different pro-
grams for filtering the simres format to various visualization system-specific
file formats. An introduction to the SaveSimRes tool and associated filters is
given in Chapters 3.3 and 3.12.

Writing Fields Directly in a Specific Format. If the simulator is supposed
to be tightly integrated with a particular visualization system, it might be
convenient to produce data files with the right format at once instead of
going through the intermediate simres format step. Various subclasses of
SimResFilter, see Figure B.3, offer functions that take a Diffpack scalar or
vector field object and dumps the field to file in a plotting program specific
format. These functions are normally static. For example, the SimRes2ucd class
exports fields to the ucd format which can be read by AVS or IRIS Explorer.
The usage is simple: One sends a vector field object to SimRes2ucd::plotVector

or a scalar field object to SimRes2ucd::plotScalar. Alternatively, we can dump
fields in Vtk format by calling the function SimRes2vtk::plotVector or its
counterpart for scalar fields: SimRes2vtk::plotScalar.

The SimRes2vtk class also contains many functions for transforming Diff-
pack field objects to the corresponding objects in Vtk, e.g., FieldLattice can
be converted to vtkStructuredGrid. This is convenient for interactive visual-
ization by means of Vtk in a Diffpack simulator.

It is also possible to use drawing algorithms in class SimRes2gb to trans-
form field data to a geometric format inside Diffpack. An example, provided
by src/fem/Poisson1/Verify/s2gb.demo, involves contouring of finite element
fields.

Writing Fields to a Simres Database. Class SaveSimRes is only a high-level
interface to class SimResFile, which is again an interface to the low-level
classes FieldWriter and FieldReader, which actually perform the reading of

B.5. Visualization Support 749

and writing to simres databases. This layered design enables both easy-to-use
tools as well as detailed control of the storage and retrieval of fields.

FieldWriter

FieldReader

MySimSimResFile SaveSimRes

Fig.B.4. Layers of interfaces to the simres functionality.

SaveSimRes offers dumping of a scalar or vector field u to the simres database
by the call database->dump(u), where database is a SaveSimRes object.

SimResFile gives slightly more control than class SaveSimRes. With this class
one can read and write fields of unknown type from and to a simres
database. If the type of the field is known, some simpler functions are
offered as well. Suppose you want to load a FieldFE structure u, with
name temp, at time 3.2 from a simres database. Having a SimResFile

resfile connected to this simres dataset, one can write

real time = 3.2;

SimResFile::readField (u, resfile, "temp", time);

If there is no temp field stored at time 3.2, the readField function will
find the field that is closest to time 3.2 among all the stored temp fields.

FieldWriter is the low-level class for writing fields to a simres database and
FieldReader is its counterpart.

Browsing and Filtering Simres Data. Suppose you have generated a simres
dataset with casename myc1. There are basically two ways of browsing the
contents of this dataset, either examining the text file .myc1.simres or ex-
ecuting the graphical simres browser simresgui myc1 (on Win32 platforms
the general GUI contains a special simres browser). Both the file and the
graphical tool should be self-explanatory. Having chosen some interesting
fields to visualize, one can filter the data to the desired format by running
a simres2xxx filter as explained in Chapter 3.3 or one can click on Filter in
the graphical interface. During intensive experimentation with a simulation
program one will normally write a tailored script that runs the simulator and
produces the right kind of visualization automatically. Such scripts must of
course rely on executing the non-interactive simres2xxx filters. An example
on the approach is provided in Chapter 3.12.9.

750 B. Diffpack Topics

The Storage Structure of the Simres Format. When storing a field using
SaveSimRes::dump, the grid is stored on a file .casename.grid, while the field
values are stored on .casename.field. If several fields are dumped to file,
they can share the same grid information in the .casename.grid file. The
reader is encouraged to run a simulator, say Poisson1, with a small grid and
examine the field and grid files. During the test phase of a simulator, it is
often convenient to look at the field file directly to examine the nodal values
of the solution.

Writing New Filters. Writing a new filter for transforming the simres format
to a new visualization format is most easily accomplished by copying and
modifying an existing filter. The functions that may differ from problem to
problem are declared as virtual in class SimResFilter and can be redefined
in the subclass. Frequently, only a couple of the virtual functions need to be
implemented. The class hierarchy of some filters appear in Figure B.3.

B.6 Details on Finite Element Programming

B.6.1 Basic Functions for Finite Element Assembly

Overview. Diffpack-based finite element simulators are normally implemented
as subclasses of class FEM. Class FEM contains default versions of the most
important finite element algorithms, such as assembly of the linear system
(makeSystem), computation of the element matrix and vector (calcElmMatVec),
as well as numerical integration over elements (numItgOverElm) and sides
(numItgOverSide). The numItgOverElm routine calls the user-defined function
integrands for sampling the integrands in the volume integrals in the weak
formulation at an integration point in an element. Similarly, numItgOverSide
calls the user-defined function integrands4side for evaluating the integrands
in surface or line integrals entering the weak formulation.

The makeSystem, calcElmMatVec, numItgOverElm, and numItgOverSide func-
tions are virtual. Class FEM provides general versions of these functions, but
the programmer can customize the functions in the finite element simulator
if desired. When line or surface integrals enter the weak formulation, as in
the problem solved by class Poisson2 in Chapter 3.5, it is necessary to extend
the default version of the calcElmMatVec function in the finite element solver
class and provide both integrands and integrands4side.

The Body of the Finite Element Assembly Functions. To increase the un-
derstanding of the finite element toolbox in Diffpack, it might be instruc-
tive to study the source code of some functions in class FEM, for example,
makeSystem, calcElmMatVec, numItgOverElm, and numItgOverSide. The bodies
of these functions are very short, mainly due to the rich functionality of class
FiniteElement. This means that customization of the toolbox, according to
special needs in an application, is straightforwardly accomplished. Before we

B.6. Details on Finite Element Programming 751

present the bodies of the functions, we need to know about three basic data
members in class FEM:

FiniteElement finite_elm;

ElmMatVec elm_matvec;

ElmItgRules itg_rules;

The ElmItgRules object handles various integration rules over the interior of
elements and over the sides. The element matrix and vector are represented
by the ElmMatVec object. Finally, the FiniteElement object represents basis
functions, their derivatives, the Jacobian of the isoparametric mapping, and
the integration rule. By the default, the FiniteElement object uses a pointer
to the itg rules object, but if the programmer implements a customized
calcElmMatVec function, one can feed other integration-rule objects into the
FiniteElement object if desired.

Let us start with the code of the makeSystem function.

void FEM::makeSystem (DegFreeFE& dof, LinEqAdmFE& lineq,

bool compute_A, bool compute_RHS, bool dummy)

{

// if compute_A is false: preserve coefficient matrix

// if compute_RHS is false: preserve right-hand side

lineq.initAssemble (dof, compute_A, compute_RHS);

elm_matvec.attach (dof);

finite_elm.attach (dof.grid());

const int nel = dof.grid().getNoElms();

for (int e = 1; e <= nel; e++)

{

elm_matvec.refill (e);

calcElmMatVec (e, elm_matvec, finite_elm);

elm_matvec.enforceEssBC ();

lineq.assemble (elm_matvec);

}

}

The algorithm starts with initializing the global coefficient matrix and right-
hand side in the linear system to zero. The boolean arguments can mark
the LinEqAdmFE object such that the existing matrix and/or right-hand side
are preserved (cf. Appendix B.7.1). Thereafter we initialize the ElmMatVec and
FiniteElement objects. The ElmMatVec object needs a pointer to the DegFreeFE

object for direct access to the number of degrees of freedom in an element,
i.e. the size of the element matrix and vector, as well as the relation between
the local and global degrees of freedom numbering needed when assembling
element contributions. The FiniteElement object is of course dependent on
some information about the grid.

752 B. Diffpack Topics

The loop over all elements starts with initializing the element matrix
and vector, that is, loading the mapping between local and global degrees
of freedom and setting all matrix and vector entries to zero. Thereafter,
the elm matvec object is computed by invoking either the default version of
calcElmMatVec or the programmer’s own version in the finite element solver.
If some of the local degrees of freedom are subjected to essential boundary
conditions, the element matrix and vector are modified accordingly. Finally,
the element matrix and vector are assembled in the global linear system (de-
pending on the state of compute A and compute RHS).

The default calcElmMatVec function is very short:

void FEM::calcElmMatVec(int elm_no,ElmMatVec& elmat,FiniteElement& fe)

{

fe.refill (elm_no, this /*attach solver to fe*/);

fe.setLocalEvalPts (itg_rules); // tell fe about intgr. points

numItgOverElm (elmat, fe);

}

The numItgOverElm function applies some functionality in class FiniteElement
to implement the loop over the integration points.

void FEM::numItgOverElm (ElmMatVec& elmat, FiniteElement& fe)

{

fe.initNumItg ();

while (fe.moreItgPoints()) {

fe.update4nextItgPt ();

integrands (elmat, fe);

}

}

In case of line or surface integrals, calcElmMatVec must be extended as demon-
strated on page 315, with an additional loop over the sides and associated
calls to numItgOverSide. The latter function has the form

void FEM::numItgOverSide

(int side, int boind, ElmMatVec& elmat, FiniteElement& fe)

{

fe.refill4side (side);

fe.initNumItg ();

while (fe.moreItgPoints()) {

fe.update4nextItgPt ();

integrands4side (side, boind, elmat, fe);

}

}

B.6. Details on Finite Element Programming 753

Example: Integrating the Numerical Error. Suppose you have computed a
finite element field FieldFE and want to compute the L2 norm e of the error,
provided that a suitable analytical solution functor (FieldFunc) is available.
To compute the error, we need to integrate the squared difference between the
numerical and exact solution over all the elements. This is straightforwardly
accomplished in the solver class by using some finite element tools and the
material in the preceding text:

// given Handle(GridFE) grid, Handle(FieldFE) u, and

// Handle(FieldFunc) a (for the exact solution)

ElmItgRules rules (GAUSS_POINTS, 0 /*std order of the rule*/);

FiniteElement fe (*grid);

const int nel = grid->getNoElms();

real L2_norm = 0;

for (int e=1; e<=nel; e++) {

fe.refill (e, this /*attach solver to fe*/);

fe.setLocalEvalPts (rules); // tell fe about intgr. points

fe.initNumItg();

while (fe.moreItgPoints()) { // integration loop in an elm.

fe.update4nextItgPt();

L2_norm += sqr(u->valueFEM(fe) - a->valueFEM(fe))*fe.detJxW();

}

}

L2_norm = sqrt(L2_norm);

}

Such integration can be made simpler using the IntegrateOverGridFE tool
described in Appendix B.6.3.

B.6.2 Using Functors for the Integrands

The standard way of providing information about the weak formulation is to
write an integrands (and perhaps an integrands4side) function. If we need
to work with several weak formulations, we face a fundamental problem since
there is only one virtual integrands function available in a simulator class.
The most obvious solution is to declare a data member in the simulator class
that keeps track of which weak formulation that is to be evaluated. With an
if-else statement in the integrands function we can easily jump to an ap-
propriate local routine for evaluating the relevant integrands. Chapters 6.2.5
and 6.3.4 briefly comment on these technical issues in concrete applications.
However, class FEM offers another flexible possibility, namely representation
of the integrands function as a functor. (The functor concept is introduced
in Chapter 3.4.4.)

The integrands functors must be derived from class IntegrandCalc, which
defines two virtual functions, integrands and integrands4side, with the same

754 B. Diffpack Topics

signature as the corresponding virtual functions in class FEM. When using
a functor for the integrands function, one must also use a functor for the
calcElmMatVec function. Such functors are derived from class ElmMatVecCalc,
which (not surprisingly) has a virtual function calcElmMatVec with the same
signature as in class FEM. The ElmMatVecCalc functor also allows specifica-
tion of a (virtual) integrands function. Since most problems can utilize a
very simple calcElmMatVec function, like the default one in class FEM, there is
a ready-made functor, class ElmMatVecCalcStd, that implements a standard
three-line calcElmMatVec function. A programmer can therefore often use this
functor and only write a problem-dependent IntegrandCalc functor.

A typical IntegrandCalc functor, tied to a finite element solver MySim, can
have a MySim* pointer as data member for accessing the solver’s data in the
integrands function of the functor. If boundary integrals appear in the weak
formulation, the functor must also provide an integrands4side function. The
body of the integrands (and integrands4side) function is the same as it would
be in class MySim, except that access to physical data in class MySim is now
enabled through the MySim* pointer. All functors in Diffpack follow the same
basic philosophy, so understanding a functor for representing an analytical
solution (see Chapter 3.4.4) is sufficient for understanding the IntegrandCalc

and ElmMatVecCalc functors.
The assembly of a linear system, using functor representation of the

calcElmMatVec and integrands functions, can be performed as follows.

HelpPDE1 integrand1 (*this); // functor, derived from IntegrandCalc

ElmMatVecCalcStd emv; // standard functor provided by FEM.h

makeSystem (*dof, emv, &integrand1, *lineq);

A null pointer as IntegrandCalc functor indicates that we use our own
ElmMatVecCalc functor, which contains the integrands and integrands4side

functions. An example on using integrand functors in a simulator appears on
page 598. Other examples are found in Appendix B.6.3.

Class FEM contains numerous functions that allow assembly into Matrix

and Vector structures (cf. Chapter 3.15.2 and Appendix B.7.2). With the
aid of functors for representing the integrands in the weak formulation, one
can therefore operate with several coefficient matrices, right-hand sides, and
weak formulations.

B.6.3 Integrating Quantities over the Grid or the Boundary

Integrating the solution, or a derived quantity, over the domain or a part of
the boundary, is often demanded in physical applications. For example, the
integral of a certain quantity over the domain may represent the total mass of
the system, which should be conserved or balance some injection/production.
The integral of a quantity over a part of the boundary is central when com-
puting forces on structures submerged in fluids. Boundary integrals also arise

B.6. Details on Finite Element Programming 755

when checking the consistency of flux-in and flux-out quantities in global bal-
ance equations.

The code segment at the end of Appendix B.6.1, illustrating how to inte-
grate the error over the grid, serves as a model for how to integrate quantities
over the grid in general. The example can also be extended to cover integra-
tion over a part of the boundary. However, most of the code segment is
generic and must be repeated from application to application. It then makes
sense to provide a library class that contains the main loop over elements
and integration points and that “jumps out” to a problem-independent code
segment for sampling the integrand of the integral. Diffpack offers a class
IntegrateOverGridFE for doing this. A simple example will explain how you
can easily integrate what you want over the grid or parts of the boundary.

Suppose you have some simulator, implemented as class MySim, which com-
putes some field f. You want to perform an integration of f over the grid and
over a part of the boundary using the IntegrateOverGridFE utility. You must
then provide the integrand for the domain as a functor, here called VolumeInt,
and the integrand for the boundary integral, here called FluxInt, as functors
derived from class IntegrandCalc. The integrations are then accomplished
by feeding these functors and a GridFE object into the volumeIntegral and
surfaceIntegral functions in an IntegrateOverGridFE object. You can de-
clare local IntegrateOverGridFE objects wherever you want the in the code
(the objects are very small). The part of the boundary for integration by the
surfaceIntegral function is specified by boundary indicators.

The minimum sketch of the simulator may look as follows14:

class MySim

{

protected:

Handle(GridFE) grid;

Handle(FieldFE) f; // test field

real field_volume, flux_on_boind3; // integration results

friend class VolumeInt; // functor for volume integration

friend class FluxInt; // functor for surface integration

public:

MySim () {}

~MySim () {}

void init ();

void computeFlux ();

void computeFieldVolume();

};

The volume and surface integral functors are derived from class IntegrandCalc.
These functors are not supposed to create element matrices and vectors.

14 This fake simulator does not solve PDEs, it just fills a field f for simplicity.

756 B. Diffpack Topics

Therefore, there is no use of the ElmMatVec objects in the integrands and
integrands4side functions of an IntegrandCalc functor. Class IntegrandCalc

therefore provides two generalized integrands and integrands4side functions,
named integrandsG and integrands4sideG. The latter two functions differ
from the former two in that there is no output object á la ElmMatVec. Instead,
the functors, or a simulation class they have a pointer to, must have local
variables for summing up the integral contributions. This will be clear from
the code segments below.

For the volume integral, we introduce a variable field volume in the sim-
ulator class MySim. The functor VolumeInt has a pointer sim to our simulation
class. In the VolumeInt::integrandsG function we add the contribution of the
integral of sim->f (at the current integration point) to sim->field volume:

class VolumeInt : public IntegrandCalc

{

MySim* sim;

public:

VolumeInt (MySim* sim_) { sim = sim_; }

void integrandsG (const FiniteElement& fe); // integrate sim->f

};

void VolumeInt:: integrandsG (const FiniteElement& fe)

{

// sum up integral contributions in MySim’s field_volume

sim->field_volume += sim->f->valueFEM(fe)*fe.detJxW();

}

The flux integration along the boundary marked with indicator 3 is carried
out along the same lines:

class FluxInt : public IntegrandCalc

{

MySim* sim;

public:

FluxInt (MySim* sim_) { sim = sim_; }

void integrands4sideG (int side, int boind, const FiniteElement& fe);

};

void FluxInt:: integrands4sideG

(int side, int boind, const FiniteElement& fe)

{

if (boind == 3) { // integrate where bo.ind. 3 is on

sim->flux_on_boind3 += sim->f->valueFEM(fe)*fe.detSideJxW();

}

}

B.6. Details on Finite Element Programming 757

In class MySim we must set field volume and flux on boind3 to zero before
calling up the integrations:

void MySim:: computeFieldVolume ()

{

IntegrateOverGridFE integrator;

VolumeInt integrand (this);

field_volume = 0.0;

integrator.volumeIntegral (integrand, *grid);

s_o << "integral of f = " << field_volume << "\n";

}

void MySim:: computeFlux ()

{

IntegrateOverGridFE integrator;

FluxInt integrand (this);

flux_on_boind3 = 0.0;

integrator.surfaceIntegral (3, integrand, *grid);

s_o << "flux of f = " << flux_on_boind3 << "\n";

}

When calculating fluid forces on bodies, the integral often involves the nor-
mal vector to the boundary. The integral

∫
pndS is an example; n is an

outward unit normal vector and p is a scalar field. In this case, the result of
the integral is a vector, and the simulator class (or the functor) must declare
a Ptv(real) variable (say) p force to hold the accumulated result. In a sur-
face integral functor we can easily get the outward unit normal vector from
FiniteElement::getNormalVectorOnSide. A typical integrands4sideG function
may take the form

void FluxInt:: integrands4sideG (int side, int boind,

const FiniteElement& fe)

{

if (boind == 5 || boind == 6) { // body boundary?

Ptv(real) n; fe.getNormalVectorOnSide(n);

// call Ptv(real)::add for x = x + a*y:

sim->p_force.add (sim->p->valueFEM(fe)*fe.detSideJxW(), n);

}

}

// corresponding call in the simulator:

IntegrateOverGridFE integrator;

PressureForceInt integrand (this);

p_force.fill(0.0);

VecSimple(int) boinds(2); boinds(1)=5; boinds(2)=6;

integrator.surfaceIntegral (*boinds, integrand, p->grid());

758 B. Diffpack Topics

s_o << "total force = " << p_force.printAsString() << ...

With these examples and the man page of class IntegrateOverGridFE, you
should be able to integrate far more complicated quantities than what we
have addressed here.

B.6.4 Class Relations in the Finite Element Engine

Although Diffpack programmers normally see only the high-level classes of
the finite element and linear algebra toolboxes, it is advantageous for the
general understanding of the toolboxes to have an overview of the key classes
at lower levels. These classes can also be used directly to build new toolboxes
or extend the present ones.

A map of the most important classes and their relations in a typical
Diffpack finite element simulator is outlined in Figure B.5. The principal
code of the simulator is class MyPDE, as usual derived from class FEM, which
again is derived from class SimCase. The latter class acts as base class for
all Diffpack simulators. It is derived from HandleId such that any Diffpack
simulator can be accessed through handles.

Specialization or generalization of the simulator MyPDE takes place in sub-
classes, of which MyPDE2 is an example in Figure B.5. The MyPDE class contains
three fundamental data structures: a grid (GridFE), a field (FieldFE) for the
unknown function in the PDE, and a linear system with solvers (LinEqAdmFE).
These structures are built of lower-layer classes in the Diffpack libraries.

Let us start with the field structure. The principal content is a vector
Vec(real) of nodal values and a pointer to a grid. This grid is actually not
an ordinary GridFE object, but rather an overlay grid (of type BasisFuncGrid)
that adds information about basis functions and element types in an ordi-
nary (GridFE) grid. The GridFE class is basically used as information about
the grid geometry only. In case of isoparametric elements, the functions used
for mapping reference elements are also used as basis functions in the finite
element expansion. Sufficient grid information for finite element computa-
tions is in this case provided by a GridFE object. However, one can think of
elements where the geometry is like the 4-node quadrilateral (ElmB4n2D), but
where the basis function is constant, i.e., there is only one basis function.
Such type of elements appear in mixed finite element methods. We can then
use a BasisFuncGrid to add information about the basis functions over the
grid geometry. Many fields may share the same grid geometry, but have dif-
ferent BasisFuncGrid overlays. For isoparametric elements, the BasisFuncGrid

is merely a transparent overlay; all functionality in BasisFuncGrid is provided
by the underlying GridFE object.

The field structure needs to perform interpolation inside the element;
that is, it needs to evaluate the basis functions and their derivatives. This is
enabled by an internal FiniteElement object. The FiniteElement object has
information about integration rules (ElmItgRules), i.e., points where the basis

B.6. Details on Finite Element Programming 759

BasisFuncGrid

FieldFE

GridFE

MyPDE Vec(real)

FiniteElement

BasisFuncAtPt

ElmItgRules

ElmDef

LinEqSystemPrec

LinEqMatrix Precond

LinEqVector

MyPDE2

LinEqSolver

LinEqAdmFE

FEM

SimCase

Fig.B.5. A sketch of a simulator class (MyPDE), its base classes, and some
layers of the Diffpack library classes that are used by the solver. A solid line
indicates class derivation (“is-a” relationship), whereas dashed lines represent
a handle (“has-a” relationship).

functions are frequently evaluated, the collection of elements in Diffpack (the
ElmDef class hierarchy), and arrays with the values of basis functions and
their derivatives at a point (BasisFuncAtPt). For optimization purposes, the
FiniteElement object can use a table of BasisFuncAtPt objects for efficient
switch between basis functions at different points. This yields a significant
speed-up in problems where all elements are equal, because the basis functions
and associated quantities can be computed only once.

The linear system and linear solver tools are managed by class LinEqAdmFE.
It contains a pointer to a linear solver class hierarchy (LinEqSolver) and a
pointer to a linear system (LinEqSystemPrec). The latter structure consists
naturally of the matrix (LinEqMatrix), the vector of unknowns and the right-
hand side (two LinEqVector objects), as well as a pointer to a class hierarchy
of preconditioners (Precond). We refer to Appendix D for more detailed in-
formation about the linear algebra classes.

760 B. Diffpack Topics

B.7 Optimizing Diffpack Codes

The example programs presented in this text mainly demonstrate flexible
C++ and Diffpack constructions for making codes that are easy to read and
debug. Moreover, the codes should be straightforward to extend to more
complicated models and allow any type of grid to be used. There is of course
an efficiency penalty due to this reliability and flexibility. Experience shows
that the efficiency concern is usually limited to the makeSystem function (and
the function it calls) in finite element simulators. Compared with solution of
linear systems, the assembly process15 involves lots of initializations for each
element, short loops, and many scattered function calls. The consequence is
that the degree of code optimization depends strongly on the problem at
hand and especially on the element type being employed. On the other hand,
the linear algebra part of a Diffpack simulator traverses long arrays and is in
this respect efficient and general at the same time.

The default generic finite element assembly in Diffpack is usually suffi-
ciently efficient in nonlinear problems when complicated constitutive rela-
tions enter the coefficients of the PDE, because in those cases most of the
CPU time is spent on evaluating constitutive relations anyway. For simple
constant-coefficient PDEs, on the contrary, fine tuning of makeSystem-related
operations can improve the performance significantly, depending on the par-
ticular PDE problem at hand and the willingness to tailor the code to a
special class of simulation cases.

The optimization is usually a combination of improving the numerical
solution method and making the C++ statements more efficient. The modi-
fications to be done to achieve a performance close to that of a special-purpose
program for the problem are normally limited to a couple of pages of extra
code. Combination of safety, flexibility, and high performance can therefore
be accomplished in Diffpack.

At this point we must emphasize the importance of a proper attitude
towards optimization. Too many numerical programmers tend to perform
premature optimizations [128, Ch. 1.5.1] at places in the code where the ef-
fect is hardly noticeable and where “efficient statements” only decrease the
readability and extensibility. Most of the CPU time is spent in small parts
of the code, which means that one should first develop a simulator that is
safe and flexible, then thoroughly verify this implementation, and thereafter
perform a profiling (see page 721). The profiling can uncover unexpected bot-
tlenecks and point the programmer to (usually a few) CPU-critical functions
in the code. Diffpack and C++ offer various tools to keep the old code in-
tact along with several new optimized versions. At any time the old reliable
results can be compared with new ones to quickly detect errors (which are
indeed very easy to introduce in an optimization process!).

15 By assembly process we here mean all the tasks in Algorithm 2.1 on page 184,
not just the addition of the element contribution into the global linear system.

B.7. Optimizing Diffpack Codes 761

The relatively simple PDE simulators in Chapters 3, 4.2, 5.1, 6.1–6.3 can
benefit greatly from the optimizations suggested below, at the cost of limited
extension of the optimized versions to more demanding applications.

B.7.1 Avoiding Repeated Matrix Factorizations

Optimizing Heat Equation Solvers. The heat equation simulators Heat1 and
Heat2 from Chapters 3.10 and 3.11, respectively, solve a problem where the
coefficient matrix in the linear system at each time level remains the same,
but the implementation does not exploit this feature. If we choose a direct
solver (GaussElim), the code performs in addition a costly LU factorization
and a forward-backward solve at every time step. Since the coefficient matrix
is constant for all time steps, it is more efficient to construct and factor-
ize this matrix only at the first time step. Normally, one would apply an
iterative solver to the linear system with e.g. the popular incomplete LU fac-
torization (ILU) preconditioner (see Appendix C.3.3). Also in this case one
should reuse an initial incomplete factorization. In addition to avoiding refac-
torization of matrices that are constant in time, the assembly process of the
matrix should of course also be carried out only once, but the right-hand side
depends, unfortunately, on u at the previous time level and must be assem-
bled. With a certain adjustment of the algorithm, we can completely avoid
the assembly process after the first time step. The details are given in Ap-
pendix B.7.2. Optimization of the assembly process itself, which is of primary
concern when the matrix changes in time and the coefficient matrix must be
recalculated, is a technically more comprehensive subject that is dealt with
in Appendix B.7.3. Right now we shall limit the attention to optimizing the
calls to FEM::makeSystem and LinEqAdmFE::solve such that repeated costly
factorizations are avoided.

Implementation. The function LinEqAdmFE::solve can take a boolean argu-
ment, indicating whether the coefficient matrix has changed since the last
call to solve. If this argument is false, the old factorization can still be used.
In (R)ILU preconditioned iterative methods, solve will instead utilize the
preconditioner computed in the last call. When we want to reuse a factorized
coefficient matrix, we must make sure that makeSystem does not overwrite
the matrix with new element matrices in the assembly process. This is ac-
complished by a third boolean argument to makeSystem. The following code
segment exemplifies the modified calls to makeSystem and solve in the function
solveAtThisTimeStep in class Heat1 or Heat2:

bool first_step = getbool(tip->getTimeStepNo ()==1); // NEW

makeSystem (*dof, *lineq, first_step); // MODIFIED

lineq->solve (first_step); // MODIFIED

Notice that this modification is only correct if the coefficients in the PDE
are independent of time such that the coefficient matrix is constant. A flexi-
ble heat equation solver should have the statements related to special cases

762 B. Diffpack Topics

located in subclass solvers like we explained in Chapter 3.5.7. The present
optimizations are therefore performed in a subclass Heat1iLU of Heat1 in the
subdirectory iLU. Since the source code is so short, it is put together with
the main function in one file. The code is coupled to the Heat1 files by using
the AddMakeSrc tool.

Computational Results. To investigate the effect of the proposed optimiza-
tions, we need to have a measure of the CPU time of various parts of the
simulator. This is obtained by specifying the command-line option --verbose

1. The particular timings to be reported here were obtained on an Intel 200
MHz processor running Linux and the egcs C++ compiler.

Our first test concerns an unstructured 2D grid with the shape of a quarter
of a disk and 2016 triangular elements (1084 nodes). The gridfile, found in
iLU/Verify/disk-orig.grid was created with the PreproStdGeom preprocessor
(which actually called the Geompack software in this case). Using the default
linear solver, i.e. Gaussian elimination on a banded matrix, results in a CPU
time of 87 s. For comparison, generation of the linear system takes only 0.4 s.
Grid generation techniques that result in unstructured grids usually lead to
large a bandwidth. This is exactly the case with our quarter of a disk; the
half-bandwidth is 1083. In fact, using a dense matrix is more efficient than a
banded matrix! By giving the command-line option --advice to app, Diffpack
will notify you about this undesired phenomenon.

Running the Diffpack program redband16 on the gridfile reduces the band-
width from 1083 to 41. Now the storage of the coefficient matrix is dramati-
cally reduced and the CPU time of the solver is only 0.16 s. Nevertheless, if
we apply an iterative solver, more precisely the Conjugate Gradient method
with MILU preconditioning on a sparse (MatSparse) matrix, which is a nat-
ural and good choice for the present problem with a symmetric and positive
definite coefficient matrix, the CPU time of the solve phase is reduced to
0.03 s using the original grid with large bandwidth. The corresponding CPU
time for the renumbered grid was in fact unchanged. This shows that iter-
ative methods operating on sparse matrix storage structures exhibit minor
sensitivity to the nodal numbering and the bandwidth17. Also the assembly
process is much faster when using the bandwidth-reduced banded matrix or
the sparse matrix, since it is faster to access a compact matrix structure than
a very large banded matrix, especially if the large structure implies use of
virtual memory. In the current example, the CPU time of the assembly phase
was reduced by a factor of 4.

The next computational example concerns a box-shaped grid with 7 ×
7× 7 triquadratic elements and 3375 nodes. The bandwidth produced by the

16 This program calls functionality in class Puttonen to renumber the unknowns in
a grid with the purpose of reducing the bandwidth.

17 This is not completely true; the MILU preconditioner will throw away less fill-in
entries if the bandwidth is smaller, cf. Appendix C.3.3.

B.7. Optimizing Diffpack Codes 763

PreproBox preprocessor is large, but optimal, in this special case. The assem-
bly process took 4.5 s and the solve process, using Gaussian elimination on
a banded matrix, required 99 s. Most of the time of the solve process is de-
voted to factorization of the matrix. This is evident by running Heat1iLU and
observing that the solve process takes only 0.4 s when we avoid factoriza-
tion at the second and later time levels. The efficiency gain of our improved
solveAtThisTimeStep function is hence a factor of over 200. Switching to an
iterative solver, i.e. the Conjugate Gradient method with MILU precondi-
tioning, led to 1.8 s for solving the linear system at the first time level, and
only 0.4 s at later time levels when the initial MILU factorization could be
reused.

From these test examples we summarize five important (and widely known)
observations: (i) the factorization part of the Gaussian elimination process
is often very much more time consuming than the forward elimination and
backward substitution process and the assembly the linear system, (ii) the
speed of a solver can be dramatically improved by factorizing the matrix
only once, (iii) renumbering the unknowns in unstructured grids, with the
purpose of reducing the bandwidth, is an essential step before trying to ap-
ply Gaussian elimination, (iv) iterative solution of linear systems avoids most
of the concerns in point (i)–(iii), and (v) avoiding repeated factorizations of
ILU/MILU-type preconditioners can speed up the solve phase by a significant
factor.

B.7.2 Avoiding Repeated Assembly of Linear Systems

In the Heat1iLU solver from the previous section, all element matrices and
vectors were computed at each time level, but only the vectors were used in
the assembly process. Below we will show how one can avoid the assembly
process completely, after the first time step, and thereby obtain a significant
speed-up of the code. This important optimization consists in adjusting the
numerical algorithm, using some Diffpack tools that support such adjust-
ments. We shall modify the Heat2 solver and place the optimizations in a
subclass Heat2eff.

Formulation of an Efficient Algorithm. The linear systems corresponding to
(3.47)–(3.53), with a θ-rule in time and a Galerkin method in space, can be
written

(M + θ∆tK)u` = (M + (θ − 1)∆tK)u`−1 + c, (B.1)

where M is the mass matrix with entries Mi,j =
∫

Ω βNiNjdΩ and K is a
matrix with entries

Ki,j =

∫

Ω

k∇Ni · ∇Nj dΩ +

∫

∂ΩR

αNiNj dΩ .

764 B. Diffpack Topics

The vector c contains contributions from f and the surface integral of pre-
scribed quantities,

ci = θ∆t

∫

Ω

f(x, t`)Ni dΩ + (1− θ)∆t
∫

Ω

f(x, t`−1)Ni dΩ

+∆t

∫

∂ΩR

U0Ni dΩ .

Notice that we here assume U0 to be time independent.
To avoid the finite element assembly process when computing the system

(B.1), we must be able to reuse M , K, and c from an initial computation.
This is straightforward if β, k, and f are independent of time, because then
M , K, and c are also independent of time.

Exercise B.1. .
If the time dependency in β, k, and f is separable, that is, if we can write

β = βT (t)β̃(x), k = kT (t)k̃(x), and f = fT (t)f̃(x), the linear system can
be written as a sum of time-independent matrices and vectors, multiplied
by appropriate factors consisting of ∆t, θ, βT , kT , and fT . For example,∫

Ω k∇Ni · ∇NjdΩ is factorized into kT (t)K̃i,j , where K̃i,j =
∫

Ω k̃(x)∇Ni ·
∇NjdΩ. Carry out the details in this generalization. �

For the rest of this section we assume that β, k, and f are time indepen-
dent and that ∆t and θ are constant, as this gives a simpler algorithm than
what is demanded in the more general case considered in Exercise B.1. The
computational steps are summarized in Algorithm B.1.

Algorithm B.1.

Solving the heat equation with time-independent coefficients.

for ` = 1, 2, 3 . . .
if ` = 1

compute A = M + θ∆tK, Arhs = M + (θ − 1)∆tK, and c.
compute b = Arhsu

`−1 + c

solve Au` = b with respect to u`

Notice that the key to avoiding the assembly process at each time level is
to write b = Arhsu

`−1 + c and update b from the precomputed Arhs and c.
The computation of b at every time level in Algorithm B.1 then involves very
efficient matrix-vector operations. The result is that the simulation code will
spend almost all its time on solving linear systems. When we recompute b by
a complete assembly process for each `, the formation of the linear system
through a call to FEM::makeSystem is often a significantly time-consuming part

B.7. Optimizing Diffpack Codes 765

of the simulation. One should notice, however, that the assembly algorithm
is a process involving C1n arithmetic operations, where C1 is a constant.
A method for solving linear systems typically requires C2n

1+α, where C2 is
another constant, usually smaller than C1, and α ≥ 0. For small n, generating
linear systems can therefore be more time consuming than solving them, while
as n → ∞, the solution of linear systems will always dominate, unless one
applies special multigrid or domain decomposition methods for which α = 0.

When implementing Algorithm B.1, it would be convenient not to touch
the original solver Heat2 to minimize the danger of introducing errors in a
well-tested code. The new algorithm can be realized in a subclass of Heat2,
where we simply provide a more efficient makeSystem function. Recall that
makeSystem is a virtual function that can be redefined in any simulator class
derived from FEM (cf. Appendix B.6.1). The new makeSystem must compute
A, Arhs, and c at the first time level. At all later times, makeSystem just
computes b = Arhsu

`−1 + c directly from a matrix-vector product and a
vector addition.

Handling of Essential Boundary Conditions. Our standard procedure for in-
corporating essential boundary conditions affects the entries in A and b.
Assuming that ∂ΩE1 and ∂ΩE2 are fixed in time, we can modify A initially
to incorporate essential boundary conditions. The matrix Arhs and the vector
c are computed without any adjustments due to essential boundary condi-
tions. The vector b, however, must be modified at each time level to reflect
the prescribed ui values. These modifications consist in the following steps.
First, one computes a vector q = −∑i∈J αiA

(i). Here, J is the set of degrees
of freedom (node) numbers subject to essential boundary conditions. The
constant αi is the value of the primary unknown (u) at degree of freedom

no. i ∈ J , and A(i) is the ith column of A. The reader can see the full algo-
rithm for incorporation of a single essential boundary condition on page 175.
The next step is to compute b = Arhsu

`−1 +c+q, and finally one overwrites
entry no. i in b with αi.

The standard behavior of FEM::makeSystem is to enforce essential boundary
conditions by modifying both the element matrix and vector simultaneously.
However, in the present context we want to modify A, but not Arhs, while
the modifications of b are to be performed at the global level as a postprocess.
Diffpack offers this flexibility through the DegFreeFE class. It has two functions

void modifyMatDue2essBC (bool onoff);

void modifyVecDue2essBC (bool onoff);

used to indicate whether or not the element matrix and vector should be
modified due to essential boundary conditions during the assembly process.
If the modifications are not carried out, the DegFreeFE object assembles the
element contributions to −∑i∈J αiA

(i) in a local vector b mod. This means
that the DegFreeFE object computes our q vector.

Class DegFreeFE has another useful function for the present application:

766 B. Diffpack Topics

void insertEssBC

(VecSimple(NUMT)& rhs, bool account4multiplicity = false);

The insertEssBC function replaces entries in the vector rhs by known values
of the unknowns in the linear systems. If the coefficient matrix has been mod-
ified at the element level, the value of a modified diagonal entry in the global
matrix is not unity, but an integer that equals the number of element contri-
butions to this degree of freedom. This integer number must also multiply the
corresponding known values in the right-hand side vector (rhs), which is the
case if the second argument to insertEssBC is true. Otherwise, insertEssBC
inserts the known value in rhs, assuming that the coefficient matrix has a
unit entry on the diagonal.

How to Maximize Reuse of the Original Solver Code. The optimized solu-
tion algorithm for the heat equation is to be included in the Heat2 solver
as an extension in a subclass. We would expect that the Heat2::integrands

and Heat2::integrands4side functions are well tested. Perhaps other types
of optimization, such as analytical integration, have also been implemented
in class Heat2. Our new optimized algorithm should therefore utilize the ex-
isting, hopefully well-tested, implementations of the discrete equations to as
large degree as possible. Ideally, we would compute A, Arhs, and c by just
calling FEM::makeSystem, which then can jump to the integrands functions of
class Heat2 for evaluating the finite element formulas. However, this requires
that we can control the parts of the integrands of the weak formulation to be
filled in the coefficient matrix and right-hand side and that we can control
the handling of essential boundary conditions.

Looking at the discrete equations (B.1), we see that a standard makeSystem

operation in class Heat2 fills the coefficient matrix in the LinEqAdmFE ob-
ject with a matrix M + θ∆tK, whereas the right-hand side vector in the
LinEqAdmFE object becomes equal to (M + (θ − 1)∆tK)u`−1 + c. These ob-
servations lead to the following conclusions regarding reuse of class Heat2

code.

– We can at the first time step compute A by a call to FEM::makeSystem,
which then invokes existing Heat2 functionality for making the matrix
A = M + θ∆tK and the right-hand side b = (M + (θ− 1)∆tK)u0 + c.
(The A and b arrays are after assembly accessible through the functions
LinEqAdmFE::A() and LinEqAdmFE::b().)

– We can compute Arhs by a call to FEM::makeSystem, provided that we have
redefined θ as 1− θ.

– Having Arhs and b, we can compute c = b−Arhsu
0.

These steps explain how we can carry out the special actions for ` = 1 in
Algorithm B.1. A precise computational plan is presented in Algorithm B.2.

B.7. Optimizing Diffpack Codes 767

Algorithm B.2.

Computation of A, Arhs, and c by reusing class Heat2 code.

Given DegFreeFE dof and LinEqAdmFE lineq

compute Arhs without impl. essential boundary cond.:
θorig = θ; θ = θorig − 1
dof.modifyMatDue2essBC (OFF)

dof.modifyVecDue2essBC (OFF)

FEM::makeSystem (dof, lineq, true, false)a

store Arhs in a matrix A rhs

A rhs = lineq.A()

compute A and b:
θ = θorig
dof.modifyMatDue2essBC (ON)

dof.modifyVecDue2essBC (OFF)

FEM::makeSystem (dof, lineq, true, true)

compute c = b−Arhsu
0 with b in lineq.b():

A rhs().prod (u prev().values(), scratch);

c.add (lineq.b(), ’-’, scratch);

a The FEM::makeSystem function takes two boolean arguments,
compute A and compute RHS, which are true by default and indi-
cate whether we should assemble contributions from the element
matrix and vector or not (see also page 761). The present call
tells makeSystem to throw away all right-hand side contributions,
but compute the coefficient matrix in the normal way.

In the second call to FEM::makeSystem in this algorithm, b is not modi-
fied due to essential boundary conditions, but the q vector is computed and
available as the vector dof.b mod. Moreover, the LinEqAdmFE object contains
the correct coefficient matrix A = M + θ∆tK, but not the correct right-
hand side b in the linear systems to be solved at each time level. To compute
the correct b vector at a time level, we first evaluate b = Arhsu

`−1 + c + q.
Thereafter we call dof.insertEssBC to insert correct boundary values in b.
Finally, we load the computed b into lineq.b(). The LinEqAdmFE object now
contains the proper matrix and right-hand side, and we can proceed with the
call to lineq’s solve function.

The implementation of the optimized version of the Heat2 solver is realized
as a subclass Heat2eff of Heat2 (or rather ReportHeat2 so we get the report
facilities as well). The definition of class Heat2eff is shown next.

768 B. Diffpack Topics

class Heat2eff : public ReportHeat2

{

protected:

Handle(Matrix(real)) A_rhs; // right-hand side matrix

Vec(real) c; // source terms, Neumann conditions

Vec(real) scratch; // used to compute the right hand side

real c_norm; // if zero: no need to calculate c

public:

Heat2eff ();

~Heat2eff () {}

// modify Heat2’s solveAtThisTimeStep:

virtual void solveAtThisTimeStep ();

// extend makeSystem:

virtual void makeSystem (DegFreeFE& dof_, LinEqAdmFE& lineq_,

bool compute_A, bool compute_RHS,

bool only_safe_opt = true);

};

The algorithm above can be coded directly in a new function makeSystem.

void Heat2eff:: makeSystem

(DegFreeFE& dof_, LinEqAdmFE& lineq_,

bool compute_A, bool compute_RHS, bool only_safe_opt)

{

// we use dof_ and lineq_ here to avoid confusion with the

// inherited variables dof and lineq from class Heat2

FEM::cpu.initTime(); // measure CPU time of the assembly process

FEM::cpu.lock(); // no FEM functions can now alter cpu state

if (compute_A) // assemble matrices (and help vectors)?

{

DBP("assembling matrices and vectors in Heat2eff::makeSystem");

// First we compute the coefficient matrix on the right-hand

// side, i.e. A_rhs, which is simply the coefficient matrix

// on the left hand side with theta replaced by theta-1, i.e.,

// we can call FEM::makeSystem (and Heat2::integrands) to

// compute lineq_.A and then load lineq_.A into A_rhs.

// Do not modify the matrix due to essential boundary cond.

// Notice that the right-hand side is never used.

const real theta_orig = theta;

theta = theta_orig - 1;

dof_.modifyMatDue2essBC (OFF); // default ON

dof_.modifyVecDue2essBC (OFF);

B.7. Optimizing Diffpack Codes 769

FEM::makeSystem (dof_, lineq_, true, false, only_safe_opt);

// make A_rhs of the same type and size as lineq_.A:

lineq_.A().makeItSimilar (A_rhs);

*A_rhs = lineq_.A();

// Now, compute A, the real coefficient matrix in the linear

// systems at each time level, and c. Modifications due to

// essential boundary conditions should be performed for the

// left-hand side, but not for the right hand side.

theta = theta_orig;

dof_.modifyMatDue2essBC (ON);

dof_.modifyVecDue2essBC (OFF);

// if theta = 0 we could use a lumped mass matrix and

// explicitly demand lineq to use MatDiag and GaussElim

// (global_menu.forceAnswer("basic method = GaussElim") etc

// and lineq.scan(global_menu) ... otherwise theta=0 implies

// consistent mass and full (but efficient) solution of Mu=...

FEM::makeSystem (dof_, lineq_, true, true, only_safe_opt);

const int n = lineq_.b().getNoEntries(); // no of equations

scratch.redim(n); scratch.fill(0.0); c.redim(n); c.fill(0.0);

// compute c = lineq_.b - A_rhs*u_prev:

A_rhs().prod (u_prev().values(),scratch);

c.add (lineq_.b(), ’-’, scratch);

// c is often zero, which can save some operations...

c_norm = c.norm();

}

if (compute_RHS)

{

// always compute right-hand side of the linear system:

// lineq_.b = A_rhs*u_prev + c + dof_.b_mod

// use the scratch vector for intermediate computations

A_rhs->prod (u_prev->values(),scratch);

if (!eq(c_norm,0.0,comparison_tolerance)) // c approx 0?

scratch.add (scratch, c);

scratch.add (scratch, dof_.b_mod);

// overwrite degrees of freedom by the boundary values:

dof_.insertEssBC (scratch, true);

// store the computed result in lineq’s right-hand side:

lineq_.b() = scratch;

// lineq_.A and lineq_.b are ready for lineq_.solve()

770 B. Diffpack Topics

}

FEM::cpu.unlock();

FEM::cpu_time_makeSystem = FEM::cpu.getInterval();

if (compute_A)

FEM::reportCPUtime("Heat2eff::makeSystem(full assembly, step 1)");

else

FEM::reportCPUtime("Heat2eff::makeSystem(optimized, rhs only)");

if (verbose > 1 && lineq_.b().getNoEntries() < 20) {

lineq->A().print(s_o,"Heat2eff::makeSystem: A=M+dt*K");

lineq->b().print(s_o,"Heat2eff::makeSystem: b");

}

}

Remark. Instead of letting the first call to FEM::makeSystem fill a LinEqAdmFE

object and then copying it over to a separate matrix A rhs, we can use an
overloaded FEM::makeSystem function that computes on A rhs directly. We
refer to the Wave0::solveProblem function in Chapter 3.15 for an example on
this approach. We also mention that multiplying A rhs by u prev->values()

is correct only when the vector of nodal values in u has the same numbering
as the unknown vector in the linear system. In general one needs to apply
DegFreeFE::field2vec for loading u prev into a Vec(real) array (and back
again). The latter vector object is then to be multiplied by the A rhs matrix.

Looking at the boolean arguments in the new makeSystem function, we see
that compute A must be true at the first time step, when A, Arhs, and c are to
be assembled. At future time steps, compute A must be false. The compute RHS

argument should always be true, since we always need to compute b. More-
over, the LinEqAdmFE object should never touch the coefficient matrix (or its
derived preconditioners) after the first step. We recall from page 761 that
LinEqAdmFE::solve has a boolean parameter that should match compute A.
The adjustments of the makeSystem and lineq->solve calls make it neces-
sary to redefine the first part of the solveAtThisTimeStep function in class
Heat2eff:

void Heat2eff:: solveAtThisTimeStep ()

{

fillEssBC ();

bool first_step = getbool(tip->getTimeStepNo()==1); // NEW

makeSystem (*dof, *lineq, first_step, true); // MODIFIED

dof->field2vec (*u, linsol); // most recent sol. as start vector

lineq->solve (first_step); // solve linear system // MODIFIED

No other modifications of the original Heat2 solver should be necessary. Notice
that the makeSystem call invokes the Heat2eff::makeSystem which (at the first

B.7. Optimizing Diffpack Codes 771

time level) calls FEM::makeSystem to compute subexpressions in the linear
system.

Figure 3.32 on page 438 depicts a model problem in heat conduction.
For a mesh with 1280 triangular elements the Heat2eff solver increases the
efficiency by a factor of about 3.5. (The CPU time of the assembly phase
can easily be examined by giving the option --verbose 1 to app or by looking
at the casename.dp file.) A 3D extension of the example in Figure 3.32 has
also been tried. The efficiency factor then becomes about 8 for a grid with
82944 tetrahedra. One should observe that the relative efficiency of the Heat2

and Heat2eff solvers depends on the element type. The effect of the Heat2eff

optimizations become larger when the ratio of elements and nodes increases,
i.e., the maximum gain occurs for tetrahedral elements.

More Flexible Approaches to Precomputed Matrices. A main goal of the
customized makeSystem function in the preceding section was to reuse as
much of the Heat2 code as possible, with particular emphasis on utilizing
the integrands (and possibly the integrands4side) function for computing
A, Arhs, and c. The technique was based on the observation that a routine
for computing A can also compute Arhs if θ is replaced by θ−1. Such simple
strategies are not always possible. Also, if ∆t or θ changes during the simula-
tion, or if we have time-variable coefficients as explained in Exercise B.1, we
need to compute and store separate matrices and vectors instead of A and
Arhs. We shall now show how this can be done, but we still limit the details
to the case where the coefficients β, k, and f are independent of time.

One way to flexibly compute two matrices M and K in addition to the
vector c is to introduce an indicator as class member:

enum Integrands_term { M_term, K_term, c_term };

Integrands_term integrands_term;

Using this indicator, we can in integrands turn on or off the terms that relate
to M , K, and c:

if (integrands_term == M_term) {

for (i = 1; i <= nbf; i++) {

for (j = 1; j <= nbf; j++) {

elmat.A(i,j) += beta_value*fe.N(i)*fe.N(j)*detJxW;

}

}

}

if (integrands_term == K_term) {

for (i = 1; i <= nbf; i++) {

for (j = 1; j <= nbf; j++) {

gradNi_gradNj = 0;

for(s = 1; s <= nsd; s++)

gradNi_gradNj += fe.dN(i,s)*fe.dN(j,s);

772 B. Diffpack Topics

elmat.A(i,j) += k_value*gradNi_gradNj*detJxW;

}

}

}

if (integrands_term == c_term) {

for (i = 1; i <= nbf; i++) {

elmat.b(i) += dt*fe.N(i)*f_value*fe.N(i)*detJxW;

}

}

The makeSystem function follows the same structure as Heat2eff::makeSystem,
but we now need to compute two versions of M , one without modifications
for essential boundary conditions that is to be used for the right-hand side
computations, and one with modifications for essential boundary conditions
that is to be used as part of the coefficient matrix M + θ∆tK:

// M matrix, with and without modifications due to ess. b.c.

lineq_.A().makeItSimilar (M); // without ess. b.c.

lineq_.A().makeItSimilar (M_webc); // with ess. b.c.

/*

When splitting the finite element assembly and the

modification of the rhs due to essential boundary conditions,

we need to make use of the DegFreeFE::b_mod vector,

containing the modifications of the rhs in the linear system

when columns in the coefficient matrix (times the essential

boundary condition value) are subtracted from the rhs;

DegFreeFE::b_mod holds these subtractions.

The DegFreeFE::b_mod vector is computed when

DegFreeFE::modifyVecDue2essBC(OFF) has been called.

We need to compute this b_mod vector for the M and the

K matrix and store the vector in local variables b_mod_M

and b_mod_K, because our _total_ b_mod vector is

b_mod_M + dt*theta*b_mod_K.

This means that we need to be careful with turning on

and off DegFreeFE::b_mod modifications (modifyVecDue2essBC),

to store the b_mod computations locally.

*/

integrands_term = M_term;

dof_.modifyMatDue2essBC (OFF);

dof_.modifyVecDue2essBC (ON); // no dof_.b_mod comp.

FEM::makeSystem (dof_, *M);

dof_.modifyMatDue2essBC (ON);

dof_.modifyVecDue2essBC (OFF); // compute dof_.b_mod

B.7. Optimizing Diffpack Codes 773

dof_.initAssemble();

FEM::makeSystem (dof_, *M_webc);

b_mod_M = dof_.b_mod;

To compute M , we call an overloaded makeSystem function in class FEM that
fills a matrix directly instead of a LinEqAdmFE object.

The same procedure is repeated for the K matrix, except that we in
this case must ensure that zeroes are placed on the main diagonal when
modifying the matrix for essential boundary conditions (M is also modified).
The function unitMatDiagonalDue2essBC in class DegFreeFE is used to switch
between zero or unity on the diagonal in the element matrix.

The c vector needs to exist in only one version where essential boundary
conditions are not taken into account. Finally, we compute the coefficient
matrix and the right-hand side by efficient matrix-matrix and matrix-vector
operations. We refer to Heat2eff2::makeSystem for the remaining details re-
garding the computation of the linear system.

We remark that instead of using the integrands term indicator, we could
apply integrand functors for M , K, and c as outlined in Appendix B.6.2.

B.7.3 Optimizing the Assembly Process

The optimizations in Appendix B.7.2 apply only to transient PDEs with
time-independent coefficients. For other (e.g. nonlinear) PDEs, the assembly
process must be repeated for each linear system. In such cases one can often
gain a significant speed-up by optimizing the assembly process itself. This is
the topic of the present section.

We still consider the heat equation solver, in this case class Heat1 from
Chapter 3.10 augmented with a θ-rule for the time discretization. Of course,
the optimal finite element implementation for this particular numerical prob-
lem was devised in Appendix B.7.2, but the simplicity of the Heat1 code
makes it well suited for illustrating and comparing various optimization tech-
niques, although these are suboptimal for the particular test case at hand.
Our purpose here is to list a series of modifications of class Heat1 that
will increase the computational efficiency of the assembly process. All the
listed items have been implemented in a subclass Heat1opt, see the directory
src/fem/Heat1/optimize, thus allowing the reader to study the optimizations
in detail and experiment with the code. We remark that most of the suggested
optimizations are directly applicable to any Diffpack finite element solver for
stationary or nonlinear PDEs as well.

1. Writing large fields to file, e.g. by using the SaveSimRes tool, is frequently
a time-consuming process. All dump functions in SaveSimRes can be made
inactive by the --nodump command-line option. Alternatively, one can
introduce a user-given flag, which controls the calls to all features not
strictly required for the numerical compuatations, including dump actions

774 B. Diffpack Topics

in the SaveSimRes object. The reader can study the usage of such a flag,
stripped code, in the Heat1opt class.

2. The makeFlux function computes smooth finite element representations of
the flux −k∇u, but the default smoothing algorithm involves d assembly
processes for a problem in IRd, thus requiring makeFlux to be called with
care. In class Heat1opt we call makeFlux only if stripped code is false.

3. There is a command-line option --FEM::optimize ON that turns on some
internal optimizations in Diffpack’s finite element toolbox. These opti-
mizations are not always safe so the option must be used with care and
always after the program is thoroughly verified.

4. The integrands function in classes like Poisson0, Poisson1, Poisson2,
Heat1, and Heat2 are written for clarity and safety and can be optimized
by utilizing the fact that the element matrix is symmetric and by moving
as many arithmetic operations as possible outside the i-j loops. More-
over, not all C++ compilers are able to inline and optimize calls like
fe.dN(i,s). Instead of calling fe.dN(i,s), we can extract a reference to
the underlying array and index the array structure directly. This will
normally improve the performance.

The following extract from an optimized version of an integrands function
from class Heat1opt should be compared to the original code on page 416.

// compute the contribution to the element matrix/vector:

const real dt_k_detJxW = dt*k_value*detJxW;

const real rhs = detJxW*up_pt + dt*f_value*detJxW;

int i,j,s; real N_i;

const Vec(real)& N = fe.N();

const Mat(real)& dN = fe.dN();

for (i = 1; i <= nbf; i++) {

N_i = N(i);

for (j = 1; j <= i; j++) {

gradNi_gradNj = 0;

for (s = 1; s <= nsd; s++)

gradNi_gradNj += dN(i,s)*dN(j,s);

elmat.A(i,j) += detJxW*N_i*N(j) + dt_k_detJxW*gradNi_gradNj;

}

elmat.b(i)+= N_i * rhs;

}

for (i = 1; i < nbf; i++)

for (j = i+1; j <= nbf; j++)

elmat.A(i,j) = elmat.A(j,i);

B.7. Optimizing Diffpack Codes 775

5. Restricting the integrands routine to a specific element, e.g., the ElmT4n3D

element, allows removal of all the short loops. A typical code segment
might take this form:

// specialized code for ElmT4n3D:

const real dt_k_detJxW = dt*k_value*detJxW;

const real rhs = detJxW*up_pt + dt*f_value*detJxW;

gradNi_gradNj=dN(1,1)*dN(1,1)+dN(1,2)*dN(1,2)+dN(1,3)*dN(1,3);

elmat.A(1,1) += detJxW*N(1)*N(1) + dt_k_detJxW*gradNi_gradNj;

gradNi_gradNj=dN(2,1)*dN(1,1)+dN(2,2)*dN(1,2)+dN(2,3)*dN(1,3);

elmat.A(2,1) += detJxW*N(2)*N(1) + dt_k_detJxW*gradNi_gradNj;

gradNi_gradNj=dN(2,1)*dN(2,1)+dN(2,2)*dN(2,2)+dN(2,3)*dN(2,3);

elmat.A(2,2) += detJxW*N(2)*N(2) + dt_k_detJxW*gradNi_gradNj;

6. The numerical integration over elements is costly, and a significant perfor-
mance improvement can be achieved by turning to analytical integration.
This means that we restrict the element type to triangles or tetrahe-
dra and use the formulas from Chapters 2.7.3 and 2.7.5. For example,∫

Ωe
NiNjdΩ and

∫
Ωe
∇Ni · ∇NjdΩ are easily calculated from these for-

mulas. The analytical expressions for the element matrix and vectors are
then loaded into the ElmMatVec object in the function calcElmMatVec.

In nonlinear problems one can also take advantage of analytical inte-
gration. Consider the term

∫
Ωe
λ(u)∇Ni · ∇NjdΩ. Expanding λ(u) ≈∑

k λ(uk)Nk leaves us with the integral aijk = ∇Ni · ∇Nj

∫
Ωe
NkdΩ on

linear elements. The aijk expressions on each element can be stored in an
array a(k,i,j,e), where e runs over the elements and i,j,k run from 1 to
3 (2D) or 4 (3D). One can also merge the i and j indices into one index
and take advantage of symmetry. The contribution to the element matrix
can now be efficiently computed by a loop over the k index and multiply-
ing by the most recently computed u values. This type of optimization
technique is explained in detail in Chapter 6.5.2.

7. The default makeSystem function in class FEM performs a series of nested
loops with calls to several virtual functions, including the calcElmMatVec

and integrands routines. One can merge the whole assembly process into
one function, with the integrands statements in the inner loop. An ex-
ample on such a function is Heat1opt::makeSystem2.

It appears that the overhead of having virtual functions calcElmMatVec,
numItgOverSide, and integrands is negligible, because the number of arith-
metic operations in the innermost function, i.e. integrands, is quite large.

8. Grids containing linear triangular and tetrahedral elements allow for spe-
cial optimizations. There are two classes in Diffpack supporting such op-

776 B. Diffpack Topics

timizations: ToolsElmT3n2D and ToolsElmT4n3D. With these tools, one can
implement an efficient combination of analytical and numerical integra-
tion. Furthermore, Diffpack offers optimized versions of class ElmMatVec

for representing element matrices and vectors, called ElmMatT3n2D for
ElmT3n2D elements and ElmMatT4n3D for ElmT4n3D elements. Examples on
using these techniques are found in makeSystem3-6 in the Heat1opt class.

9. After the first time step it is not necessary to recompute the coeffi-
cient matrix. One can introduce a flag for this in the makeSystem and
LinEqAdmFE::solve calls, like we demonstrated in Appendix B.7.1. (With
this technique one also avoids unnecessary recalculation of incomplete fac-
torizations in the RILU preconditioner.) Class Heat1opt has a user-given
flag, recompute A, that can be used to control if the coefficient matrix
should be recomputed or not. All relevant functions in class Heat1opt can
make use of recompute A.

10. The functions f, k, and g are called quite heavily. These can be made
inline instead of virtual. In class Heat1opt this is enabled by a conditional
compilation command.

11. We mention that Heat1opt::makeSystem1 implements the optimal algo-
rithm where there is no assembly except at the first time level18 (see
Appendix B.7.2).

12. The computational work when computing element matrices and vectors
is proportional to the number of integration points in the element. Reduc-
ing the number of integration points by changing the relative quadrature

order menu item is therefore a quickly performed optimization trick, if
it is numerically sufficient to apply a rule with fewer points. For exam-
ple, the default rule for ElmT3n2D elements in Diffpack has three points,
but integration of the term

∫
Ωe
λ∇Ni · ∇NjdΩ, λ =

∑
k λkNk, only in-

volves linear functions Nk in the integrand and a one-point rule is suf-
ficient. With the ElmB4n2D and ElmB8n3D a one-point rule for the term∫

Ωe
λ∇Ni · ∇NjdΩ is also feasible, but this requires special stabilization

techniques [86].

13. Finally, we can make a list of actions that reduce the efficiency: (i) using
valuePt to evaluate fields when valueFEM could be called instead (this
might be very inefficient in integrands routines), (ii) using a too strict
termination criterion for linear or nonlinear solvers, (iii) using inefficient
linear solvers or preconditioners, (iv) forgetting the ampersand & in the
declaration of a potentially large data structure as argument in a func-
tion, and (v) using the generic ElmTensorProd1 element when a tailored
element like ElmB4n2D or ElmB8n3D would be more efficient (avoid all the
ElmTensorProd-type elements if you are concerned about efficiency).

18 Notice the difference between items 9 and 11: In 9 an assembly over the right-
hand side contributions to the linear system is performed at every time level,
whereas in 11 no assembly takes place after the first time step.

B.7. Optimizing Diffpack Codes 777

Table B.3. Effect of various optimizations in the solver Heat1opt. The opti-
mization strategy numbers correspond to the list in the text. The tests were
run on a dual Pentium 200 MHz Intel processor under the Linux operating
system and the egcs C++ compiler with -O3 optimization.

optimization CPU time
strategy total assembly solve

default 58.63 63% 4%
1+2 38.67 94% 6%
1+2+3 37.01 94% 6%
1+2+3+4 23.97 89% 10%
1+2+3+5 19.86 88% 11%
1+2+3+6 13.18 81% 18%
1+2+3+4+7 21.76 87% 11%
1+2+3+4+8 7.16 66% 31%
1+2+3+4+8+9 4.44 46% 50%
1+2+11 4.02 40% 55%

Let us exemplify the effect of the suggested optimizations in the numerical
problem from Chapter 3.10. We run the Heat1opt code on a grid consisting
of 10× 10× 10 boxes, where each box is divided into six tetrahedra, giving a
total of 6000 elements. The heat equation is integrated over 60 time steps. As
equation solver we used the Conjugate Gradient method with SSOR precon-
ditioning and an absolute residual (CMAbsResidual) less than 10−7 as stopping
criterion. The fields are dumped via SaveSimRes at every time point in the
simulation. Table B.3 shows some timing results.

The specification of the optimizations in the first column of Table B.3
corresponds to the preceding list. A striking result is that the suggested opti-
mizations speed up the code by a factor of almost 15! The best result corre-
sponds, not surprisingly, to the method in Appendix B.7.2, which we actually
has defined as not relevant in the current section because we want to focus
on problems where the assembly process must be repeated at each time level.
Turning off file writing and just optimizing the integrands routine, keeping
all generality of the code, gives almost a factor of 2.5 in speed-up. Analytical
integration gives another factor of two. Specializing the code to the ElmT4n3D

element also contributes with a factor of two, but the flexibility with respect
to extension and choice of elements is reduced and the implementational and
debugging work becomes significant. A clear conclusion is that the overhead
of having calcElmMatVec and integrands as virtual functions is negligible.

Reordering the Loops in the Assembly Procedure. Let us briefly mention some
further possible optimizations of the assembly process. The assembly algo-
rithm is essentially a series of nested for loops:

for e=1,2,...,no of elements

778 B. Diffpack Topics

for p=1,2,...,no of integration points

for i=1,2,...,no of element degrees of freedom

for j=1,2,...,no of element degrees of freedom

assemble contribution from point p in element e to (i,j) entry

When the elements are of the same type and size, the efficiency of the nested
loops increases if we avoid nested function calls, have the longest loop as the
innermost loop, and operate directly on a large array in the inner statements.
Hence, we could “reverse” the loops:

for i=1,2,...,no of element degrees of freedom

for j=1,2,...,no of element degrees of freedom

for p=1,2,...,no of integration points

for e=1,2,...,no of elements

compute contribution from point p in element e to (i,j) entry

The inner details of integrands could be copied into this loop. An additional
set of loops is needed for the line or surface integrals. To improve the effi-
ciency, all the element matrices can be stored in a three-dimensional array,
em(e,j,i), the purpose being to avoid function calls and indirect array ad-
dressing in the innermost loop. A new loop over i, j, and e is thereafter
invoked for assembling the element contributions into a specific Diffpack ma-
trix format for the global matrix. (Appendix B.7.4 explains why the three-
dimensional array em should have the counter in the longest loop as the first
index.)

B.7.4 Optimizing Array Indexing

Developing a simulation program is conveniently done by writing a short
code utilizing high-level abstractions. A typical Diffpack simulator follows this
approach, but in Diffpack we lower the abstraction level in the “heart” of the
simulator, i.e., where some intensive key numerical calculations takes place. In
a finite element simulator the “heart” is the specification of the integrands in
the weighted residual formulation, whereas the “heart” of a finite difference
solver is the nested loops involving the finite difference scheme. The C++
syntax of the integrands in a weighted residual statement or the indexing in
loops encountered in a finite difference context is close to the mathematical
notation used in the specification of the discretization method. This has two
advantages: (i) the close connection between C++ code and the mathematical
typesetting simplifies debugging, and (ii) the code is easier to optimize by the
programmer. We shall in this section look at techniques for optimizing the
loops in finite difference simulators.

Implementation of finite difference schemes are conveniently done in terms
of grids and fields abstractions (GridLattice and FieldsLattice). The com-
putationally intensive part of finite difference schemes is the traversal of the
grid points, involving indexing in the underlying ArrayGenSel array of point
values in the field object.

B.7. Optimizing Diffpack Codes 779

Nested Function Calls. Having a Handle(FieldLattice) object with the name
u, we can index the field values by u->values()(i,j,k). However this is actu-
ally a quite complicated set of nested function calls:

Handle(FieldLattice)::operator-> // field access through a handle

FieldLattice::values() // returns an ArrayGenSel(real)

ArrayGenSel(real)::operator() // inherits base class operator()

ArrayGenSimplest(real)::operator() // calls multiple2single

ArrayGenSimplest(real)::multiple2single // (i,j,k) -> single index

The final return statement makes an array look up of the form A[a*k+b*j+i],
where A is the basic one-dimensional C array containing the array entries and
a and b are constants. Although all these functions are defined as inline in
the source code, many C++ compilers have problems with really performing
the inlining and optimizing the resulting expressions to the fullest extent. We
have therefore in this book emphasized extracting references to lower level
structures, e.g.,

ArrayGen(real)& Up = u->values();

and then indexing the ArrayGen(real) object19 Up(i,j,k) since we then get
rid of two nested function calls compared with u->values()(i,j,k).

Model Simulator. We have developed a test simulator src/fdm/Wave2D for
solving the two-dimensional wave equation on a rectangular lattice. The ap-
plication and the numerics involved are explained in detail in Chapters 1.4.6,
1.4.7, and 1.7.5. The “heart” of this simulator is a nested loop

ArrayGen(real)& up_v = up_.values();

const ArrayGen(real)& u_v = u_ .values();

const ArrayGen(real)& um_v = um_.values();

const ArrayGen(real)& lambda_v = lambda->values();

// update inner points according to finite difference scheme:

for (j = 2; j <= ny-1; j++)

for (i = 2; i <= nx-1; i++)

up_v(i,j) = a*2*u_v(i,j) - b*um_v(i,j)

+ c*LaplaceU(u_v,lambda_v,i,j,i-1,i+1,j-1,j+1);

The LaplaceU construction is a macro used to make the implementation safer
and more compact, see Chapter 1.4.7 for a detailed explanation. For now it
sufficies to know that LaplaceU involves several array look-ups of the type

19 ArrayGen is a base class for the ArrayGenSel array, returned by the values()

function in FieldLattice objects, see page 93, but we could also used an
ArrayGenSel reference, or an ArrayGenSimplest reference for that sake.

780 B. Diffpack Topics

u_v(i,j-1) u_v(i,j+1) u_v(i-1,j) u_v(i+1,j)

lambda_v(i,j-1) lambda(v_i+1,j) etc

The main point is that we need to look up the index pairs (i, j) and (i±1, j±
1). Because array entries are normally stored consecutively in a contiguous
memory segment, the i±1 or j±1 indices imply a jump in memory location.
For example, the Diffpack arrays in the ArrayGen family store the entries as
in Fortran, i.e., column by column. The first index has the fastest variation,
the second index has the second fastest variation, and so on. An array with
indices (1 : 2, 1 : 3) have its entries stored in the following sequence:

(1, 1), (2, 1), (1, 2), (2, 2), (1, 3), (2, 3) .

This implies that an index (i ± 1, j) requires look-up of two neighboring
storage locations in memory, while (i, j ± 1) demands a jump in memory
location, the jump being equal to the size of the first dimension of the array
(the number of i values).

Long memory jumps may have a bad effect on performance. When grab-
bing an array value from memory, the computer actually grabs a chunk of
memory, containing the desired entry and some neighboring memory loca-
tions. This chunk of memory is stored in a local fast-access memory called
cache. Look-up in the cache is very efficient. Hence, looking up (i± 1, j) in-
dices means accessing entires that are in the cache. Looking up (i, j±1) may
cause a cache miss, i.e., the desired value is not in the cache and a new chunk
of memory must be grabbed. Whether a cache miss takes place or not is of
course dependent on the size of the cache and the size of the first dimension
of the array.

We have implemented several versions of the inner loops over the finite
different scheme in the Wave2D simulator. The different versions are available
in the directory

src/fdm/Wave2D/optimize

The inner loops are collected in separate files. The original loops shown above
are available in the WAVE1.cpp file. The script cpuloop.py automates the ex-
ecution of the various versions of the loops in combination with different
compiler optimization flags. You can run this benchmark test on your own
machine; the results will probably be considerably dependent on the compiler
and machine type.

Remark. Before we report the results of various loop constructions we should
emphasize that this type of application is a worst case scenario for numerical
C++ code. Optimization of array operations in nested loops has been the
topic of Fortran compiler development for five decades. The layered design
of classes in C++ array and field abstractions introduces constructions that
can easily destroy Fortran-type optimization techniques or at least make it

B.7. Optimizing Diffpack Codes 781

difficult for the compiler to see through the code and apply the techniques
efficiently. It is therefore probably correct to assert that the results in the
present section show the potential speed-up of using Fortran 77 over C++.
On the other hand, our message is that we can easily get the ultimate Fortran
speed in this Diffpack simulator. We should also mention that C++ can get
even worse than shown here; for example, implementing operator() as a
virtual function in array or field classes degrades performance significantly.

Indexing the Array Object. The original Wave2D code (WAVE1.cpp) requires 17s
to complete the test problem on a 200 × 200 grid20. We index in this test
the underlying ArrayGen array of a FieldLattice object. A slight variation,
namely extracting the base class ArrayGenSimplest and performing the index
operations with this class (see WAVE5.cpp), rather than the subclass ArrayGen,
hardly changed the timings.

Indexing the Field Object. For comparison we could index the FieldLattice

object more directly, using constructions like

u.values()(i,j-1)

The implementation of the loop in this case is found in WAVE2.cpp. Now we call
the values function of the FieldLattice object u, which calls the operator()

function of the underlying ArrayGenSel object, and so on. We could hope
that good compilers would see that the calls to FieldLattice::values() and
ArrayGenSel::operator() remain constant throughout the loop such that the
code can be simplified. This was not the case on my machine; the execution
time of the test problem increased to 23s. Therefore, the strategy of extracting
the array object from the field and store access to the array in a reference, as
we do in this book’s finite difference examples, may have an important effect
on efficiency.

Indexing the Underlying Plain C/C++ Array. The seemingly ultimate speed
of this type of loops in C/C++ code would access the pure C/C++ arrays di-
rectly. We have done this in WAVE3.cpp. The nested loop then looks something
like this:

real* up_v = up_.values().getPtr0();

const real* u_v = u_ .values().getPtr0();

const real* um_v = um_.values().getPtr0();

const real* lambda_v = lambda->values().getPtr0();

// transformation formula:

// (i,j) -> (j-1)*nx + i-1 = j*nx + i + c, c=-nx-1

20 For these experiments I used my 500 MHz IBM 570E laptop with 128 Mb
memory. As C++ compiler I used g++ version 2.95.

782 B. Diffpack Topics

int ic; // center index (i,j)

int in, ie, is, iw; // the four neighbors (north, east, ...)

int i0 = -nx-1;

// update inner points according to finite difference scheme:

for (j = 2; j <= ny-1; j++) {

for (i = 2; i <= nx-1; i++) {

ic = j*nx + i + i0;

in = ic + nx;

is = ic - nx;

ie = ic + 1;

iw = ic - 1;

up_v[ic] = a*2*u_v[ic] - b*um_v[ic] +

c*LaplaceU1(u_v,lambda_v,ic,in,is,iw,ie);

}

}

with the LaplaceU macro modified for plain C/C++ array subscripting:

#define LaplaceU1(u_v,lambda_v,ic,in,is,iw,ie) \

sqr(dt/dx)*\

(0.5*(lambda_v[ie]+lambda_v[ic])*(u_v[ie]-u_v[ic]) \

-0.5*(lambda_v[ic]+lambda_v[iw])*(u_v[ic]-u_v[iw]))\

+sqr(dt/dy)*\

(0.5*(lambda_v[in]+lambda_v[ic])*(u_v[in]-u_v[ic]) \

-0.5*(lambda_v[ic]+lambda_v[is])*(u_v[ic]-u_v[is]))

The code is more complicated, and it is much simpler to make errors, but
the compiler sees a single-indexed plain C/C++ array and will easier make
the right optimizations. This is reflected in the timing results; the benchmark
problem required only 5s. This is a speed-up of 3.4 over the ArrayGen-type
indexing and a speed-up of 4.6 over the FieldLattice-type indexing. This
example also shows how important it may be to base a C++ library on prim-
itive array structures at the lowest abstraction level. Since we can (almost)
always extract a plain C/C++ array from the higher-level Diffpack objects,
we can always perform optimizations of the type shown here.

Jumping out to Fortran Code. The implementation of the “heart” of the
simulator (the nested loops) fills roughly a page of code. We can easily migrate
this short code segment to Fortran 77. To this end, we need to extract the
underlying plain C/C++ arrays and make a call to a Fortran 77 function
implementing the loops. Diffpack has a macro FORTRANname which simplifies
calling Fortran code, see page 730 for details. The Fortran code itself is found
in the file F77WAVE.f, but I actually wrote the code in the F77WAVE.fcp file,
using the convenient LaplaceU macro. Since Fortran 77 does not support
macros, I ran the C/C++ preprocessor cpp to expand the macros (of course,

B.7. Optimizing Diffpack Codes 783

the translation to plain Fortran 77 was done in a Python script, see fcpp.py).
The speed of the Fortran code was slightly lower than the C code (!): 6.2s
with g77 and 8s with the Fujitsu Fortran 95 Compiler v1.0.

Blitz++ Wrapping of Diffpack Arrays. The Blitz++ library [72, Ch. 2] by
Veldhuizen is a highly optimized C++ array library. Would it be advanta-
geous to extract the underlying plain C/C++ arrays from the Diffpack arrays
and wrap them in Blitz++ objects and then apply the highly optimized in-
dexing provided by Blitz++? This strategy is implemented in WAVE6.cpp.
Basically, the wrapping of an array is a statement on the form

blitz::Array<real, 2> u_v ((real*) u_ .values().getPtr0(),

blitz::shape(nx,ny), blitz::neverDeleteData,

blitz::FortranArray<2>());

The code using u v is identical to the previously shown loops, where u v

is assumed to a Diffpack array object. That is, switching from Diffpack to
Blitz++ is an easy task. The timings show that Blitz++ demands 8.8s in
the test problem. This is twice as fast as Diffpack’s array indexing but slower
than indexing the plain C/C++ arrays directly.

Final Remark.. It goes without saying that the optimized version of the sim-
ulator should not be considered before the safe version is thoroughly verified.
With a working code at hand, you can write out intermediate results any-
where in the program to help detecting bugs in the optimized version. The
safe and optimized versions should all co-exist such that you can easily switch
between the versions, especially if you suspect the optimized implementation
to be erronous. A useful set-up for having different optimizations side by side
is provided by the Wave2D solver in the directory src/fdm/Wave2D/optimize.

Appendix C

Iterative Methods for Sparse Linear

Systems

When discretizing PDEs by finite difference or finite element methods, we
often end up solving systems of linear algebraic equations (frequently just
called linear systems). For large classes of problems, the computational ef-
fort spent on solving linear systems dominate the overall computing time.
Consequently, it is of vital importance to have access to efficient solvers for
linear systems (often called linear solvers). Since the optimal choice of a lin-
ear solver is highly problem dependent, this calls for software that allows
and even encourages you to test several alternative methods. The linear al-
gebra tools available in Diffpack provide a flexible environment tailored for
this purpose. The current appendix aims at introducing the basic concepts
of common iterative methods for linear solvers and thereby equipping the
reader with the required theoretical knowledge for efficient utilization of the
corresponding software tools in Diffpack. The next appendix is devoted to
the practical usage of the software tools.

Linear systems can be solved by direct or iterative methods. The term
direct methods normally means some type of Gaussian elimination, where
the solution is computed by an algorithm with precisely known complexity,
independent of the underlying PDE and its discretization. On the contrary,
the performance of an iterative method is often strongly problem dependent.

For most large-scale applications arising from PDEs, iterative methods
are superior to direct solvers with respect to computational efficiency. The
main reason for this superiority is that iterative methods can take great ad-
vantage of the sparse matrices that arise from finite difference and finite
element discretizations of PDEs. The effect is especially pronounced in 3D
problems, where the pattern of the corresponding coefficient matrices tend
to be extremely sparse. To exemplify, only 0.004% of the coefficient matrix
will be occupied by nonzeroes when the 3D Poisson problem is discretized on
a 60× 60× 60 grid by standard finite differences. This mesh spacing, leading
to n = 216, 000 unknowns, is moderate and further refinements would de-
crease the sparsity factor considerably. In general, the fraction of nonzeroes
in the coefficient matrix is about 7q−6 on a q × q × q grid. Even such rough
estimates reveal the potential of iterative methods that compute with the
nonzeroes only. In contrast to most direct methods, iterative solvers can usu-
ally be formulated in terms of a few basic operations on matrices and vectors,
e.g. matrix-vector products, inner products, and vector additions. The way

786 C. Iterative Methods for Sparse Linear Systems

these operations are combined distinguish one iterative scheme from another.
Naturally, the critical issue for any iterative solver is whether the iterations
will converge sufficiently fast. For this reason, a major concern in this field
is the construction of efficient preconditioners capable of improving the con-
vergence rate.

Bruaset [17] presents some exact figures on the efficiency of precondi-
tioned iterative methods relative to direct methods for the finite difference
discretized 3D Poisson equation on the unit cube with homogeneous Dirich-
let boundary conditions. The direct solver was banded Gaussian elimination,
whereas a MILU preconditioned Conjugate Gradient method was used as
iterative solver. The ratio C of the CPU time of the direct and iterative
methods as well as the ratio M of the memory requirements were computed
for various grid sizes1. For a small grid with 3 375 unknowns, C = 72 and
M = 20, which means that the MILU preconditioned Conjugate Gradient
method is 72 times faster than banded Gaussian elimination and reduces the
memory requirements by a factor of 20. For 27,000 unknowns, the largest
grid where the direct method could be run on the particular computer used
in [17], C = 924 andM = 95. As the number of unknowns increases, the effect
of using iterative methods become even more dramatic. With 8,000,000 un-
knowns, theoretical estimates give C = 107 and M = 4871. This means that
the iterative method used about 2,600 seconds, wheras the direct method
would use 832 years, if there had been a machine with 2,400 Gb RAM to
store the banded matrix!

We begin the presentation of iterative solvers with a compact review of
the simple classical iterative methods, such as Jacobi and Gauss-Seidel itera-
tion. Then we describe the foundations for Conjugate Gradient-like methods
and show that we can reuse much of the reasoning from Chapter 2 on finite
element methods also for solving algebraic equations approximately. There-
after we treat some fundamental preconditioning techniques. The fundamen-
tal ideas of domain decomposition and multigrid methods are described at
the end of the appendix.

C.1 Classical Iterative Methods

Classical iterative methods, like Jacobi, Gauss-Seidel, SOR, and SSOR iter-
ation, are seldom used as stand-alone solvers nowadays. Nevertheless, these
methods are frequently used as preconditioners in conjugate gradient-like
techniques and as smoothers in multigrid methods. Our treatment of clas-
sical iterative methods is here very brief as there is an extensive literature
on the subject. An updated and comprehensive textbook is Hackbusch [54],

1 On large grids, banded Gaussian elimination is too slow for practical computa-
tions, but the expected CPU time, neglecting the effect of swapping, etc., can
be estimated from the formula for the work involved in the Gaussian elimination
algorithm.

C.1. Classical Iterative Methods 787

while Bruaset [17] is well suited as a compact extension of the present expo-
sition.

C.1.1 A General Framework

The linear system to be solved is written as

Ax = b, A ∈ IRn,n, x, b ∈ IRn .

Let us split the matrix A into two parts M and N such that A = M −N ,
where M is invertible, and linear systems with M as coefficient matrix are
in some sense cheap to solve. The linear system then takes the form

Mx = Nx + b,

which suggests an iteration method

Mxk = Nxk−1 + b, k = 1, 2, . . . (C.1)

where xk is a new approximation to x in the kth iteration. To initiate the
iteration, we need a start vector x0.

An alternative form of (C.1) is

xk = xk−1 + M−1rk−1, (C.2)

where rk−1 = b − Axk−1 is the residual after iteration k − 1. For further
analysis, but not for the implementation, the following version of (C.1) is
useful

xk = Gxk−1 + c, k = 1, 2, . . . ,

where G = M−1N and c = M−1b. The matrix G plays a fundamental role
in the convergence of this iterative method, because one can easily show that

xk − x = Gk(x0 − x) .

That is, limk→∞ ||Gk|| = 0 is a necessary and sufficient condition for conver-
gence of the sequence {xk} towards the exact solution x. This is equivalently
expressed as

%(G) < 1,

where %(G) is the spectral radius of G. The spectral radius is defined as
%(G) = maxi=1,...,n |λi|, where λi are the real or complex eigenvalues of G.
Making %(G) smaller increases the speed of convergence. Of special interest is
the asymptotic rate of convergence R∞(G) = − ln %(G). To reduce the initial
error by a factor ε, that is, ||x− xk−1|| ≤ ε||x−x0||, one needs − ln ε/R∞(G)
iterations [17].

We shall first give examples on popular choices of splittings (i.e. the ma-
trices M and N) that define classical iterative solution algorithms for linear

788 C. Iterative Methods for Sparse Linear Systems

systems. Thereafter, we will return to the convergence issue and list some
characteristic results regarding the value of R∞(G) for the suggested itera-
tive methods in a model problem.

In the following, we need to write A as a sum of a diagonal part D, a
lower triangular matrix L, and an upper triangular matrix U :

A = L + D + U .

The precise definition of these matrices are Li,j = Ai,j if i > j, else zero,
Ui,j = Ai,j if i < j, else zero, and Di,j = Ai,j if i = j, else zero.

As a PDE-related example on a common linear system, we shall make use
of the five-point 2D finite difference discretization of the Poisson equation
−∇2u = f with u = 0 on the boundary. The domain is the unit square, with
m grid points in each space direction. The unknown grid-point values ui,j are
then coupled in a linear system

ui,j−1 + ui−1,j + ui+1,j + ui,j+1 − 4ui,j = −h2fi,j , (C.3)

for i, j = 2, . . . ,m−1. The parameter h is the grid increment: h = 1/(m−1).
In the start vector we impose a zero value at the boundary points i = 1,m,
j = 1,m. Updating only the inner points, 2 ≤ i, j ≤ m − 1, then preserves
the correct boundary values in each iteration.

C.1.2 Jacobi, Gauss-Seidel, SOR, and SSOR Iteration

Simple Iteration. The simplest choice is of course to let M = I and N =
I −A, resulting in the iteration

xk = xk−1 + rk−1 . (C.4)

Jacobi Iteration. Another simple choice is to let M equal the diagonal of A,
which means that M = D and N = −L −U . From (C.2) we then get the
iteration

xk = xk−1 + D−1rk−1 . (C.5)

We can write the iteration explicitly, component by component,

xk
i = xk−1

i +
1

Ai,i

bi −

n∑

j=1

Ai,jx
k−1
j

 , i = 1, . . . , n . (C.6)

An alternative (and perhaps more intuitive) formula arises from just solving
equation no. i with respect to xi, using old values for all the other unknowns:

xk
i =

1

Ai,i

bi −

i−1∑

j=1

Ai,jx
k−1
j −

n∑

j=i+1

Ai,jx
k−1
j

 , i = 1, . . . , n .

C.1. Classical Iterative Methods 789

Applying this iteration to our model problem (C.3) yields

uk
i,j =

1

4

(
uk−1

i,j−1 + uk−1
i−1,j + uk−1

i+1,j + uk−1
i,j+1 + h2fi,j

)
, (C.7)

for i, j = 2, . . . ,m− 1.

Relaxed Jacobi Iteration. Let x∗ denote the predicted value of x in itera-
tion k with the Jacobi method. We could then compute xk as a weighted
combination of x∗ and the previous value xk−1:

xk = ωx∗ + (1− ω)xk−1 . (C.8)

For ω ∈ [0, 1] this is a weighted mean of x∗ and xk−1. The corresponding
scheme is called relaxed Jacobi iteration. As an example, the relaxed Jacobi
method applied to the model problem (C.3) reads

uk
i,j =

ω

4

(
uk−1

i,j−1 + uk−1
i−1,j + uk−1

i+1,j + uk−1
i,j+1 + h2fi,j

)
+ (1− ω)uk−1

i,j , (C.9)

for i, j = 2, . . . ,m− 1.

On the Equivalence of Jacobi Iteration and Explicit Time Stepping. Consider
the heat equation

α
∂u

∂t
= ∇2u+ f (C.10)

on a 2D grid over the unit square. If we assume that a stationary state, defined
as ∂u/∂t = 0, is reached as t → ∞, we can solve the associated stationary
problem −∇2u = f by solving the time-dependent version (C.10) until ∂u/∂t
is sufficiently close to zero. This is often called pseudo time stepping. Let us
discretize (C.10) using an explicit forward Euler scheme in time, combined
with the standard 5-point finite difference discretization of the ∇2u term.
With uk

i,j as the approximation to u at grid point (i, j) and time level k, the
scheme reads

uk
i,j = uk−1

i,j +
∆t

αh2

(
uk−1

i,j−1 + uk−1
i−1,j + uk−1

i+1,j + uk−1
i,j+1 − 4uk−1

i,j + h2fi,j

)
,

(C.11)
with ∆t being the time step length. This scheme can alternatively be ex-
pressed as

uk
i,j =

(
1− 4

∆t

αh2

)
uk−1

i,j +
∆t

αh2

(
uk−1

i,j−1 + uk−1
i−1,j + uk−1

i+1,j + uk−1
i,j+1 + h2fi,j

)
.

(C.12)
Comparison with (C.9) reveals that (C.12) is nothing but a relaxed Jacobi
iteration for solving a finite difference form of −∇2u = f . The relaxation
parameter ω is seen to equal 4∆t/(αh2). The stability criterion of the explicit
forward scheme for the heat equation in two dimensions is given by (A.42):

790 C. Iterative Methods for Sparse Linear Systems

∆t ≤ αh2/4, or equivalently, ω ≤ 1. The original Jacobi method is recovered
by the choice ω = 1, which in light of the transient problem indicates that this
is the most efficient value of the relaxation parameter since it corresponds to
the largest possible time step.

The analogy between explicit time integration of a heat equation and Ja-
cobi iteration for the Poisson equation, together with the smoothing proper-
ties of the heat equation (see Example A.7 on page 681), suggest that Jacobi’s
method will efficiently damp any irregular behavior in x0. This property is
utilized when relaxed Jacobi iteration is used as a smoother in multigrid
methods, and ω = 1 is in this context not the optimal value with respect to
efficient damping of high frequencies in the solution (cf. Exercise C.4).

Gauss-Seidel Iteration. Linear systems where the coefficient matrix is upper
or lower triangular are easy to solve. Choosing M to be the lower or upper
triangular part of A is therefore attractive. With M = D +L and N = −U

we obtain Gauss-Seidel’s method:

(D + L)xk = −Uxk−1 + b . (C.13)

Combining this formula on component form with the standard algorithm for
solving a system with lower triangular coefficient matrix yields

xk
i =

1

Ai,i

bi −

i−1∑

j=1

Ai,jx
k
j −

n∑

j=i+1

Ai,jx
k−1
j

 , i = 1, . . . , n . (C.14)

This equation has a simple interpretation; it is similar to the ith equation in
Jacobi’s method, but we utilize the new values xk

1 , . . . , x
k
i−1, which we have

already computed in this iteration, on the right-hand side. In other words,
the Gauss-Seidel always applies the most recently computed approximations
in the equations.

For our Poisson equation scheme, the Gauss-Seidel iteration takes the
form

uk
i,j =

1

4

(
uk

i,j−1 + uk
i−1,j + uk−1

i+1,j + uk−1
i,j+1 + h2fi,j

)
. (C.15)

We here assume that we run through the (i, j) indices in a double loop,
with i and j going from 1 to m. However, if we for some reason should
reverse the loops (decrementing i and j), the available “new” (k) values
on the right-hand side change. The efficiency of the Gauss-Seidel method is
strongly dependent on the ordering of the equations and unknowns in many
applications. The ordering also affects the performance of implementations
on parallel and vector computers. A quick overview of various orderings and
versions of Gauss-Seidel iteration is provided in [148, Ch. 4.3].

From an implementational point of view, one should notice that the new
values xk

i or uk
i,j can overwrite the corresponding old values xk−1

i and uk−1
i,j .

This is not possible in the Jacobi algorithm.

C.1. Classical Iterative Methods 791

Example C.1. Consider the Poisson equation ∇2u = 2 on the unit square,
with u = 0 for x = 0, and u = 1 for x = 1. At the boundaries y = 0, 1 we
impose homogeneous Neumann conditions: ∂u/∂y = 0. The exact solution
is then u(x, y) = x2. We introduce a grid over (0, 1) × (0, 1) with points
i, j = 1, . . . ,m as shown in Figure C.1. The discrete equations are to be
solved by the Gauss-Seidel method. At all inner points, i, j = 2, . . . ,m − 1,
we can use the difference equation (C.15) directly. At j = 1 we have by the
boundary condition ui,2 = ui,0. Similarly, ui,m−1 = ui,m+1. These relations
can be used to eliminate the fictitious values ui,m+1 and ui,0 in the difference
equations at j = 1 and j = m:

uk
i,1 =

1

4

(
uk

i,2 + uk
i−1,1 + uk−1

i+1,1 + uk−1
i,2 + h2fi,1

)
,

uk
i,m =

1

4

(
uk

i,m−1 + uk
i−1,m + uk−1

i+1,m + uk−1
i,m−1 + h2fi,1

)
.

The start values u0
i,j can be arbitrary as long as u0

1,j = 0 and u0
m,j = 1 such

that the preceding iteration formulas sample the correct values at i = 1,m.
The demo program src/linalg/GaussSeidelDemo/main.cpp contains a sug-

gested implementation of the solution algorithm. In that program, the field
values uk

i,j overwrite uk−1
i,j . Moreover, the start values are u0

i,j = 0 or u0
i,j =

(−1)i, except for u1,j and um,j , which must equal the prescribed boundary
conditions. Included in this directory is a little Perl script play.py that takes
m and the start-vector type as argument, runs the program, and thereafter
displays an animation of the error along x as the iteration index k increases.

For small values of m the Gauss-Seidel method is seen to converge rapidly
to the exact solution. For m = 80 we see that the error is initially steep, and
during the first iterations it is effectively reduced and smoothed. However,
the convergence slows down significantly. After 1000 iterations the maximum
error is still as high as 20 percent of the initial maximum error.

The property that the first few Gauss-Seidel iterations are very effective
in reducing and smoothing the error, is a key ingredient in multigrid methods.
�

Successive Over-Relaxation. The idea of relaxation as introduced in the Ja-
cobi method is also relevant to Gauss-Seidel iteration. If x∗ is the new solution
predicted by a Gauss-Seidel step, we may set

xk = ωx∗ + (1− ω)xk−1 . (C.16)

The resulting method is called Successive Over-Relaxation, abbreviated SOR.
It turns out that ω > 1 is a good choice when solving stationary PDEs of the
Poisson-equation type. One can prove that ω ∈ (0, 2) is a necessary condition
for convergence. In terms of M and N , the method can be expressed as

M =
1

ω
D + L, N =

1− ω
ω

D −U .

792 C. Iterative Methods for Sparse Linear Systems

i

j

1

1

m

m

Fig.C.1. Sketch of a grid for finite difference approximation of ∇2u = 2 on
the unit square, with u prescribed for i = 1,m and ∂u/∂y = 0 for j = 1,m.
The difference equations must be modified for points at j = 1,m by using
the boundary condition ∂u/∂y = 0, involving the points marked with bullets.
The boundary points marked with circles have prescribed u values and can
remain untouched.

The algorithm is a trivial combination of (C.14) and (C.16):

xk
i =

ω

Ai,i

bi −

i−1∑

j=1

Ai,jx
k
j −

n∑

j=i+1

Ai,jx
k−1
j

+ (1− ω)xk−1

i , (C.17)

for i = 1, . . . , n. The SOR method for the discrete Poisson equation can be
written as

uk
i,j =

ω

4

(
uk

i,j−1 + uk
i−1,j + uk−1

i+1,j + uk−1
i,j+1 + h2fi,j

)
+ (1− ω)uk−1

i,j , (C.18)

for i, j = 2, . . . ,m − 1. By a clever choice of ω, the convergence of SOR can
be much faster than the convergence of Jacobi and Gauss-Seidel iteration. A
guiding value is ω = 2−O(h), but the optimal choice of ω can be theoretically
estimated in simple model problems involving the Laplace or Poisson equa-
tions. One should observe that SOR with ω = 1 recovers the Gauss-Seidel
method.

Symmetric Successive Over-Relaxation. The Symmetric SOR method, abbre-
viated SSOR, is a two-step SOR procedure where we in the first step apply
a standard SOR sweep, whereas we in the second SOR step run through the
unknowns in reversed order (backward sweep). The matrix M is now given

C.1. Classical Iterative Methods 793

by

M =
1

2− ω

(
1

ω
D + L

)(
1

ω
D

)−1(
1

ω
D + U

)
. (C.19)

In the algorithm we need to solve a linear system with M as coefficient
matrix. This is efficiently done since the above M is written on a factorized
form. The solution can hence be performed in three steps, involving two
triangular coefficient matrices and one diagonal matrix. As for SOR, ω ∈
(0, 2) is necessary for convergence, but SSOR is less sensitive than SOR to
the value of ω. To formulate an SSOR method for our Poisson equation
problem, we make explicit use of the ideas behind the algorithm, namely a
forward and backward SOR sweep. We first execute

uk,∗
i,j =

ω

4

(
uk,∗

i,j−1 + uk,∗
i−1,j + uk−1

i+1,j + uk−1
i,j+1 + h2fi,j

)
+ (1−ω)uk−1

i,j , (C.20)

for i, j = 2, . . . ,m− 1. The second step consists in running through the grid
points in reversed order,

uk
i,j =

ω

4

(
uk,∗

i,j−1 + uk,∗
i−1,j + uk

i+1,j + uk
i,j+1 + h2fi,j

)
+ (1− ω)uk,∗

i,j , (C.21)

for i, j = m − 1,m − 2, . . . , 2. Notice that uk,∗
i,j are the “old” values in step

two.

Line SOR Iteration. The methods considered so far update only one entry
at a time in the solution vector. The speed of such pointwise algorithms
can often be improved by finding new values for a subset of the unknowns
simultaneously. For example, in our Poisson equation problem we could find
new values of uk

i,j simultaneously along a line. The SOR algorithm could then
be formulated as

− u∗i−1,j + 4u∗i,j − u∗i+1,j = uk
i,j−1 + uk−1

i,j+1 + h2fi,j , (C.22)

uk
i,j = ωu∗i,j + (1− ω)uk−1

i,j . (C.23)

For a fixed j, (C.22) is a tridiagonal system coupling u values along a line
j = const. We can solve for these values simultaneously and then continue
with the line j + 1. The algorithm is naturally called line SOR iteration.
Instead of working with lines, we could solve simultaneously for an arbitrary
local block of unknowns. This general approach is referred to as block SOR
iteration. The ideas of lines and blocks apply of course to Jacobi and Gauss-
Seidel iteration as well.

The solution of a stationary PDE (like the Poisson equation) at a point
is dependent on all the boundary data. Therefore, we cannot expect an it-
erative method to converge properly before the boundary conditions have
influenced sufficiently large portions of the domain. The information in the
pointwise versions of the classical iterative methods is transported one grid

794 C. Iterative Methods for Sparse Linear Systems

point per iteration, whereas line or block versions transmit the information
along a line or throughout a block per iterative step. This gives a degree of
implicitness in the iteration methods that we expect to be reflected in an
increased convergence rate. The figures in the next section demonstrate this
feature.

Exercise C.1. .
Implement the line SOR method in the program from Example C.1. �

Convergence Rates for the Poisson Problem. Bruaset [17] presents some es-
timates of R∞(G) when solving the 2D Poisson equation −∇2u = f by a
standard centered finite difference method on a uniform grid over the unit
square, with u = 0 on the boundary. For the point Jacobi, Gauss-Seidel,
SOR, and SSOR methods we have the asymptotic estimates:

rate Jacobi Gauss-Seidel SOR SSOR

R∞(G) π2h2/2 π2h2 2πh > πh

The estimates for the SOR and SSOR methods are based on using a theo-
retically known optimal value of the relaxation parameter ω for the present
model problem.

Similar convergence results for the line versions of the classical iterative
methods are given in the next table.

rate Jacobi Gauss-Seidel SOR SSOR

R∞(G) π2h2 2π2h2 2
√

2πh ≥
√

2πh

Recalling that 1/R∞(G) is proportional to the expected number of iterations
needed to reach a prescribed reduction of the initial error, we see that Gauss-
Seidel is twice as fast as Jacobi, and that SOR and SSOR are significantly
superior to the former two on fine grids (h vs. h2). The line versions are about
twice as fast as the corresponding point versions.

From the results above it is clear that Jacobi iteration is a slow method.
However, because of its explicit updating nature, this type of iterative ap-
proach, either used as a stand-alone solver, as a preconditioner, or as a
smoother in multigrid, has been popular on vector and parallel machines,
where more sophisticated methods may have difficulties in exploiting the
hardware features.

C.2. Conjugate Gradient-Like Iterative Methods 795

C.2 Conjugate Gradient-Like Iterative Methods

A successful family of methods, usually referred to as Conjugate Gradient-like
algorithms, can be viewed as Galerkin or least-squares methods applied to a
linear system Ax = b. This view is different from the standard approaches
to deriving the classical Conjugate Gradient method in the literature. Nev-
ertheless, the Galerkin or least-squares framework makes it possible to reuse
the principal numerical ideas from Chapter 2.1 and the analysis from Chap-
ter 2.10 when solving linear systems approximately. We believe that this view
may increase the general understanding of variational methods and their ap-
plicability.

Our exposition focuses on the basic reasoning behind the methods, and
a natural continuation of the material here is provided by two review texts;
Bruaset [17] gives an accessible theoretical overview of a wide range of Conju-
gate Gradient-like methods, whereas Barrett et al. [9] present a collection of
computational algorithms and give valuable information about the practical
use of the methods. Every Diffpack practitioner who needs to access library
modules for iterative solution of linear systems should spend some time on
these two references. For further study of iterative solvers we refer the reader
to the comprehensive books by Hackbusch [54] and Axelsson [7].

C.2.1 Galerkin and Least-Squares Methods

Given a linear system

Ax = b, x, b ∈ IRn, A ∈ IRn,n (C.24)

and a start vector x0, we want to construct an iterative solution method that
produces approximations x1,x2, . . ., which hopefully converge to the exact
solution x. In iteration no. k we seek an approximation

xk = xk−1 +

k∑

j=1

αjqj , (C.25)

where qj ∈ IRn are known vectors and αj are constants to be determined by
a Galerkin or least-squares method. The corresponding error in the equation
Ax = b, the residual, becomes

rk = b−Axk = rk−1 −
k∑

j=1

αjAqj .

The Galerkin Method. Galerkin’s method states that the inner product of
the residual and k independent weights qi vanish:

(rk, qi) = 0, i = 1, . . . , k . (C.26)

796 C. Iterative Methods for Sparse Linear Systems

Here (·, ·) is the standard Euclidean inner product on IRn. Inserting the ex-
pression for rk in (C.26) gives a linear system for αj :

k∑

j=1

(Aqi, qj)αj = (rk−1, qi), i = 1, . . . , k . (C.27)

The Least-Squares Method. The idea of the least-squares method is to mini-
mize the square of the norm of the residual with respect to the free parameters
α1, . . . , αk. That is, we minimize (rk, rk):

∂

∂αi
(rk, rk) = 2(

∂rk

∂αi
, rk) = 0, i = 1, . . . , k .

Since ∂rk/∂αi = −Aqi, this approach leads to the following linear system:

k∑

j=1

(Aqi,Aqj)αj = (rk−1,Aqi), i = 1, . . . , k . (C.28)

Equation (C.28) can be viewed as a weighted residual method with weights
Aqi, also called a Petrov-Galerkin method.

A More Abstract Formulation. The presentation of the Galerkin and least-
squares methods above follow closely the reasoning in Chapter 2. We can also
view these methods in a more abstract framework as we did in Chapter 2.10.1.
Let

B = {q1, . . . , qk}
be a basis for the k-dimensional vector space Vk ⊂ IRn. The methods can
then be formulated as: Find xk − xk−1 ∈ Vk such that

(rk,v) = 0, ∀v ∈ Vk (Galerkin)

(rk,Av) = 0, ∀v ∈ Vk (least-squares)

Provided that the solutions of the resulting linear systems exist and are
unique, we have found a new approximation xk to x. When k = n, the
only solution to the equations above is rn = 0. This means that the exact
solution is found in at most n iterations, neglecting effects of round-off errors.

The Galerkin condition can alternatively be written as

a(xk,v) = L(v), ∀v ∈ Vk,

with a(u,v) = (Au,v) and L(v) = (b,v). The analogy with the abstract
formulation of the finite element method in Chapter 2.10.1 is hence clearly
demonstrated.

C.2. Conjugate Gradient-Like Iterative Methods 797

Krylov Subspaces. To obtain a complete algorithm, we need to establish a
rule to update the basis B for the next iteration. That is, we need to compute
a new basis vector qk+1 ∈ Vk+1 such that

B = {q1, . . . , qk+1} (C.29)

is a basis for the space Vk+1 that is used in the next iteration. The present
family of methods applies the Krylov subspace

Vk = span
{

r0,Ar0,A2r0, . . .Ak−1r0
}
. (C.30)

Some frequent names of the associated iterative methods are therefore Krylov
subspace iteration, Krylov projection methods, or simply Krylov methods.

Computation of the Basis Vectors. Two possible formulas for updating qk+1,
such that qk+1 ∈ Vk+1, are

qk+1 = rk +

k∑

j=1

βjqk, (C.31)

qk+1 = Ark +

k∑

j=1

βjqk, (C.32)

where the free parameters βj can be used to enforce desirable orthogonality
properties of q1, . . . , qk+1. For example, it is convenient to require that the
coefficient matrices in the linear systems for α1, . . . , αk are diagonal. Oth-
erwise, we must solve a k × k linear system in each iteration. If k should
approach n, the systems for the coefficients αi are of the same size as our
original system Ax = b! A diagonal matrix ensures an efficient closed form
solution for α1, . . . , αk. To obtain a diagonal coefficient matrix, we require in
Galerkin’s method that

(Aqi, qj) = 0 when i 6= j,

whereas we in the least-squares method require

(Aqi,Aqj) = 0 when i 6= j .

We can define the inner product

〈u,v〉 ≡ (Au,v) = uT Av, (C.33)

provided A is symmetric and positive definite. Another useful inner product
is

[u,v] ≡ (Au,Av) = uT AT Av . (C.34)

These inner products will be referred to as the A product, with the associated
A norm, and the AT A product, with the associated AT A norm.

798 C. Iterative Methods for Sparse Linear Systems

The orthogonality condition on the qi vectors are then 〈qk+1, qi〉 = 0 in
the Galerkin method and [qk+1, qi] = 0 in the least-squares method, where
i runs from 1 to k. A standard Gram-Schmidt process can be used for con-
structing qk+1 orthogonal to q1, . . . , qk. This leads to the determination of
the β1, . . . , βk constants as

βi =
〈rk, qi〉
〈qi, qi〉

(Galerkin) (C.35)

βi =
[rk, qi]

[qi, qi]
(least squares) (C.36)

for i = 1, . . . , k.

Computation of a New Solution Vector. The orthogonality condition on the
basis vectors qi leads to the following solution for α1, . . . , αk:

αi =
(rk−1, qi)

〈qi, qi〉
(Galerkin) (C.37)

αi =
(rk−1,Aqi)

[qi, qi]
(least squares) (C.38)

In iteration k − 1, (rk−1, qi) = 0 and (rk−1,Aqi) = 0, for i = 1, . . . , k − 1,
in the Galerkin and least-squares case, respectively. Hence, αi = 0, for i =
1, . . . , k − 1. In other words,

xk = xk−1 + αkqk .

C.2. Conjugate Gradient-Like Iterative Methods 799

When A is symmetric and positive definite, one can show that also βi = 0,
for i = 1, . . . , k − 1, in both the Galerkin and least-squares methods [17].
This means that xk and qk+1 can be updated using only qk and not the
previous q1, . . . , qk−1 vectors. This property has of course dramatic effects
on the storage requirements of the algorithms as the number of iterations
increases.

For the suggested algorithms to work, we must require that the denom-
inators in (C.37) and (C.38) do not vanish. This is always fulfilled for the
least-squares method, while a (positive or negative) definite matrix A avoids
break-down of the Galerkin-based iteration (provided qi 6= 0).

The Galerkin solution method for linear systems was originally devised as
a direct method in the 1950s. After n iterations the exact solution is found in
exact arithmetic, but at a higher cost compared with Gaussian elimination.
Naturally, the method did not receive significant popularity before researchers
discovered (in the beginning of the 1970s) that the method could produce a
good approximation to x for k � n iterations.

Finally, we mention how to terminate the iteration. The simplest criterion
is ||rk|| ≤ εr, where εr is a small prescribed quantity. Sometimes it is appro-
priate to use a relative residual, ||rk||/||r0|| ≤ εr. Termination criteria for
Conjugate Gradient-like methods is a subject on its own [17], and Diffpack
offers a framework for monitoring convergence and combining termination
criteria. Appendix D.6 deals with the details of this topic.

C.2.2 Summary of the Algorithms

Summary of the Least-Squares Method. In Algorithm C.1 we have summa-
rized the computational steps in the least-squares method. Notice that we
update the residual recursively instead of using rk = b−Axk in each itera-
tion since we then avoid a possibly expensive matrix-vector product.

800 C. Iterative Methods for Sparse Linear Systems

Algorithm C.1.

Least-squares Krylov iteration.

given a start vector x0,
compute r0 = b−Ax0 and set q1 = r0.
for k = 1, 2, . . . until termination criteria are fulfilled:

αk = (rk−1,Aqk)/[qk, qk]
xk = xk−1 + αkqk

rk = rk−1 − αkAqk

if A is symmetric then
βk = [rk, qk]/[qk, qk]
qk+1 = rk − βkqk

else
βj = [rk, qj]/[qj , qj], j = 1, . . . , k

qk+1 = rk −∑k
j=1 βjqj

Exercise C.2. .
Write the previous algorithm on implementational form, ready for cod-

ing. Store the Aqj vectors for computational efficiency, but otherwise try to
minimize the storage requirements. �

Remark. The previous algorithm is just a summary of the steps in the deriva-
tion of the least-squares method and should not be directly used for practical
computations without further developments.

Truncation and Restart. When A is nonsymmetric, the storage requirements
of q1, . . . , qk may be prohibitively large. It has become a standard trick to
either truncate or restart the algorithm. In the latter case one restarts the
algorithm every Kth step, i.e., one aborts the iteration and starts the al-
gorithm again with x0 = xK . The other alternative is to truncate the sum∑k

j=1 βjqj and use only the last K vectors:

xk = xk−1 +

k∑

j=k−K+1

βjqj .

Both the restarted and truncated version of the algorithm require storage of
only K basis vectors qk−K+1, . . . , qk. The basis vectors are also often called
search direction vectors, and this name is used in Diffpack. The truncated
version of the least-squares method in Algorithm C.1 is widely known as Or-
thomin, often written as Orthomin(K) to explicitly indicate the number of
search direction vectors. In the literature one encounters the name General-
ized Conjugate Residual method, abbreviated CGR, for the restarted version
of Orthomin. When A is symmetric, the method is known under the name
Conjugate Residuals.

C.2. Conjugate Gradient-Like Iterative Methods 801

One can devise very efficient implementational forms of the truncated
and restarted Orthomin algorithm. We refer to [70] for the details of such an
algorithm.

Summary of the Galerkin Method. In case of Galerkin’s method, we assume
that A is symmetric and positive definite. The resulting computational pro-
cedure is the famous Conjugate Gradient method, listed in Algorithm C.2.
Since A must be symmetric, the recursive update of qk+1 needs only one
previous search direction vector qk, that is, βj = 0 for j < k.

Algorithm C.2.

Galerkin Krylov iteration (Conjugate Gradient method).

given a start vector x0,
compute r0 = b−Ax0 and set q1 = r0.
for k = 1, 2, . . . until termination criteria are fulfilled:

αk = (rk−1, qk)/〈qk, qk〉
xk = xk−1 + αkqk

rk = rk−1 − αkAqk

βk = 〈rk, qk〉/〈qk, qk〉
qk+1 = rk − βkqk

The previous remark that the listed algorithm is just a summary of the
steps in the solution procedure, and not an efficient algorithm that should be
implemented in its present form, must be repeated here. An efficient Conju-
gate Gradient algorithm suitable for implementation is given in [9, Ch. 2.3].

Looking at Algorithms C.1 and C.2, one can notice that the matrix A

is only used in matrix-vector products. This means that it is sufficient to
store only the nonzero entries of A. The rest of the algorithms consists of
vector operations of the type y ← ax + y, the slightly more general variant
q ← ax + y, as well as inner products.

C.2.3 A Framework Based on the Error

Let us define the error ek = x−xk. Multiplying this equation by A leads to
the well-known relation between the error and the residual for linear systems:

Aek = rk . (C.39)

Using rk = Aek we can reformulate the Galerkin and least-squares methods
in terms of the error. The Galerkin method can then be written

(rk, qi) = (Aek, qi) = 〈ek, qi〉 = 0, i = 1, . . . , k . (C.40)

802 C. Iterative Methods for Sparse Linear Systems

For the least-squares method we obtain

(rk,Aqi) = [ek, qi] = 0, i = 1, . . . , k . (C.41)

This means that

〈ek,v〉 = 0 ∀v ∈ Vk (Galerkin)

[ek,v] = 0 ∀v ∈ Vk (least-squares)

In other words, the error is A-orthogonal to the space Vk in the Galerkin
method, whereas the error is AT A-orthogonal to Vk in the least-squares
method. This formulation of the Galerkin principle should be compared with
similar statements in the finite element method, see the proof of Theorem 2.13
in Chapter 2.10.2.

We can unify these results by introducing the inner product (u,v)B ≡
(Bu,v), provided B is symmetric and positive definite. The associated norm

reads ||v||B = (v,v)
1
2

B
. Given a linear space Vk with basis (C.29), xk =

xk−1 +
∑

j αjqj can be determined such that

(ek,v)B = 0 ∀v ∈ Vk . (C.42)

When the error is orthogonal to a space Vk, the approximate solution xk

is then the best approximation to x among all vectors in Vk . A proof of
this well-known result was given on page 243. In the present context, where
that proof must be slightly modified for an x0 6= 0, we can state the best
approximation principle more precisely as [17]

||x− xk||B ≤ ||x− (x0 + v)||B ∀v ∈ Vk . (C.43)

One can also show that the error is nonincreasing: ||ek||B ≤ ||ek−1||B , which
is an attractive property. The reader should notify the similarities between
the results here and those for the finite element method in Chapter 2.10.

Exercise C.3. .
Let (C.42) be the principle for determining α1, . . . , αk in an expansion

(C.25). The updating formula for qk+1, like (C.31) and (C.32), can be written

more generally as qk+1 = zk +
∑k

j=1 βjqk, where different choices of zk

yield different methods. Derive the corresponding generalized algorithm and
present it on the same form as Algorithms C.1 or C.2. �

Choosing B = A when A is symmetric and positive definite gives the
Conjugate Gradient method, which then minimizes the error in the A norm.
With B = AT A we recover the least-squares method. Many other choices
of B are possible, also when (·, ·)B is no longer a proper inner product. If

BA = AT B, the recurrence is short, and there is no need to store all the
basis vectors qi (cf. Algorithm C.1 in the case A is symmetric). We refer

C.3. Preconditioning 803

to Bruaset [17] for a framework covering numerous Conjugate Gradient-like
methods based on (C.42).

Several Conjugate Gradient-like methods have been developed during the
last two decades, and some of the most popular methods do not fit di-
rectly into the framework presented here. The theoretical similarities between
the methods are covered in [17], whereas we refer to [9] for algorithms and
practical comments related to widespread methods, such as the SYMMLQ
method (for symmetric indefinite systems), the Generalized Minimal Residual
(GMRES) method, the BiConjugate Gradient (BiCG) method, the Quasi-
Minimal Residual (QMR) method, and the BiConjugate Gradient Stabilized
(BiCGStab) method. When A is symmetric and positive definite, the Con-
jugate Gradient method is the optimal choice with respect to computational
efficiency, but when A is nonsymmetric, the performance of the methods is
strongly problem dependent. Diffpack offers all the aforementioned iterative
procedures.

C.3 Preconditioning

C.3.1 Motivation and Basic Principles

The Conjugate Gradient method has been subject to extensive analysis, and
its convergence properties are well understood. To reduce the initial error
e0 = x − x0 with a factor 0 < ε � 1 after k iterations, or more precisely,
||ek||A ≤ ε||e0||A, it can be shown that k is bounded by

1

2
ln

2

ε

√
κ,

where κ is the ratio of the largest and smallest eigenvalue of A. The quantity
κ is commonly referred to as the spectral condition number2 of A. Actually,
the number of iterations for the Conjugate Gradient method to meet a certain
termination criterion is influenced by the complete distribution of eigenvalues
of A.

Common finite element and finite difference discretizations of Poisson-
like PDEs lead to κ ∼ h−2, where h denotes the mesh size. This implies
that the Conjugate Gradient method converges slowly in PDE problems with
fine grids, as the number of iterations is proportional to h−1. However, the
performance is better than for the Jacobi and Gauss-Seidel methods, which
in our example from page 794 required O(h−2) iterations. Although SOR
and SSOR have the same asymptotic behavior as the Conjugate Gradient
method, the latter does not need estimation of any parameters, such as ω in
SOR and SSOR. The number of unknowns in a hypercube domain in IRd is

2 The spectral condition number is defined as the ratio of the magnitudes of the
largest and the smallest eigenvalue of A [114, Ch. 2].

804 C. Iterative Methods for Sparse Linear Systems

approximately n = (1/h)d implying that
√
κ and thereby number of iterations

goes like n1/d.
To speed up the Conjugate Gradient method, we should manipulate the

eigenvalue distribution. For instance, we could reduce the condition number
κ. This can be achieved by so-called preconditioning. Instead of applying the
iterative method to the system Ax = b, we multiply by a matrix M−1 and
apply the iterative method to the mathematically equivalent system

M−1Ax = M−1b . (C.44)

The aim now is to construct a nonsingular preconditioning matrix M such
that M−1A has a more favorable condition number than A.

For increased flexibility we can write M−1 = CLCR and transform the
system according to

CLACRy = CLb, y = C−1
R x, (C.45)

where CL is the left and CR is the right preconditioner. If the original co-
efficient matrix A is symmetric and positive definite, CL = CT

R leads to
preservation of these properties in the transformed system. This is important
when applying the Conjugate Gradient method to the preconditioned linear
system3. It appears that for practical purposes one can express the iterative
algorithms such that it is sufficient to work with a single preconditioning
matrix M only [9,17]. We shall therefore speak of preconditioning in terms
of the left preconditioner M in the following.

Optimal convergence rate for the Conjugate Gradient method is achieved
when the coefficient matrix M−1A equals the identity matrix I . In the algo-
rithm we need to perform matrix-vector products M−1Au for an arbitrary
u ∈ IRn. This means that we have to solve a linear system with M as coeffi-
cient matrix in each iteration since we implement the product y = M−1Au

in a two step fashion: First we compute v = Au and then we solve the lin-
ear system My = v for y. The optimal choice M = A therefore involves
the solution of Ay = v in each iteration, which is a problem of the same
complexity as our original system Ax = b. The strategy must hence be to
compute an M ≈ A such that the algorithmic operations involving M are
cheap.

The preceding discussion motivates the following demands on the precon-
ditioning matrix M :

1. M should be a good approximation to A,

2. M should be inexpensive to compute,

3. M should be sparse in order to minimize storage requirements, and

4. linear systems with M as coefficient matrix must be efficiently solved.

3 Even if A and M are symmetric and positive definite, M−1A does not necessarily
inherit these properties.

C.3. Preconditioning 805

Regarding the last property, such systems must be solved in O(n) operations,
that is, a complexity of the same order as the vector updates in the Conjugate
Gradient-like algorithms. These four properties are contradictory and some
sort of compromise must be sought.

C.3.2 Classical Iterative Methods as Preconditioners

Consider the basic iterative method (C.4),

xk = xk−1 + rk−1 .

Applying this method to the preconditioned system M−1Ax = M−1b re-
sults in the scheme

xk = xk−1 + M−1rk−1,

which is nothing but a classical iterative method, cf. (C.2). This motivates
for choosing M from the matrix splittings in Appendix C.1 and thereby
defining a class of preconditioners for Conjugate Gradient-like methods. To
be specific, the appropriate choices of the preconditioning matrix M are as
follows.

– Jacobi preconditioning: M = D.

– Gauss-Seidel preconditioning: M = D + L.

– SOR preconditioning: M = ω−1D + L.

– SSOR preconditioning:

M = (2− ω)−1
(
ω−1D + L

) (
ω−1D

)−1 (
ω−1D + U

)
.

Line and block versions of the classical schemes can also be used as precon-
ditioners.

Turning our attention to the four requirements of the preconditioning
matrix, we realize that the suggested M matrices do not demand additional
storage, linear systems with M as coefficient matrix are solved effectively in
O(n) operations, and M needs no initial computation. The only questionable
property is how well M approximates A, and that is the weak point of using
classical iterative methods as preconditioners.

The implementation of the given choices for M is very simple; solving lin-
ear systems My = v is accomplished by performing exactly one iteration of
a classical iterative method. The Conjugate Gradient method can only utilize
the Jacobi and SSOR preconditioners among the classical iterative methods,
because the M matrix in that case is on the form M−1 = CLCT

L, which is
necessary to ensure that the coefficient matrix of the preconditioned system
is symmetric and positive. For certain PDEs, like the Poisson equation, it can
be shown that the SSOR preconditioner reduces the condition number with
an order of magnitude, i.e., from O(h−2) to O(h−1), provided we use the

806 C. Iterative Methods for Sparse Linear Systems

optimal choice of the relaxation parameter ω. The performance of the SSOR
preconditioned Conjugate Gradient method is not very sensitive to the choice
of ω, and for PDEs with second-order spatial derivatives a reasonably optimal
choice is ω = 2/(1 + ch), where c is a positive constant.

We refer to [9,17] for more information about classical iterative methods
as preconditioners.

C.3.3 Incomplete Factorization Preconditioners

Imagine that we choose M = A and solve systems My = v by a direct
method. Such methods typically first compute the LU factorization M = L̄Ū

and thereafter perform two triangular solves. The lower and upper triangu-
lar factors L̄ and Ū are computed from a Gaussian elimination procedure.
Unfortunately, L̄ and Ū contain nonzero values, so-called fill-in, in many lo-
cations where the original matrix A contains zeroes. This decreased sparsity
of L̄ and Ū increases both the storage requirements and the computational
efforts related to solving systems My = v. An idea to improve the situa-
tion is to compute sparse versions of the factors L̄ and Ū . This is achieved
by performing Gaussian elimination, but neglecting the fill-in. In this way
we can compute approximate factors L̂ and Û that become as sparse as A.
The storage requirements are hence only doubled by introducing a precondi-
tioner, and the triangular solves become an O(n) operation since the number

of nonzeroes in the L̂ and Û matrices (and A) is O(n) when the underly-
ing PDE is discretized by finite difference or finite element methods. We call
M = L̂Û an Incomplete LU Factorization preconditioner, often just referred
to as the ILU preconditioner.

Instead of throwing away all fill-in entries, we can add them to the main
diagonal. This yields the Modified Incomplete LU Factorization method, com-
monly known as the MILU preconditioner. If the fill-in to be added on the
main diagonal is multiplied by a factor ω ∈ [0, 1], we get the Relaxed Incom-
plete LU Factorization preconditioner, with the acronym RILU. MILU and
ILU preconditioning are recovered with ω = 1 and ω = 0, respectively.

For certain second-order PDEs with associated symmetric positive defi-
nite coefficient matrix, it can be proven that the MILU preconditioner reduces
the condition number from O(h−2) to O(h−1). This property is also present
in numerical experiments going beyond the limits of existing convergence
theory. When using ILU or RILU factorization (with ω < 1), the condition
number remains of order O(h−2), but the convergence rate is far better than
for the simple Jacobi preconditioner. Some work has been done on estimating
the optimal relaxation parameter ω in model problems. For the 2D Poisson
equation with u = 0 on the boundary, the optimal ω is 1 − δh, where h is
the mesh size and δ is independent of h. It appears that ω = 1 can often give
a dramatic increase in the number of iterations in the Conjugate Gradient
method, compared with using an ω slightly smaller than unity. The value
ω = 0.95 could be regarded as a reasonable all-round choice. However, in a

C.3. Preconditioning 807

particular problem one should run some multiple loops in Diffpack to deter-
mine a suitable choice of ω and other parameters influencing the efficiency of
iterative solvers.

The general algorithm for RILU preconditioning follows the steps of tra-
ditional exact Gaussian elimination, except that we restrict the computations
to the nonzero entries in A. The factors L̂ and Û can be stored directly in
the sparsity structure of A; that is, the algorithm overwrites a copy M of A

with its RILU factorization. The steps in the RILU factorizations are listed
in Algorithm C.3.

We also remark here that Algorithm C.3 needs careful refinement before
it should be implemented in a code. For example, one will not run through
a series of (i, j) indices and test for each of them if (i, j) ∈ I. Instead one
should run more directly through the sparsity structure of A. See [69] for an
ILU/MILU algorithm on implementational form.

The RILU methodology can be extended in various ways. For example,
one can allow a certain level of fill-in in the sparse factors. This will improve
the quality of M , but also increase the storage and the work associated with
solving systems My = v. Block-oriented versions of the pointwise RILU
algorithm above have proven to be effective. We refer to [9,17] for an overview
of various incomplete factorization techniques. A comprehensive treatment of
incomplete factorization preconditioners is found in the text by Axelsson [7].

When solving systems of PDEs it may be advantageous to write the matrix
system in block form and utilize block preconditioners. This topic is treated
in [95] along with associated Diffpack tools.

808 C. Iterative Methods for Sparse Linear Systems

Algorithm C.3.

Incomplete LU factorization.

given a sparsity pattern as an index set I
copy Mi,j ← Ai,j , i, j = 1, . . . , n
for k = 1, 2, . . . , n

for i = k + 1, . . . , n
if (i, k) ∈ I then

Mi,k ←Mi,k/Mk,k

else
Mi,k = 0

r = Mi,k

for j = k + 1, . . . , n
if j = i then

Mi,j ←Mi,j − rMk,j + ω
∑n

p=k+1 (Mi,p − rMk,p)

else
if (i, j) ∈ I then

Mi,j ←Mi,j − rMk,j

else
Mi,j = 0

C.4 Multigrid and Domain Decomposition Methods

The classical iterative methods and the Conjugate Gradient-like procedures
we have sketched so far are general algorithms that have proven to be suc-
cessful in a wide range of problems. A particularly attractive feature is the
simplicity of these algorithms. However, the methods are not optimal in the
sense that they can solve a linear system with n unknowns inO(n) operations.
The MILU preconditioned Conjugate Gradient method typically demands
O(n1+1/2d) operations, which means O(n1.17) in a 3D problem. RILU pre-
conditioning in general leads to O(n1.33) operations in 3D. This unfavorable
asymptotic behavior has motivated the research for optimal algorithms.

Two classes of optimal iterative strategies that can solve a system with n
unknowns in O(n) operations, are the multigrid and domain decomposition
methods. These methods are more complicated to formulate and analyze,
and the associated algorithms are problem dependent, both with respect to
the algorithmic details and the performance. On parallel computers, however,
multigrid and domain decomposition algorithms are much easier to deal with
than RILU-like preconditioned iterative methods [24].

The book by Smith et al. [128] gives a comprehensive introduction to the
algorithms and analysis of domain decomposition and multigrid methods and
their applications to several types of stationary PDEs. Shorter introductions
to domain decomposition are provided in [27] and [24]. The latter reference

C.4. Multigrid and Domain Decomposition Methods 809

addresses parallel computing with domain decomposition and implementa-
tion in particular. Good multigrid tutorials have been written by Briggs [15]
and Wesseling [148], Hackbusch [53] provides a more theoretical exposition.
Other recommended multigrid books are those of Bramble [13] and Rüede
[122]. Flexible programming with multigrid methods in Diffpack simulators
is treated in [96]. Our very brief introduction to the subject in the present
section is meant as an appetizer for further reading.

C.4.1 Domain Decomposition

We consider again our model problem −∇2u = f in Ω ∈ IRd with u = g
on the boundary ∂Ω. As the name implies, domain decomposition methods
consists in decomposing the domain Ω into subdomains Ωs, s = 1, . . . , D.
The basic idea is then to solve the PDE in each subdomain rather than in
the complete Ω. A fundamental problem is to assign appropriate bound-
ary conditions on the inner nonphysical boundaries. The classical alternating
Schwarz method accomplishes this problem through an iterative procedure.
The subdomains must in this case be overlapping. Let uk

s be the solution on
Ωs after k iterations. Given an initial guess u0

s, we solve for s = 1, . . . , D the
PDE −∇2uk

s = f on Ωs using uk
s = g on physical boundaries. On the inner

boundaries of Ωs we apply Dirichlet conditions with values taken from the
most recently computed solutions in the overlapping neighboring subdomains.
These values are of course not correct, but by repeating the procedure we can
hope for convergence towards the solution u. This can indeed be proved for
the present model problem.

The Schwarz method can be viewed as a kind of block Gauss-Seidel
method, where each block corresponds to a subdomain. If we only use Dirich-
let values on inner boundaries from the previous iteration step, a block Jacobi-
like procedure is obtained. All the subproblems in an iteration step can now
be solved in parallel. This is a very attractive feature of the domain decom-
position approach and forms the background for many parallel PDE solvers.
Parallel computing with Diffpack is also founded on such domain decompo-
sition strategies [18]. The subdomain solvers can be iterative or direct and
perhaps based on different discretization techniques. The approach can also
be extended to letting the physical model, i.e. the PDEs, vary among the
subdomains.

Although domain decomposition can be used as an efficient stand-alone
solver, the Schwarz method is frequently applied as preconditioner for a
Krylov subspace iteration method. There is only need for an approximate
solve on each subdomain in this case. A popular class of domain decomposition-
based preconditioners employs non-overlapping grids. We refer to [9] for a
quick overview of domain decomposition preconditioners and to [128] for a
thorough explanation of the ideas and the associated computational algo-
rithms.

810 C. Iterative Methods for Sparse Linear Systems

The primitive alternating Schwarz method, as explained above, exhibits
rather slow convergence unless it is combined with a so-called coarse grid cor-
rection. This means that we also solve the PDE on the complete Ω in each
iteration, using a coarse grid. The coarse grid solution over Ω is then com-
bined with the fine grid subdomain solutions. Such combination of different
levels of discretizations is the key point in multigrid methods.

C.4.2 Multigrid Methods

In Example C.1 we developed a demo program for the 2D Poisson equation,
where the linear system arising from a finite difference discretization is solved
by Gauss-Seidel iteration. The animation of the error as the iteration index
k grows, shows that the error is efficiently smoothed and damped during the
first iterations, but then further reduction of the error slows down. Consider-
ing a one-dimensional equation for simplicity, −u′′ = f , we can easily write
down the Gauss-Seidel iteration in terms of quantities u`

j , where j = 1, . . . ,m
is the spatial grid index and ` represents the iteration number:

2u`
j = u`

j−1 + u`−1
j+1 + h2fj .

The error e`
i = u`

i − u∞i satisfies the homogeneous version of the difference
equation:

2e`
j = e`

j−1 + e`−1
j+1 . (C.46)

As explained in Appendix A.4.4, we may anticipate that the solution of (C.46)
can be written as a sum of wave components:

e`
j =

∑

k

Ak exp (i(kjh− ω̃`∆t)) .

An alternative form, which simplifies the expressions a bit, reads

e`
j =

∑

k

Akξ
` exp (ikjh), ξ = exp (−iω̃∆t) .

Inserting a wave component in the Gauss-Seidel scheme results in

ξ = exp (−iω̃∆t) =
exp (ikh)

2− exp (−ikh) . (C.47)

The reduction in amplitude due to one iteration is represented by the fac-
tor ξ, because e`

j = ξe`−1
j . The absolute value of this damping factor, here

named F (kh), follows from (C.47): F (kh) = (5 − 4 cos kh)−1/2. In the grid
we can represent waves with wave length λ→∞ (a constant) down to waves
with wave length λ = 2h. The corresponding range of k becomes (0, π/h].
Figure C.2 shows a graph of F (p), p = kh ∈ [0, π]. As we see, only the short-
est waves are significantly damped. This means that if the error is rough,

C.4. Multigrid and Domain Decomposition Methods 811

i.e., wave components with short wave length have significant amplitude, the
Gauss-Seidel iteration will quickly damp these components out, and the error
becomes smooth relative to the grid. The convergence is then slow because
the wave components with longer wave length are only slightly damped from
iteration to iteration.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3
p

Fig.C.2. Damping factor F (p) of the error in one Gauss-Seidel iteration for
the equation −u′′ = f , where p = kh (λ = 2π/k being the wave length and
h being the grid cell size).

The basic observation in this analysis is that F (p) decreases as p = kh
increases. Hence, if the error is dominated by wave components whose p
values are too small for efficient damping, we can increase h. That is, trans-
ferring the error to a coarser grid turns low-frequency wave components into
high-frequency wave components on the coarser grid. These high-frequency
components are efficiently damped by a few Gauss-Seidel iterations. We can
repeat this process, and when the grid is coarse enough, we can solve the
error equation exactly (e.g. by a direct method). The error must then be
transferred back to the original fine grid such that we can derive the so-
lution of the fine-grid problem. An iterative method that is used to damp
high-frequency components of the error on a grid is often called a smoother.
Instead of Gauss-Seidel iteration, one can use a relaxed version of Jacobi’s
method or incomplete factorization techniques as smoothers [148].

Exercise C.4. .

812 C. Iterative Methods for Sparse Linear Systems

Apply the relaxed Jacobi method from page 789 to the one-dimensional
error equation [δxδxe]j = 0 and analyze its damping properties. �

We now assume that we have a sequence of K grids, Gq , q = 1, . . . ,K,
where the cell size decreases with increasing q. That is, q = 1 corresponds
to the coarsest grid and q = K is the fine grid on which our PDE problem
of interest is posed. With each of these grids we associate a linear system
Aquq = bq , arising from discretization of the PDE on the grid Gq . Any vector
vq of grid point values can be transferred to grid Gq−1 by the restriction
operator Rq : vq−1 = Rqvq. The opposite action, i.e., transferring a vector vq

on Gq to vq+1 on a finer grid Gq+1, is obtained by the prolongation operator
P q : vq+1 = P qvq . We mention briefly how the restriction and prolongation
operators can be defined. Consider a one-dimensional problem and assume
that if Gq has grid size h; then Gq−1 has grid size 2h. Going from the fine
grid Gq to the coarse grid Gq−1 can be done by a local weighted average as
illustrated in Figure C.3a, whereas the prolongation step can make use of
standard linear interpolation (Figure C.3b).

On every grid we can define a smoother and introduce the notation
S(ũq,vq ,f q , νq, q) for running νq iterations of the smoother on the system
Aqxq = f

q , yielding the approximation vq to xq , with ũq as start vector for
the iterations.

In the multigrid method, we start with some guess ũq for the exact solu-
tion on some grid Gq and proceed with smoothing operations on successively
coarser grids until we reach the coarsest grid q = 1, where we solve the asso-
ciated linear system by a direct method (or a sufficiently accurate iterative
method). One can of course also use an iterative method at the coarsest level;
the point is to solve the linear system with sufficient accuracy. The method is
commonly expressed as a recursive procedure, as the one in Algorithm C.4.
The LMG(ũq ,vq ,f q , q) function in that algorithm has the arguments ũq for
the start vector for the current iteration, vq for the returned (improved) ap-
proximation, f

q for the right-hand side in the linear system, and q is the
grid-level number.

C.4. Multigrid and Domain Decomposition Methods 813

q-1

q

2 3 4 5

3 4 5 6 7 8 9

1

1 2

simple restriction

weighted restriction

fine grid function

(a)

q−1

q

2 3 4 5

3 4 5 6 7 8 9

1

1 2

interpolated fine grid function

coarse grid function

(b)

Fig.C.3. Example on (a) restriction and (b) prolongation on one-
dimensional grids, where the cell size ratio of Gq−1 and Gq equals two. The
weighted restriction sets a coarse grid value uj equal to 0.25uf

2j−1 + 0.5uf
2j +

0.25uf
2j+1, where superscript f denotes a fine grid value and j is a coarse

grid-point number in the figure. At the ends, the boundary conditions (here
zero) must be fulfilled.

814 C. Iterative Methods for Sparse Linear Systems

Algorithm C.4.

Multigrid method for linear systems.

routine LMG(ũq,vq ,f q , q)
if q = 1

solve Aqvq = f q sufficiently accurately
else

S(ũq ,vq,f q, νq , q)
rq = f q −Aqvq

f q−1 = Rqrq

ũq−1 = 0
for i = 1, . . . , γq

LMG(ũq−1,vq−1,f q−1, q − 1)
ũq−1 = vq−1

vq ← vq + P q−1vq−1

S(vq,vq ,f q , µq, q)

Let us write out Algorithm C.4 in detail for the case of two grids, i.e.,
K = 2. We start the algorithm by calling LMG(ũ2,u2, b, 2), where ũ2 is
an initial guess for the solution u2 of the discrete PDE problem on the fine
grid. The algorithm then runs a smoother for ν2 iterations and computes
the residual r2 = b − A2v2, where now v2 is the result after ν2 iterations
of the smoother. This is called pre-smoothing. We then restrict r2 to r1. In
a two-grid algorithm we branch into the q = 1 part of the LMG routine
in the next recursive call LMG(0,v1,f1, 1). The system A1v1 = r1 is then
solved for the error, represented by the symbol v1 on this grid level (notice
that we change the right-hand side from b on the finest level to the residual
rq on coarser levels. The solution of linear systems with a residual on the
right-hand side is then an error quantity, see (C.39)). In a two-grid algorithm
it does not make sense to perform the inner call to LMG more than once,
hence γk = 1. We then proceed with prolongating the error v1 to the fine
grid and add this error as a correction to the result v2 obtained after the
first smoothing process. Finally, we run the smoothing procedure µ2 times,
referred to as post-smoothing, to improve the v2 values.

The parameters νq , µq , and γq can be varied, yielding different versions
of the multigrid strategy. Figure C.4 illustrates how the algorithm visits the
various grid levels in the particular example of K = 4 and two choices of
γq : 1 and 2. This results in the well-known V- and W-cycles. The reader
is encouraged to work through the LMG algorithm in order to understand
Figure C.4. To solve a given system of linear equations by multigrid, one runs
a number of cycles, i.e., the LMG routine is embedded in a loop that runs
until a suitable termination criterion is fulfilled.

C.4. Multigrid and Domain Decomposition Methods 815

4

3

2

1

γ =1 γ

smoothing

coarse grid solve

q q q =2

Fig.C.4. The LMG algorithm and the sequence of smoothing and coarse
grids solves for the particular choice of K = 4; γq = 1 (V-cycle) and γq = 2
(W-cycle).

Multigrid can also be used as a preconditioner for Conjugate Gradient-
like methods. Solving the system My = w can then consist in running one
multigrid cycle on Ay = w.

The perhaps most attractive feature of multigrid is that one can prove for
many model problems that the complexity of the algorithm is O(n), where n
is the number of unknowns in the system [148]. Moreover, the LMG algorithm
can be slightly modified and then applied to nonlinear systems. We refer to
[148] for intuitive analysis and extension of the concepts.

Diffpack offers extensive support for multigrid calculations as described
in [96]. In Chapter 6.4 we present a simulator for incompressible viscous fluid
flow, where a special-purpose multigrid implementation is used for solving
a 3D Poisson equation problem that arises in a solution algorithm for the
Navier-Stokes equations.

Appendix D

Software Tools for Solving Linear

Systems

This appendix presents various functionality in Diffpack for storing and solv-
ing linear systems. The importance of such tools is explained in the intro-
duction to Appendix C. Appendix C also provides the necessary theoretical
background for reading the present appendix. We also assume that the reader
is familiar with the material in Chapter 1.

We start with describing various vector and matrix formats in Diffpack.
Several examples demonstrate how to load a finite difference scheme into the
matrix formats and how to create objects representing linear systems. We
then outline in Appendix D.2 the syntax for using banded Gaussian elimina-
tion or the Conjugate Gradient method to solve the linear system. How to
access basic iterative algorithms in general is treated in Appendices D.6–D.4,
whereas preconditioning tools constitute the topic of Appendix D.5. Termi-
nation criteria and convergence monitors are covered in Appendix D.6. The
final section D.7 combines various software tools discussed in this appendix
with finite difference solvers from Chapter 1 for solving a transient 2D diffu-
sion problem. This example is the major reference for programming implicit
finite difference solvers in Diffpack.

Most of the material in Appendices D.1–D.2 is not needed when building
finite element solvers, because the finite element toolbox in Diffpack offers
an easy-to-use high-level interface to the construction and solution of linear
systems. Nevertheless, Appendix D.2 contains many program examples which
can be valuable for novice Diffpack programmers in general.

D.1 Storing and Initializing Linear Systems

As pointed out in Chapter 1.6.3, there are a number of different vector and
matrix formats in Diffpack, see Figure 1.11. The reason for this diversity in
data types is that different combinations of problem classes and solution algo-
rithms lead to algebraic systems with different structural properties. Of par-
ticular importance is the sparsity structure of the coefficient matrix. Figure
D.1 illustrates some common sparsity structures arising from discretization
of partial differential equations. In this section we briefly review the available
storage formats for vectors and matrices, before showing how Diffpack com-
bines vector and matrix objects into a useful software abstraction for linear
systems.

818 D. Software Tools for Solving Linear Systems

Fig.D.1. Different matrix formats supported by Diffpack. Each dot repre-
sents a nonzero matrix entry.

D.1.1 Vector and Matrix Formats

Vector Formats. In the context of algebraic systems, Diffpack offers three
different data types representing vectors, Vec, ArrayGen, and ArrayGenSel.
These classes are derived from the abstract base class Vector. Thus, you can
allocate a Handle(Vector) variable in your program and at run time decide
whether this should refer to a Vec, an ArrayGen, or an ArrayGenSel object.

In Chapter 1.6.3 it was demonstrated that these vector classes are based
on lower-level array types like VecSimplest and VecSimple. While Vec offers
a standard vector representation as a collection of entries vi, i = 1, 2, . . . , n,
the classes ArrayGen and ArrayGenSel employ an index mapping that allows
multiple indices, typically in two and three dimensions. The latter option is
useful when the vector represents data sampled for the nodes in a box-shaped
grid. For instance, this situation occurs for finite difference problems posed
on rectangular domains.

For details of vector syntax we refer to the examples in Chapter 1.6.3 and
to the man pages for the different vector classes.

Matrix Formats. Let A be anm×nmatrix with entries ai,j for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n. If A is sparse, like the matrices shown in Figure D.1, it
is important to utilize the sparsity in the implementation of numerical algo-
rithms. This leads to the requirement of various matrix formats. The most
widely applicable formats are dense matrices, banded matrices, general sparse
matrices, structured sparse matrices, diagonal matrices, tridiagonal matrices,

D.1. Storing and Initializing Linear Systems 819

and matrices represented in terms of finite difference stencils. Diffpack offers
the mentioned matrix formats. Each format is represented by a class. On the
top of the matrix hierarchy we have the abstract class Matrix that offers a
unified interface to all matrix formats. In the subclasses, the natural sub-
script operator function, operator(), is used for efficient inline indexing of
the matrix entries. Inline in C++ means that the function body is copied di-
rectly into the calling code, thus avoiding overhead related to function calls.
The operator() function is optimized for each format, and its arguments de-
pend on the internal storage structure of the matrix entries. This ensures
user-friendly and highly efficient indexing syntax.

All matrix classes also offer a virtual function elm(i,j) for accessing entry
ai,j . Virtual functions cannot be inlined, because it is not known at compile
time which version of a virtual function that will actually be called at run
time. A common indexing function for all matrix formats, like our elm(i,j),
will always lead to a function call, which is much more costly than the simple
array look-up in the function body. A loop over the elements in a matrix, us-
ing elm(i,j) to access the entries, will therefore spend most of the CPU time
on calling the elm(i,j) function rather than processing the underlying array
structures. Nevertheless, there are situations where matrix-format indepen-
dent access to array entries is more important than computational efficiency,
and elm(i,j) can be useful in such circumstances. Notice that assignment to
elm(i,j) might not always be possible; in a sparse matrix only some of the
index pairs (i,j) exist.

From a practical programming point of view, it turns out that efficient ini-
tialization of the matrix entries should be done in a code segment where the
matrix storage structure is known and where efficient operator() functions
can be used. In the rest of the code, including linear solvers, finite element
assembly, etc., one can work with matrices through the generic Matrix inter-
face only. This hides all storage-specific details and makes programming with
matrices more compact, easier, and less error-prone.

Here is a short list of Diffpack’s matrix formats and their typical syntax
with respect to construction and entry assignment.

Class Mat: In dense m × n matrices1, the values ai,j are stored for i =
1, 2, . . . ,m and j = 1, 2, . . . , n, see Figure D.1a.

Example:

int m = 9; n = 6;

Mat(real) A(m,n);

A(3,4) = 3.14; // 3rd row, 4th column

A.elm(3,4) = 3.14; // 3rd row, 4th column

1 Alternatively, dense matrices can be handled as MatDense objects. The name
MatDense is a synonym for Mat.

820 D. Software Tools for Solving Linear Systems

Here, A(3,4) and A.elm(3,4) are identical functions, except that the latter
is virtual and hence less efficient in a loop construct since it cannot be
inlined.

Class MatBand: In banded n×nmatrices, the values ai,j are stored for indices
(i, j) satisfying the inequality |j − i| ≤ q for i, j = 1, 2, . . . , n. Here, q+ 1
is the half of the total bandwidth.

Example:

int n = 9, q = 3;

MatBand(real) A(n,n,q+1); // storing 2q+1 diags

A(3,4) = 3.14; // 3rd row, 4th diag from below

A.elm(3,4) = 3.14; // 3rd row, 4th column

A(i,j) employs indices that refer to the internal storage of a banded
matrix. The storage structure makes use of a rectangular array, such that
each diagonal is stored as a column. The transformation from a dense
matrix index pair (i, j) to the actual storage location in the rectangular
array is given by a function denseIndex2bandIndex.

Class MatDiag: In diagonal n×nmatrices, the values ai,j are stored for j = i,
i = 1, 2, . . . , n, see Figure D.1c.

Example:

int n = 9;

MatDiag(real) A(n,n);

A(3,3) = 3.14; // 3rd row, 3rd column

A.elm(3,3) = 3.14; // 3rd row, 3rd column

We remark that A(3,4) is an illegal (out of range) subscript, while s o <<

A.elm(3,4) is legal (a zero is printed), and A.elm(3,4)=3.14 results in an
error message. This natural behavior when indexing the matrix outside
its sparsity pattern is common to all matrix classes.

Class MatTri: In tridiagonal n × n matrices, the values ai,j are stored for
j = i− 1, i, i+ 1, i = 1, 2, . . . , n, see Figure D.1d.

Example:

int n = 9;

MatTri(real) A(n,n);

A(3,1) = 3.14; // 3rd row, superdiagonal

A.elm(3,4) = 3.14; // 3rd row, 4th column

A(3,0) denotes the main diagonal (3rd row), while A(3,-1) is the subdi-
agonal.

D.1. Storing and Initializing Linear Systems 821

Class MatStructSparse: In structured sparse n× n matrices, only the main
diagonal and the 2q sub- and super-diagonals are stored, see Figure D.1e.
The diagonals are numbered from 1 to 2q + 1, starting with the lower-
most subdiagonal. This numbering is used directly in efficient indexing
of MatStructSparse objects, as the example below demonstrates.

int n = 9; ndiag = 5; // 5 diagonals

// set the offset from the main diagonal for each diagonal:

VecSimple(int) offset(ndiag);

offset(1) = -q; offset(2) = -1; offset(3) = 0;

offset(5) = q; offset(4) = 1;

MatStructSparse(real) A(m,n,ndiag,offset);

A(3,1) = 1.14; // 3rd row, 1st diagonal

A(3,2) = 1.14; // 3rd row, 2nd diagonal

A(3,3) = 3.14; // 3rd row, 3rd diagonal (main diag)

A(3,4) = 2.14; // 3rd row, 4th diagonal

A(3,5) = 2.14; // 3rd row, 5th diagonal

A.elm(3,3+q) = 2.14; // 3rd row, column 3+q = 5th diag

If qk is the offset of diagonal k, then A(i,j) means ai,i+qj
. In the cur-

rent example, q5 is offset(5)=q, so the array entry A(3,5) corresponds
to a3,3+q . A more comprehensive and instructive example is given on
page 829.

Class MatSparse: In general sparse n×n matrices, the values ai,j are stored
for indices (i, j) ∈ P , where P ⊂ {(i, j) : i, j = 1, 2, . . . , n} is a symmetric
user-defined sparsity pattern, represented by a Diffpack object of class
SparseDS. Typically, P consists of the matrix positions corresponding to
the nonzero entries in A, see Figure D.1f.

Example:

int n = 9, nnz = 14; // nnz is max no of nonzero entries

SparseDS pattern(n,nnz);

// initialize sparsity pattern...

MatSparse(real) A(pattern);

A(3,4) = 3.14; // 3rd row, 4th column

A.elm(3,4) = 3.14; // 3rd row, 4th column

Here, we must remark that the assignments above are in general inef-
ficient, because the syntax implies locating where in the sparse storage
structure the entry (3, 4) is actually stored. When implementing numer-
ical algorithms that employ general sparse matrices, one should access
the entries in the sequence they are stored in memory.

822 D. Software Tools for Solving Linear Systems

As illustrated in Figure 1.11, all matrix data types in Diffpack are derived
from a common abstract base class Matrix. This encourages transparent use of
matrix formats in the sense that the application can be based on the common
Matrix interface,

Handle(Matrix) A;

At run time, the handle A can be rebound to a user-selected matrix represen-
tation, e.g.

A.rebind(new Mat(real)(m,n));

or

A.rebind(new MatBand(real)(n,bandwidth));

The Parameter Class for Initializing Matrix Objects. A common feature of
many Diffpack class hierarchies is the existence of an associated parameter
class. Such parameter classes are capable of holding any set of information
needed for constructing objects of any class in the relevant hierarchy. Usually,
such parameter classes are linked to the menu system as separate submenus,
thus allowing the user to fill in the relevant data from input files or a graphical
user interface.

The parameter class for the Matrix hierarchy is called Matrix prm. If you
browse the man page for Matrix prm, you will see something like

class Matrix_prm(Type) : public HandleId

{

public:

String storage; // name of subclass of Matrix(Type)

bool symm_storage; // symmetry indicator (cheap storage)

int nrows; // no of equations (no of rows in matrix)

int ncolumns; // no of unknowns (no of columns in matrix)

int bandwidth; // half-bandwidth (if banded matrix)

bool pivot_allowed; // true: allow pivoting (affects storage)

int ndiagonals; // no of diags in struct. sparse matrices

VecSort(int) offset; // offset values for each stored diagonal

Handle(SparseDS) sparse_adrs; // sparse matrix data structure

real threshold; // for compression of sparsity patterns

...

};

D.1. Storing and Initializing Linear Systems 823

The meaning of each data item should be pretty clear from the above com-
ments. The parameter object is usually filled from the menu system (using
scan, see Chapter 3.2). We can of course also initialize the members manu-
ally in a program. Here is an example concerning the creation of a structured
sparse matrix capable of holding the five-point finite difference molecule for
the 2D Laplacian on a q × q grid.

int q = 100, n = q*q;

Matrix_prm(real) pm;

pm.storage = "MatStructSparse";

pm.ncolumns = pm.nrows = n; pm.diagonals = 5;

pm.offset.redim(pm.ndiagonals);

pm.offset(1) = -q; pm.offset(1) = -1; pm.offset(1) = 0;

pm.offset(1) = 1; pm.offset(1) = q;

Handle(Matrix(real)) A;

A.rebind(pm.create());

// *A has right size, but is not initialized

Calling pm.createEmpty() instead of pm.create() creates the right matrix type
(provided pm.storage is initialized), but no other information from the pa-
rameter object is transferred to the matrix. You will then have to call the
resulting matrix object’s member function redim in order to complete the
initialization.

Sparse Matrices. The class MatSparse is of special interest in the context of
PDE problems. Discretization of PDEs usually leads to algebraic systems
where the involved coefficient matrices are sparse, i.e., only a few nonzero
entries occur in each row. Moreover, the count of nonzeros per row is usually
independent of the matrix size, which means that for large-scale problems
only a very small fraction of the matrix is populated with nonzeros. Clearly,
this structural property should be taken advantage of. First, if it suffices to
store only the nonzero entries, the memory requirement is significantly re-
duced. Second, and at least as important, computing time can be saved if the
problem is solved with methods that can work on the nonzero entries alone.
Iterative solvers are designed exactly for this purpose. Thus, the combination
of compact storage schemes and efficient iterative solvers allows us to solve
larger and more complicated problems.

When building a finite element application in Diffpack, you will not need
any technical details on the construction of sparse matrices. This is automat-
ically handled by the administrative class LinEqAdmFE whose usage is covered
in Chapter 3. However, if your application is to take full and direct control of
a MatSparse object, you will need some basic knowledge of the Compressed

824 D. Software Tools for Solving Linear Systems

Row Storage (CRS) scheme. Consider the 5× 5 sparse matrix

A =

a1,1 0 0 a1,4 0
0 a2,2 a2,3 0 a2,5

0 a3,2 a3,3 0 0
a4,1 0 0 a4,4 a4,5

0 a5,2 0 a5,4 a5,5

.

Using the CRS scheme, we need three arrays, respectively holding the nonzero
matrix entries (As), references to the first stored value for each row (irow),
and the column index for each stored entry (jcol). For the small example
above, these arrays would have the following contents:

As = (a1,1, a1,4, a2,2, a2,3, a2,5, a3,2, a3,3, a4,1, a4,4, a4,5, a5,2, a5,4, a5,5),

irow = (1, 3, 6, 8, 11, 14),

jcol = (1, 4, 2, 3, 5, 2, 3, 1, 4, 5, 2, 4, 5) .

Here, notice that irow has length n+ 1, whereas As and jcol have identical
length nz = irow(n+1)− 1. Observe that the last entry in irow “points” one
position beyond the limit of As, i.e., irow(n+1) should always have the value
nz + 1. The index information, i.e., the arrays irow and jcol, are part of the
Diffpack class SparseDS. Objects of this type describes the sparsity pattern
of a MatSparse matrix2. To see how the SparseDS structure should be filled,
consult its man page, as well as the man page for class MatSparse.

While MatSparse allows general sparsity patterns, MatStructSparse pro-
vides a more efficient representation of sparse matrices for which the nonzeros
are located along matrix diagonals. Many PDE problems discretized on reg-
ular geometries lead to matrices with such structured patterns. As indicated
above, the MatStructSparse constructor accepts a VecSimple object contain-
ing the offset of each diagonal to be stored. In this context, an offset value
is the distance from the main diagonal, where negative (positive) values in-
dicate a position in the lower (upper) triangular part of the matrix. That is,
the matrix entry ai,j belongs to the diagonal with offset j − i. In particular,
the main diagonal (zero offset) should always be stored.

Also the general sparse matrix format MatSparse accepts an offset vector.
In this case, a sparsity pattern of type SparseDS is automatically constructed
such that the same matrix positions are populated as for the corresponding
MatStructSparse object. Moreover, the MatSparse class contains a constructor
that accepts a dense matrix of type Mat and a drop tolerance. This constructor
generates a sparsity pattern that corresponds to the dense matrix’ entries that
by magnitude are larger than the specified tolerance value. Only the entries
fulfilling the drop tolerance test will then be copied to the sparse matrix.

2 In fact, one SparseDS object can be shared by many MatSparse objects. In such
cases, keep in mind that changes to a matrix sparsity pattern have influence on
any matrix referencing the SparseDS object in question.

D.1. Storing and Initializing Linear Systems 825

This approach can be a convenient way of constructing sparse matrices for
test purposes, but due to the extremely low efficiency it is unsuitable for
large- and medium-sized problems.

D.1.2 Detailed Matrix Examples

Consider the 3D Poisson problem

−∇2u = 1 on Ω = (0, 1)× (0, 1)× (0, 1)

subject to the homogeneous Dirichlet condition u = 0 on the boundary ∂Ω.
Let this problem be discretized by centered differences on a uniform q× q× q
grid (not counting the boundary nodes). This procedure results in an n× n
linear system Ax = b where n = q3 and A is a sparse matrix corresponding
to the well-known seven-point stencil in Figure D.2. Using our finite difference

���������

rr r

r

r

r

r

−6 1

1

1

1

1

1

-
6
��*

i

k j

Fig.D.2. The seven-point stencil corresponding to a centered finite difference
discretization of the 3D Laplace operator ∇2u. This stencil can be compared
to the 2D counterpart in Figure 1.9 on page 59.

operator notation from Appendix A.3, the discrete problem can be written
as

[δxδxu+ δyδyu+ δzδzu = −1]i,j,k .

In the following examples we present four overloaded versions of a global func-
tion genLaplace3D that constructs A as a Mat, MatBand, MatStructSparse, or
MatSparse object, respectively. The compilable source code for these examples
is located in the directory src/linalg/genLaplace3D.

Using a Dense Matrix. When using a Mat object to represent the 3D Lapla-
cian, the matrix indexing behaves as normal, i.e., the entries are addressed
as A(i,j) where i and j are allowed to run from 1 to n. Consequently, the

826 D. Software Tools for Solving Linear Systems

only tricky point is to treat the special cases where the stencil in Figure D.2
meets the boundary. These situations lead to “holes” (single zero entries) in
certain positions along the six sub- and superdiagonals in A, see Figure D.3.

void genLaplace3D (Mat(real)& A, int q)

{

const int q2 = q*q;

const int n = q*q*q; // using a q x q x q grid

A.redim(n); // square n x n matrix

A.fill(0.0);

int row = 0; // row counter

// run through all nodes in the q x q x q grid

int i,j,k;

for (k = 1; k <= q; ++k) {

for (j = 1; j <= q; ++j) {

for (i = 1; i <= q; ++i) {

row++; // treat next row

if (k > 1) A(row,row-q2) = -1;

if (j > 1) A(row,row-q) = -1;

if (i > 1) A(row,row-1) = -1;

A(row,row) = 6; // main diagonal present for all rows

if (i < q) A(row,row+1) = -1;

if (j < q) A(row,row+q) = -1;

if (k < q) A(row,row+q2) = -1;

}

}

}

}

We emphasize that this code is written for clarity, not for maximum com-
putational efficiency. If the latter subject is in focus, we should avoid the
if-tests inside the nested loops, but this requires expansion of the code seg-
ment (cf. Exercise D.1 and the solver associated with Appendix D.7).

Using a Banded Matrix. Clearly, the use of a dense matrix is a waste of
memory and computing time when all nonzero entries are located in a band
centered around the main diagonal. This is the case even when the matrix
will be subject to Gaussian elimination, since this process does not introduce
new nonzero entries outside the band3. In contrast to the dense Mat represen-
tation, the class MatBand for banded matrices utilizes a different convention

3 However, the Gaussian elimination will generate fill-in inside the band. (This fact
makes the implementation of direct solvers for general sparse matrices rather
intricate.)

D.1. Storing and Initializing Linear Systems 827

Fig.D.3. The sparsity pattern for the 3D Laplacian using a uniform 3×3×3
discretization of the unit cube. Each dot represents a nonzero entry.

for indexing. In the present example the band consists of 2q2 + 1 diagonals
and the half-bandwidth is q2 + 1. This discussion assumes that we store the
full band instead of exploiting the symmetry that is present for the Laplacian.
Use of the symmetry option would need roughly half the storage space of the
full band. The MatBand class can also set aside space for pivoting during the
Gaussian elimination. Pivoting is not necessary when A stems from a finite
difference (or finite element) discretization of the Laplace equation.

Internally in MatBand the diagonals are stored as columns in a n×(2q2+1)
array. The numbering convention is that the lower-most diagonal is stored in
column 1, the next diagonal in column 2, etc. This scheme will place the main
diagonal in column q2 + 1 and the upper-most diagonal in column 2q2 + 1.
In case of symmetric storage, the main diagonal is located in column 1 and
the subdiagonals are not stored. All columns are adjusted such that the row
index of the physical data structure matches the row index in the “logical
matrix view”. The operator(int,int) function works in the physical index
space, while the member function elm assumes logical (dense matrix) indices
i, j = 1, 2, . . . , n. The member function denseIndex2bandIndex maps indices
from the logical to the physical index space. All matrix formats in Diffpack
have an elm function using logical indexing regardless of the physical data
structure used, but the elm function is inefficient since it cannot be inlined.

The following piece of code builds the 3D Laplacian as a MatBand object
using the physical indexing strategy:

void genLaplace3D (MatBand(real)& A, int q)

{

const int n = q*q*q; // using a q x q x q grid

const int halfbw = q*q+1; // half bandwidth (incl. main diag.)

// column indices for the seven diagonals, counting from below

const int d1=1, d2=q*(q-1)+1, d3=q*q, d4=q*q+1,

d5=q*q+2, d6=q*(q+1)+1, d7=2*q*q+1;

828 D. Software Tools for Solving Linear Systems

// don’t use symmetric storage; MatBand is a suboptimal storage

// structure for this problem anyway...

A.redim (n, halfbw, false /*no symmetry*/, false /*no pivoting*/);

A.fill(0.0);

int row = 0; // row counter

// run through all nodes in the q x q x q grid

int i,j,k;

for (k = 1; k <= q; ++k) {

for (j = 1; j <= q; ++j) {

for (i = 1; i <= q; ++i) {

row++; // treat next row

// NB! operator(int,int) uses data structure indexing

if (k > 1) A(row,d1) = -1;

if (j > 1) A(row,d2) = -1;

if (i > 1) A(row,d3) = -1;

// main diagonal present for all rows

A(row,d4) = 6;

if (i < q) A(row,d5) = -1;

if (j < q) A(row,d6) = -1;

if (k < q) A(row,d7) = -1;

}

}

}

}

It might seem rather odd to present the internal data structure of the differ-
ent matrix representations, and even encourage the use of highly specialized
indexing functionality. After all, one of the most important issues in OOP is
the use of data encapsulation which encourages the construction and use of
black-box software where private details are hidden and only the public in-
terface is known. However, the need for computational efficiency puts certain
constraints on the use of object-oriented paradigms in numerical applications.
For the present example this is evident since a general (logical) matrix index-
ing would be extremely expensive in terms of CPU time compared with the
tailored indexing schemes utilizing knowledge of the data structure. Thus,
this is a case where we deliberately break one fundamental rule of OOP. It
is due to the same reason of efficiency that CPU-intensive functionality (e.g.
matrix-vector products) is implemented as member functions in the various
matrix classes, instead of relying on the general elm-type indexing. However,
this design consideration is fully compatible with the concept of data encap-
sulation.

D.1. Storing and Initializing Linear Systems 829

Using a Structured Sparse Matrix. The banded matrix approach used above
is reasonable if we want to use Gaussian elimination to solve the associated
system. However, if we instead turn to iterative methods where only the
nonzero entries of A are needed, we can reduce memory cost and computing
time by use of sparse matrices, see Appendix D.4. In the present case the
matrix A has a regular sparsity pattern with only seven nonzero diagonals, see
Figure D.3. Thus, we can use class MatStructSparse which only stores these
diagonals. The underlying data structure is related to the one in MatBand,
except that the columns representing the zero diagonals inside the band are
removed. Thus the seven diagonals are stored as columns 1, 2, . . . , 7 in a
rectangular array structure. The row index of this array structure matches
the row index of the logical matrix indexing. In order to carry out operations
on this data structure, there is need for an index vector offsets which tells
how each stored diagonal is placed relatively to the main diagonal. That
is, the entry located in row i of the kth diagonal corresponds to the entry
(i,i+offset(k)) in the matrix.

Here is a function that generates a MatStructSparse representation of the
3D Laplacian:

void genLaplace3D (MatStructSparse(real)& A, int q)

{

const int ndiags = 7; // 3D 7-point stencil

const int n = q*q*q; // using a q x q x q grid

VecSimple(int) offsets(ndiags);

offsets(1) = -q*q;

offsets(2) = -q;

offsets(3) = -1;

offsets(4) = 0; // main diagonal

offsets(5) = 1;

offsets(6) = q;

offsets(7) = q*q;

A.redim(n,ndiags,offsets);

A.fill(0.0);

int row = 0; // row counter

// run through all nodes in the q x q x q grid

int i,j,k;

for (k = 1; k <= q; ++k) {

for (j = 1; j <= q; ++j) {

for (i = 1; i <= q; ++i) {

row++; // treat next row;

// A(int,int) uses efficient data structure indexing

830 D. Software Tools for Solving Linear Systems

if (k > 1) A(row,1) = -1;

if (j > 1) A(row,2) = -1;

if (i > 1) A(row,3) = -1;

// main diagonal present for all rows

A(row,4) = 6;

if (i < q) A(row,5) = -1;

if (j < q) A(row,6) = -1;

if (k < q) A(row,7) = -1;

}

}

}

}

Using a General Sparse Matrix. For the present case, the structured variant
of a sparse matrix format would be the best. However, in many applications
the resulting sparsity pattern is highly irregular, thus calling for the use of
the CRS scheme implemented in class MatSparse. The details of this format
are presented on page 824. The generic format requires slightly more book-
keeping than the structured one in order to keep track of the matrix indices.
Below you will find a MatSparse construction of the 3D Laplacian:

void genLaplace3D (MatSparse(real)& A, int q)

{

const int q2 = q*q;

const int n = q*q*q; // using a q x q x q grid

const int nnz = 7*n-6*q2; // nonzeros for 3D 7-point stencil

Handle(SparseDS) pattern; // allocate pattern storage

pattern.rebind(new SparseDS(n,nnz));

A.redim(*pattern); // give A access to pattern

A.fill(0.0);

int row = 0; // row counter

int entry = 0; // entry counter (row by row)

// run through all nodes in the q x q x q grid

int i,j,k;

for (k = 1; k <= q; ++k) {

for (j = 1; j <= q; ++j) {

for (i = 1; i <= q; ++i) {

row++; // treat next row;

pattern->irow(row) = entry+1; // mark start of row

// NB! operator(int) uses data structure indexing

// (sliding down row by row)

if (k > 1) { A(++entry) = -1; pattern->jcol(entry) = row-q2;}

if (j > 1) { A(++entry) = -1; pattern->jcol(entry) = row-q;}

D.1. Storing and Initializing Linear Systems 831

if (i > 1) { A(++entry) = -1; pattern->jcol(entry) = row-1;}

// main diagonal present for all rows

A(++entry) = 6;

pattern->jcol(entry) = row;

if (i < q) { A(++entry) = -1; pattern->jcol(entry) = row+1;}

if (j < q) { A(++entry) = -1; pattern->jcol(entry) = row+q;}

if (k < q) { A(++entry) = -1; pattern->jcol(entry) = row+q2;}

}

}

}

pattern->irow(n+1) = nnz+1;

}

Exercise D.1. .
Looking at the genLaplace3D functions, we see that there are if-tests inside

the nested loops over i, j, and k. This normally prevents compilers from
optimizing the loops to the fullest extent. In this exercise we shall rewrite the
loops to avoid the if-tests. This can be accomplished by letting the loops run
from 2 to q − 1 and then treat the indices 1 and q by special code segments.
For example, we first set k = 1 and invoke a loop over i and j from 1 to q. All
the points we visit in this loop are influenced by the boundary z = 0. Inside
the loop we increment the rows counter as usual and fill all diagonals, except
the lower-most one, with mathematical index (row,row-q*q). Thereafter we
construct a loop over k from 2 to q − 1. Inside this loop we first make a
special treatment of the j = 1 boundary by running through a loop over
i from 1 to q and filling all diagonals, except the one corresponding to the
mathematical index (row,row-q). Then we continue with the internal j points,
but make special treatment of the first and last i index. Follow these ideas
and implement an optimized version of genLaplace3D for the MatStructSparse

matrix format. Choose q = 300 and compare the CPU time of the two versions
of the routine. �

D.1.3 Representation of Linear Systems

The general vector classes discussed in Chapter 1.6.3 and Appendix D.1.1 can
serve as a basis for more abstract entities. The main focus of this chapter is to
solve linear systems like Ax = b. It is then convenient to collect the entities
A, x, and b in a separate class representing the linear system. If this new
class refers to the abstract base classes Matrix and Vector, the representation
is independent of technical details concerning the storage schemes.

As explained in Chapter 1.6.3 and Appendix D.1.1, the use of virtual
functions is vital in the Matrix and Vector hierarchies. Numerical efficiency is
achieved by implementing local versions of CPU-intensive algorithms (such
as the LU factorization and the matrix-vector product) as virtual member

832 D. Software Tools for Solving Linear Systems

functions for each matrix format. Thus, when a particular matrix instance
is accessed by a Matrix base class pointer (handle) or reference, the tailored
functionality is automatically invoked by the C++ run-time mechanisms for
dynamic binding. The overhead of calling a virtual function is negligible when
the function performs a few arithmetic operations. In a PDE context our
virtual functions in the Matrix and Vector hierarchies normally process large
array structures and often constitute the most time-consuming parts of a
simulation program.

Block Matrices and Vectors. In many applications it would also be advisable
to extend the concept of matrices and vectors into block structures. For in-
stance, the discretized Laplacian posed on a q × q uniform, rectangular grid
results in the block tridiagonal matrix structure

A =

B I

I B I

. . .
. . .

. . .

I B I

I B

∈ IRn,n for n = q2,

where
I = diag(1, 1, . . . , 1) ∈ IRq,q

and

B =

−4 1
1 −4 1

. . .
. . .

. . .

1 −4 1
1 −4

∈ IRq,q .

A convenient representation of A can utilize the following block matrix:

class LinEqMatrix

{

protected:

MatSimplest(Handle(Matrix)) matmat; // matrix of matrices

public:

LinEqMatrix (int nblockrows, int nblockcolumns);

~LinEqMatrix ();

const Matrix(NUMT)& operator(int i, int j) const;

Matrix(NUMT)& operator(int i, int j);

// matrix-vector product:

void prod (const LinEqVector& x, LinEqVector& result) const;

...

};

D.1. Storing and Initializing Linear Systems 833

The class LinEqMatrix organizes matrix blocks in a two-dimensional array
structure with indices running from unity to nblkrows and nblkcols. Since
each block is referenced by handles to Matrix objects, any matrix format
may be used for the individual blocks. The only constraint in this respect is
that individual blocks must have consistent sizes and that they match the
dimensions and storage formats used for the corresponding blocks in other
LinEqMatrix or LinEqVector4 objects.

The NUMT parameter stands for NUMerical Type and is used in Diffpack to
indicate real or Complex. One can usually think of NUMT as real, which is the
default value. The presence of NUMT allows Diffpack to handle complex-valued
linear systems and corresponding PDEs by simply compiling the application
with a special option.

Returning to the example of the discretized Laplacian, the matrix A can
be represented by a LinEqMatrix object with pointers to B and I , where B

is a MatTri object and I is of type MatDiag. It is then sufficient to allocate
single instances of B and I . This storage scheme will be conservative with
respect to memory usage and will be an efficient alternative as long as the
LinEqMatrix object has a fixed structure. We should mention that some nu-
merical algorithms, e.g. in the field of mixed finite element methods, require
the matrix and vectors in a linear system to be partitioned into blocks.

Having established a metaphor for block matrices and vectors, it is natu-
ral to express the linear system Ax = b in terms of the LinEqMatrix and
LinEqVector classes. It should be noticed that in many cases the matrix
and vectors involved in a system will consist of single blocks, although the
LinEqMatrix and LinEqVector classes are employed. These classes treat the
single block case intelligently, thus resulting in negligible efficiency overhead.
A standard linear system has the following representation in Diffpack.

class LinEqSystemStd : public LinEqSystem

{

protected:

Handle(LinEqMatrix) Amat; // coefficient matrix

Handle(LinEqVector) sol; // solution vector

Handle(LinEqVector) rhs; // right-hand side

public:

LinEqSystemStd (LinEqMatrix& A, LinEqVector& x, LinEqVector& b);

LinEqSystemStd (Matrix(NUMT)& A, Vector(NUMT)& x, Vector(NUMT)& b);

~LinEqSystemStd ();

void residual (LinEqVector& r); // r = A*x-b

// matrix-vector product: result = A*y:

void matvec (const LinEqVector& y, LinEqVector& result) const;

4 Using a design quite similar to LinEqMatrix, the class LinEqVector represents
block vectors.

834 D. Software Tools for Solving Linear Systems

...

};

Here, the base class LinEqSystem is abstract and only serves the purpose of
defining an interface to be obeyed by all possible representations of a lin-
ear system. The actual storage of data for the coefficient matrix, the solu-
tion vector, and the right-hand side is not addressed in class LinEqSystem,
but rather in its subclass LinEqSystemStd. We remark that the code of class
LinEqSystemStd is very short since the various functions, like matvec, are im-
plemented by a call to LinEqMatrix::prod. Preconditioned linear systems are
conveniently introduced as a subclass of LinEqSystemStd. A sketch of the
LinEqSystem hierarchy is found in Figure D.5.

D.2. Programming with Linear Solvers 835

DirectSolver IterativeSolver

BasicItSolver KrylovItSolver

JacobiGaussElim SSOR ConjGrad BiCGStab

LinEqSystemLinEqSolver

Fig.D.4. Linear solvers are organized in a class hierarchy, where the abstract
base class LinEqSolver provides a transparent interface to all implemented
methods, direct as well as iterative. The dotted line indicates a handle to the
LinEqSystem object.

D.2 Programming with Linear Solvers

Regardless of the chosen algorithm for solving linear systems, the core opera-
tions that turn out to be CPU-intensive are implemented as member functions
in the vector and matrix classes. In this way, the actual solver does not need
to worry about efficiency considerations for a special matrix format since
this is catered for by the low-level functionality, typically in virtual member
functions like prod and factLU (in the Matrix hierarchy). In fact, the solver
cannot see any of the details of matrix and vector storage formats. This allows
a close relation between the solver’s implementation and the corresponding
mathematical algorithm without loss of efficiency.

As indicated in Figure D.4, all linear solvers are organized in a class
hierarchy with base class LinEqSolver. At the next level it is natural to split
this hierarchy into two subhierarchies, thus reflecting the division into direct
(DirectSolver) and iterative (IterativeSolver) methods.

D.2.1 Gaussian Elimination

Direct methods are usually based on some variant of the Gaussian elimina-
tion procedure. Typically, such methods impose structural changes to the
matrix through generation of fill-in. The term fill-in refers to nonzero val-
ues that occur during the elimination process in matrix positions that were
initially occupied by zeroes. When employing a sparse matrix format where
only nonzero entries are stored, we realize that direct methods will be closely
tied to the technical details of each storage format. For instance, it may
be advisable to renumber the unknowns of the original system in order to

836 D. Software Tools for Solving Linear Systems

achieve certain sparsity patterns. It is also very common that sparse elimina-
tion algorithms start out with a symbolic elimination process that predicts
the worst-case need for storage. When the resulting data structure has been
built and initialized, the numerical computations are carried out. From these
observations it is evident that most direct solvers will primarily consist of two
or three calls to member functions of the Matrix hierarchy. Typically, this can
be the combination of factLU and forwBackLU. For instance, the program in
Chapter 1.3.3 addressing the two-point boundary-value problem, solves the
resulting system by explicit calls to these functions. Alternatively, this prob-
lem could be solved by the use of the LinEqSolver derivative GaussElim:

// given Matrix A and Vector x, b

LinEqSystemStd system (A,x,b);

GaussElim gauss;

gauss.solve(system);

x.print(s_o,"The solution x");

As will be demonstrated in the examples below, the use of the GaussElim

solver is more flexible than hardcoded calls to the functions performing the
factorization and triangular solves, as it makes it fairly easy to switch to an
iterative solution method. This is especially true when the solver is accessed
through its base class interface LinEqSolver, such that we can select the
particular solution method at run time.

D.2.2 A Simple Demo Program

Let us implement a class that can read a matrix system, i.e. A and b, from
file and solve the system by means of Diffpack tools. The name of the class
is LinSys1 and the source code is found in the directory src/linalg/LinSys1.

class LinSys1

{

protected:

Mat(real) A; // coefficient matrix

Vec(real) x, b; // solution vector and rhs

Handle(LinEqSystem) system; // linear system

Handle(LinEqSolver_prm) solv_prm; // parameters for linear solver

Handle(LinEqSolver) solver; // linear solver

String filename; // file with matrix data

public:

LinSys1 () {}

~LinSys1 () {}

void scan ();

void solveProblem ();

void resultReport ();

};

D.2. Programming with Linear Solvers 837

In this class we require the coefficient matrix to be of type Mat, while the
actual solver is accessed through a LinEqSolver handle named solver. The
function scan loads the coefficient matrix and the right-hand side from the
file specified by filename:

void LinSys1:: scan ()

{

int n;

initFromCommandLineArg("-n", n, 3);

initFromCommandLineArg("-f", filename, "mat.dat");

// instead of new LinEqSolver_prm we use the function construct:

solv_prm.rebind (LinEqSolver_prm::construct());

initFromCommandLineArg("-s", solv_prm->basic_method, "GaussElim");

A.redim(n,n); x.redim(n); b.redim(n);

// load matrix and right-hand side from file

Is infile (filename, INFILE); // Diffpack alternative to ifstream

A.scan (infile); A.print(s_o,"A");

b.scan (infile); b.print(s_o,"b");

}

The type of linear solver is read directly into the data member basic method

in the LinEqSolver prm object. Class LinEqSolver prm is the counter part to
Matrix prm in the Matrix hierarchy; that is, the parameter object contains all
the parameters that are needed to select and initialize a subclass object in
the LinEqSolver hierarchy. Because we have a dense matrix representation
of A in this example, the other variables in the LinEqSolver prm parameter
object are not of interest. After reading the command-line options, the scan

function loads the matrix A and the vector b from file. The following function
solveProblem combines A, x, and b into a linear system, allocates the specified
solver, and solves the system.

void LinSys1:: solveProblem ()

{

system.rebind (new LinEqSystemStd (A, x, b));

// make a solver based on the user’s menu answers (we do not

// know the solver type at compile time so we use a base class

// pointer (or rather a handle), that can automatically deallocate

// the solver when it is no longer in use)

solver.rebind (solv_prm->create());

x = 0.0; // remember to initialize a start vector!

solver->solve (*system); // compute the solution

}

838 D. Software Tools for Solving Linear Systems

Finally, the function resultReport asks the solver for statistics on the last
solve operation. This information is stored in a LinEqStatBlk object before
it is reported back to the user.

void LinSys1:: resultReport ()

{

s_o << "\nHere is the computed solution:\n"; x.print(s_o,"x");

// extract solver statistics

LinEqStatBlk statistics; solver->performance (statistics);

statistics.print (s_o);

}

The main program using the LinSys1 class looks like this:

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

LinSys1 problem;

problem.scan(); problem.solveProblem(); problem.resultReport();

return 0;

}

The resulting toy program can be run by typing app, thus using the default
choices of solving the 3×3 system stored in the file mat.dat by the GaussElim

method. You can specify the 5× 5 system in mat2.dat by entering the com-
mand ./app -n 5 -f mat2.dat. Alternatively, you can try the test problem in
mat3.dat that contains the 27×27 matrix corresponding to the 3D Laplacian
discretized on a 3× 3× 3 grid.

D.2.3 A 3D Poisson Equation Solver

The purpose of the present section is to develop a Diffpack application for
solving the three-dimensional Poisson equation on a unit cube, discretized by
the common 7-point finite difference stencil:

[δxδxu+ δyδyu+ δzδzu = −1]i,j,k,

for i, j, k = 0, 1, . . . , q + 1. The boundary points are left out of the linear
system, i.e., the number of unknowns is n = q3.

The solver, represented by class LinSys2, involves generation of the matrix
entries and solution of the linear system by iterative methods. Appendix C
presents algorithms and Diffpack tools for iterative solution of linear systems.
Here, we merely show the syntax for calling some common iterative solu-
tion methods for linear systems, like the Conjugate Gradient (CG) method
and the Successive Over-Relaxation (SOR) method. Iterative methods might

D.2. Programming with Linear Solvers 839

contain several parameters that affect the computational performance. The
relaxation parameter ω in SOR and SSOR constitute one example. Such pa-
rameters are collected in a LinEqSolver prm object. This parameter object is
most conveniently initialized using Diffpack’s menu system, and the LinSys2

class is therefore coupled hereto. Programming with and use of the menu
system are thoroughly explained in Chapter 3.2. Here, we just outline the
very basic steps in working with the menu system.

The LinSys2 solver is not equipped with preconditioning. However, there
are extended versions of LinSys2, implemented as the classes LinSys3 and
LinSys4, which offer preconditioning. These solvers are presented in Appen-
dices D.5 and D.6.

The definition of class LinSys2 becomes as follows.

840 D. Software Tools for Solving Linear Systems

class LinSys2 : public SimCase

{

protected:

int q; // q+1 grid points in each dir.

MatStructSparse(real) A; // coefficient matrix

Vec(real) x, b; // solution vector and rhs

Handle(LinEqSystem) system; // linear system

Handle(LinEqSolver_prm) solv_prm; // parameters for linear solver

Handle(LinEqSolver) solver; // linear solver

public:

LinSys2 () {}

~LinSys2 () {}

virtual void adm (MenuSystem& menu);

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan ();

virtual void solveProblem ();

virtual void resultReport ();

};

Deriving the simulator from class SimCase enables access to support for nu-
merical experimentation, for instance, the multiple loop feature (see Chap-
ter 3.4.2) and automatic report generation (see Appendix D.6 and Chap-
ter 3.5.6).

As any module utilizing the menu system, the entry point adm is needed:

void LinSys2:: adm (MenuSystem& menu)

{

SimCase::attach (menu); // enables later access to menu database

define (menu); // define/build the menu

menu.prompt(); // prompt user, read menu answers

scan (); // read menu answers into class variables and init

}

The function adm relies on the presence of the functions define and scan:

void LinSys2:: define (MenuSystem& menu, int level)

{

// define menu items

menu.addItem (level, // menu level

"grid size q", // menu command

"grid has q*q*q points", // help

"3"); // default answer

// parameter objects are initialized by their construct function:

solv_prm.rebind (LinEqSolver_prm::construct());

D.2. Programming with Linear Solvers 841

// define solvers parameter menu as a submenu (level+1):

solv_prm->define (menu,level+1);

}

void LinSys2:: scan ()

{

// connect to the menu system database

MenuSystem& menu = SimCase::getMenuSystem();

q = menu.get("grid size q").getInt(); // read int (q)

const int n = q*q*q;

solv_prm->scan (menu); // read menu answers into an object

x.redim(n); b.redim(n);

}

You should take notice of the first statement in scan, which is necessary in
order to access the menu system object that was attached in adm.

The solveProblem function is almost identical to its counterpart in class
LinSys1, but now we have an algorithm genLaplace3D, see page 829, for fill-
ing the MatStructSparse matrix object with entries according to the finite
difference scheme.

void LinSys2:: solveProblem ()

{

genLaplace3D (A,q); // generate coefficient matrix

b = 1.0/sqr(q+1); // rhs in Poisson problem is f=1

if (q < 4) {

s_o->setRealFormat("%6.3f"); // change default output format

A.printAscii(s_o,"A");

}

system.rebind (new LinEqSystemStd (A, x, b));

// create solver according to user’s menu choice

solver.rebind (solv_prm->create());

x = 0.0; // initialize a start vector!

solver->solve (*system); // perform the linear solve

}

The present finite difference code is programmed at a fairly low level where
the programmer is responsible for initializing the matrix entries. We remark
that there exists a module in Diffpack which gives a flexible interface to finite
difference programming, much like the finite element toolbox (see Chapter 3).

842 D. Software Tools for Solving Linear Systems

The function resultReport is slightly modified, now allowing a complete
report in HTML format:

void LinSys2:: resultReport ()

{

if (q < 4) {

s_o << "\nHere is the solution computed by "

<< solv_prm->basic_method << ":\n"; x.print(s_o,"x");

}

// extract solver statistics

LinEqStatBlk statistics; solver->performance (statistics);

statistics.print (s_o);

// write detailed convergence statistics, including plots

HTMLReporter report (casename+".report");

statistics.print (report, DETAILED /*print as much as possible*/);

}

Instead of an HTMLReporter, we could instead have declared a LaTeXReporter

or a pure ASCIIReporter.
Due to the introduction of the menu system, also the main function has

been changed. Now it reads:

#include <LinSys2.h>

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

global_menu.init ("Poisson eq. FDM solver","LinSys2");

LinSys2 problem;

problem.adm (global_menu); // define menu, prompt user, and scan

problem.solveProblem();

problem.resultReport();

return 0;

}

The global menu object global menu must be initialized. Moreover, the usual
call to scan is now replaced by adm, which calls scan after the menu is defined.

Copy the directories src/linalg/LinSys2 and src/linalg/genLaplace3D to
your own directory tree, such that these two directories remain parallel5 and
compile the LinSys2 application. You can now play with the SOR and CG
methods, as well as with other solution methods. Here is an example on an
input file sor.i for setting some of the menu items:

5 The LinSys2 application needs the file ../genLaplace3D/genLaplace3D.cpp in
the compilation.

D.3. Classical Iterative Methods 843

set grid size q = 3

sub LinEqSolver_prm

set basic method = SOR

set relaxation parameter = 1.8

set use default convergence criterion = ON

ok

ok

The first command sets the size of the linear system. The next command
invokes the submenu for the LinEqSolver prm parameters. The SOR method
contains a relaxation parameter ω ∈ (0, 2) that influences the convergence
speed. The current value of ω is set to 1.8. Finally, we specify the default
termination (convergence) criterion for the iterative method. The default
convergence test for the SOR method is that the Euclidean norm of the
residual rk = b − Axk in the kth iteration is less than 10−4. When this
criterion is satisfied, the approximation xk to x is taken as the solution
(the vector x in the program). More sophisticated tools for monitoring the
convergence of iterative methods are described in Appendix D.6.

Now run the program with the sor.i file as input to the menu system:

./app --casename sortest < Verify/sor.i

After completing the computation, use a web browser to view the HTML
report named sortest.report.html. If you want to examine and adjust all
the menu items through a graphical user interface, type

./app --GUI --casename sortest --Default Verify/sor.i

provided that your program was compiled with the Make option GUIMENU=tcl

(this option is often default – check the $NOR/bt/src/MakeFlags file).
Use Verify/conjgrad.i as input if you want to run the CG method. We

remark that the default convergence criterion for the CG method is slightly
different from the classical iterations: ||rk||2/||r0||2 ≤ 10−4. Gaussian elimi-
nation is enabled in the Verify/gauss.i file.

Exercise D.2. .
Choose q = 60 and find the sensitivity of SOR to variations in the re-

laxation parameter ω. Aslo try to find, through experimentation, an ω that
minimizes the number of SOR iterations. Compare the efficiency of SOR,
with this optimal ω value, and the CG method. The efficiency measured in
terms of “work cost” is listed in the HTML report. �

D.3 Classical Iterative Methods

We recall from Appendix C.1.1 that the classical iterations (Jacobi, Gauss-
Seidel, SOR, and SSOR) have a very simple structure on the form Mxk =

844 D. Software Tools for Solving Linear Systems

Nxk−1 + b, where A = M −N and k = 1, 2, . . . is the iteration index. The
implementation of these methods is therefore not much more than a loop su-
pervised by some convergence test. Inside this loop we have to administer the
two iterates xk and xk−1, and issue a call to low-level functionality that per-
forms a given number of iterations. That is, in addition to the infrastructure
offered by class IterativeSolver (see Figure D.4), the basic iterations need
a vector object in order to store the previous iterate. This entity is a part
of the derived class BasicItSolver, which serves as base class for the actual
implementations of classical methods, exemplified by the classes Jacobi and
SSOR in Figure D.4.

In order to play with the classical iterative methods, we may use the
simple LinSys2 program from Appendix D.2.3 or any of the finite element
solvers from Chapters 3 or 4.2. To keep the numerics simple, we stick to the
finite difference example as provided by the LinSys2 solver, whose usage was
explained in Appendix D.2.3. An appropriate input file for the LinSys2 pro-
gram, specifying Jacobi iteration as the solution method for linear systems,
might look like this:

set grid size q = 3

sub LinEqSolver_prm

set basic method = Jacobi

set startvector mode = USER_START ! Let user set start vector

set use default convergence criterion = ON

ok

ok

This input file explicitly tells the program to use the current value of the solu-
tion vector x as start vector when it enters the function solver->solve. Other
alternatives to the default value USER START are RANDOM START, ZERO START, and
RHS START which causes the start vector to be a random vector with entries
in the interval [−1, 1], the zero vector, or the right-hand side b. To view all
possible menu items, run the program once and use the script DpMenu (see
Chapter 3.4.1).

SOR and SSOR iteration are enabled by changing basic method on the
menu to SOR or SSOR. Recall that the Gauss-Seidel method corresponds to
SOR with ω = 1.

D.4 Conjugate Gradient-like Methods

In contrast to the classical iterations, the more sophisticated family of Con-
jugate Gradient-like methods, also known as Krylov subspace methods, puts
more complicated demands on its surroundings. For instance, most Krylov it-
erations will recursively update the residual vector rk = b−Axk, while others
will also work on a preconditioned residual sk = M−1(b −Axk) = M−1rk.
The framework from which the implementations of Krylov methods would

D.4. Conjugate Gradient-like Methods 845

be derived should take care of the allocation and initialization of the residual
vectors needed by the given combination of a system and a solver. This also
includes the detection of special cases, such as using an identity precondi-
tioner C = I which forces sk = rk for all k. In this case the two entities rk

and sk should actually share the same storage space. Such effects are easily
obtained when accessing the residual vectors through handles.

To further complicate the internal picture of a flexible package for Krylov
solvers, many of these methods compute certain values (residual norms, in-
ner products, etc.) that can be used outside the iteration for different pur-
poses, such as monitoring of convergence, estimation of extreme eigenvalues,
or tuning of some adaptive preconditioner. This type of information should
be reused whenever needed in order to avoid recomputations. Diffpack takes
care of this housekeeping by deriving Krylov methods from a specialized
base class KrylovItSolver, see Figure D.4. Thus, the application programmer
should not worry about these technical details.

D.4.1 Symmetric Systems

Many classes of PDEs lead to symmetric systems of algebraic equations.
Krylov subspace methods can take advantage of the symmetry in the sense
that the iterations will then be inexpensive in terms of computational cost
and storage requirements.

The Conjugate Gradient Method. For problems where the coefficient matrix
is symmetric positive definite, i.e., AT = A and yT Ay > 0 for all y 6= 0,
the Conjugate Gradient method (see Appendix C.2) is the de facto choice
of solver. In Diffpack this method is available as the class named ConjGrad.
Since this solver does not require any user-specified parameters, assigning
ConjGrad to the basic method menu item is the only initialization needed in
the LinEqSolver prm object.

Solving Symmetric Indefinite Problems. For symmetric problems lacking the
property of positive definiteness, the class Symmlq provides an alternative
strategy. To choose this method, simply set basic method on the menu equal
to Symmlq.

D.4.2 Nonsymmetric Systems

In general, solving nonsymmetric systems is much harder than solving sym-
metric ones, and it is often impossible to predict what will be the most
efficient solution strategy. Thus, it is very important that the software allows
easy switching between different solvers and easy access to the corresponding
performance statistics. As seen by the input files below, a Diffpack program
like the one based on class LinSys2 caters for such needs.

846 D. Software Tools for Solving Linear Systems

The Methods of Orthomin and GCR. The method called Orthomin is a popu-
lar member of the family of nonsymmetric Krylov solvers (see Appendix C.2).
Usually this method has a name containing a parameter K, which specifies
how many generations of basis vectors that should be kept for the update of
the next iterate. In reports generated by Diffpack this truncated method is
denoted T-OM(K). In general, the convergence rate and stability of the algo-
rithm improves as K gets larger. However, large values of K also indicate a
significant storage expense and a high computational cost per iteration, thus
suggesting a tradeoff against convergence speed. The following input sets the
K parameter to 5:

set basic method = Orthomin

set no of search vectors = 5

set restart = OFF

In the special case of K = 0, the Orthomin algorithm takes on a simpler form,
and the implementation can be made more efficient. The resulting method is
called Minres6 and can be invoked as follows:

set basic method = MinRes

Finally, a close relative of Orthomin is the Generalized Conjugate Residual
(CGR) method. Instead of the truncation to K basis vectors, the GCR algo-
rithm uses restarting. That is, it runs for a specified number of iterations, K,
before it starts over again using the last computed iterate as the new starting
vector. For this reason the method is often denoted GCR(K). To emphasize
that this algorithm is really a restarted Orthomin solver, reports generated
by Diffpack refer to this method as R-OM(K). The following example uses
K = 7:

set basic method = Orthomin

set no of search vectors = 7

set restart = ON

The GMRES Method. One of the best known (and also one of the most
robust) nonsymmetric iterations is called the Generalized Minimal Residual
method, or GMRES for short. This method uses restarting, just like GCR.
A restart cycle of K iterations is therefore denoted by GMRES(K). The
corresponding Diffpack class GMRES can be activated by the following input:

set basic method = GMRES

set no of search vectors = 5

set restart = ON

6 This nonsymmetric solver should not be confused with the symmetric indefinite
solver Minres, see [17]. This symmetric solver is not available in Diffpack.

D.5. Preconditioning Strategies 847

The CGS and BiCGStab Methods. In order to avoid the long recursions
and high memory cost of the Orthomin, GCR, and GMRES methods, other
Krylov methods like the Bi-Conjugate Gradient algorithm has been devel-
oped. However, this approach, which uses an auxiliary system to get rid of
the expensive recursions, suffer from bad stability properties. In order to im-
prove the stability without adding computational cost, the Conjugate Gradi-
ent Squared (CGS) algorithm was introduced. This method is self-contained
and does not require any user-specified parameters. Its implementation in
class CGS can be accessed by setting basic method equal to CGS on the menu.
A newer variant with smoother convergence behavior is known as BiCGStab,
with the class and menu name BiCGStab.

Transpose-Free QMR. The family of Quasi-Minimal Residual (QMR) meth-
ods constitutes yet another Krylov strategy based on short recurrences. In
particular, there exist variants of the QMR algorithm that avoids the use of
the transposed coefficient matrix AT . One such variant is the Transpose-Free
QMR method available in class TFQMR.

D.5 Preconditioning Strategies

As explained in Appendix C.3.1, Krylov subspace solvers are usually com-
bined with a preconditioner in order to speed up the convergence rate. That
is, instead of solving Ax = b, we consider the equivalent system M−1Ax =
M−1b. In each iteration of Krylov subspace methods we have solve a linear
system with M as coefficient matrix. Alternatively, the preconditioner may
be indirectly given in terms of a procedure implementing its action M−1v on
the vector argument v. We mention that Diffpack actually implements left
and right preconditioning, CLACRy = CLb for y = C−1

R x, see page 804.
Based on the LinEqSystemStd class introduced in Appendix D.1.3, an ob-

vious extension for representation of preconditioned systems is

class LinEqSystemPrec : public LinEqSystemStd

{

// A, x, and b structures are inherited from LinEqSystemStd.

protected:

Handle(Precond) Cleft; // left preconditioner

Handle(Precond) Cright; // right preconditioner

public:

LinEqSystemPrec

(Precond& C, LinEqMatrix& A, LinEqVector& x, LinEqVector& b);

LinEqSystemPrec

(Precond& C, Matrix(NUMT)& A, Vector(NUMT)& x, Vector(NUMT)& b):

void residual (LinEqVector& r); // r = b - A*x

// matrix-vector product A*y:

void matvec (const LinEqVector& y, LinEqVector& result) const;

848 D. Software Tools for Solving Linear Systems

LinEqSystemPrec

LinEqSystem

LinEqSystemStd

LinEqMatrix

LinEqVector

Precond

Ax=b

CL ACR y=CL b
C

x,b

A

CL

R

Fig.D.5. Combining matrix, vector, and preconditioner classes to form a
linear system of equations.

// apply M: M^{-1}y (e.g. by solving M*result = y)

void applyPrec (const LinEqVector& y, LinEqVector& result) const;

...

};

We notice that the preconditioner is present in terms of a handle to
Precond, which is the abstract base class in a hierarchy of different precon-
ditioners, see Figure D.6. The most important change from the LinEqSystem

base class, is the function applyPrec that actually computes the precondi-
tioning step of applying M−1 to y. The relation between LinEqSystemStd

and LinEqSystemPrec is depicted in Figure D.5.
The applyPrec function is virtual in the LinEqSystem class hierarchy, de-

spite the lack of a preconditioner in class LinEqSystemStd. However, we can
think of the standard linear system as a special case of the preconditioned
system, where the preconditioner is the identity operator. This means that
all iterative schemes in Diffpack are implemented in the presence of a precon-
ditioner. Sending a LinEqSystemStd object to the solver, or a LinEqSystemPrec

object with no preconditioner, simply results in a few calls to empty func-
tions when the iterative algorithm executes statements involving the precon-
ditioner.

A Sample Program with Preconditioning. By a few extra lines, the LinSys2

code can be equipped with support for preconditioning. The resulting solver
is called LinSys3. Two basic statements in the declaration of class LinSys3

are new:

Handle(Precond_prm) prec_prm; // parameters for preconditioner

Handle(LinEqSystemPrec) system; // linear system

The preconditioning parameter object is put on the menu in define and
initialized in scan, just as the LinEqSolver prm object in class LinSys2. The
creation of the linear system is slightly altered in the solveProblem function:

D.5. Preconditioning Strategies 849

PrecAlgebraic PrecProcedure

PrecRILUPrecJacobi PrecFFT PrecSORIter

PrecItSolver

LinEqSystem

LinEqSolver

Precond

LinEqMatrix

PrecNone

Fig.D.6. All preconditioners implemented in Diffpack are derived from the
base class Precond as shown in this class hierarchy.

system.rebind (new LinEqSystemPrec(A, x, b));

// attach preconditioner (send in A since it is often demanded)

system->attach (*prec_prm, A);

Notice that the coefficient matrix A is used as argument to the function
attach which initializes the preconditioner. Most preconditioners are con-
structed on basis of a matrix or differential operator. In the general case, the
simulator itself can have PrecProcedure as base class and implement a proper
applyPrec function.

The rest of the code is identical to what we had in class LinSys2. This
example is typical when programming in Diffpack; as soon as you have a
prototype solver for a problem up and going, more advanced algorithms and
software features can usually be added with small adjustments of the simu-
lator class.

Classical Iterative Methods (Matrix Splittings). Well-known classical iter-
ative methods, like Jacobi and SSOR, can be used as preconditioners (see
Sect C.3.2). The simplest choice is of course the Jacobi preconditioner, where
M is simply the diagonal of A. We can specify Jacobi preconditioning on
the Precond prm submenu:

set grid size q = 5

sub LinEqSolver_prm

set basic method = ConjGrad

set startvector mode = USER_START

set use default convergence criterion = ON

set max iterations = 300

ok

sub Precond_prm

set preconditioning type = PrecJacobi

850 D. Software Tools for Solving Linear Systems

set left preconditioning = ON

set automatic init = ON

ok

ok

The SSOR preconditioner is also in frequent use, especially in combination
with the Conjugate Gradient method. Notice that the SOR preconditioner
is not applicable to iterative methods that require the coefficient matrix of
the preconditioned system to be symmetric and positive definite. In order to
change the Jacobi preconditioner used above to an SSOR preconditioner, the
following menu items must be set:

set preconditioning type = PrecSSOR

set (S)SOR relaxation parameter = 1.0

Inner Iterations. In addition to defining preconditioners in terms of matrix
splittings, classical iterations may be used for inner iterations. This consists
in performing iterations with a given classical method. Since most Krylov
methods require a fixed preconditioner, i.e., M is unchanged throughout the
Krylov iterations, such inner iterations should run for a fixed number of steps
and always use the same starting vector, e.g. the null vector. Numerical ex-
periments indicate that this type of preconditioning can be efficient even for
complicated nonsymmetric systems. It has also been shown that inner itera-
tions based on classical iterative schemes are intimately related to polynomial
preconditioners, see [17] and references therein.

Here are the necessary changes to the input file needed to run 10 SOR
iterations as an inner solver:

set preconditioning type = PrecSORIter

set (S)SOR relaxation parameter = 1.6

set inner steps = 10

Naturally, the SOR solver used for the inner iteration is itself implemented
as an instance of the corresponding SOR solver in the LinEqSolver hierarchy.

Incomplete Factorizations. Preconditioning by incomplete factorization is
usually a simple and widely applicable technique for improving the conver-
gence rates of iterative solvers. In Diffpack we have implemented the RILU
preconditioner, where fill-in entries during the incomplete factorization pro-
cess are multiplied by a factor ω before adding them to the main diagonal.
The well-known ILU and MILU preconditioners are thus obtained by using
RILU and ω = 0 and ω = 1, respectively. Specification of a RILU precon-
ditioner with the all-round choice ω = 0.95 takes the following form on the
LinSys3 menu:

set preconditioning type = PrecRILU

set RILU relaxation parameter = 0.95

D.6. Convergence History and Stopping Criteria 851

User-Defined Preconditioners. Any preconditioner in Diffpack must be de-
rived from the base class Precond. The application programmer can extend
this hierarchy by inheritance, thus bringing new preconditioners transpar-
ently into the existing framework. In many cases this can be done by im-
plementing derivations of the base classes PrecAlgebraic and PrecProcedure.
These classes are tailored to implementation of preconditioners expressed in
terms of a matrix operator or as a procedure, respectively. For example, one
can think of using a fast solver for the Laplace equation ∇2u = 0 as precon-
ditioner for an equation involving the variable coefficient Laplace operator
∇ · (λ(x)∇u). The simulator can then be derived from PrecProcedure and
implement a fast constant-coefficient Laplace solver in the virtual applyPrec
function. Attaching the this pointer (i.e. the simulator) as preconditioner in
the linear system couples the tailored applyPrec function to the general linear
solver and preconditioner library. In other words, the simulator becomes a
part of the preconditioner hierarchy and provides a special-purpose precon-
ditioner, closely connected to the PDE being solved. We refer to the man
pages for the various preconditioner classes for further information.

Multigrid and Domain Decomposition. Finally, we mention that Diffpack
supports iterative solvers and preconditioners based on multilevel techniques,
including traditional multigrid algorithms as well as overlapping domain de-
composition methods [24,96]. Non-overlapping (Schur complement) domain
decomposition has also been implemented in Diffpack [23]. The programmer
can develop ordinary solvers using simple and generic algorithms for linear
systems, and with the multigrid toolbox [96], the programmer can as a post
process extend the solver with support for optimal multigrid methods.

D.6 Convergence History and Stopping Criteria

So far we have used iterative solvers without explicitly stating how to stop
the iterations. Instead, we have relied on the (default) menu setting

set use default convergence criterion = ON

which uses the default convergence test associated with the solver of your
choice. However, it is clear that different problems will need different measures
of convergence. Moreover, it might be useful to combine several measures
in a compound test, or even monitor certain entities without letting them
influence the convergence test itself. For these purposes Diffpack offers the
concept of convergence monitors. A conceptual discussion of convergence
monitors and of how this abstraction fits into the Diffpack framework for
iterative solvers can be found in [22].

852 D. Software Tools for Solving Linear Systems

Let us start by considering an example that illustrates two main points,
the use of convergence monitors, and the possibility of providing a run-time
choice of matrix formats7:

class LinSys4 : public SimCase

{

protected:

Handle(Matrix_prm(real)) matx_prm; // parameters for coeff matrix

Handle(Matrix(real)) A; // coefficient matrix

Vec(real) x, b; // solution vector, rhs

Handle(Precond_prm) prec_prm; // parameters for preconditioner

ConvMonitorList_prm conv_prm; // parameters for conv. monitor

Handle(LinEqSystemPrec) system; // linear system

Handle(LinEqSolver_prm) solv_prm; // parameters for linear solver

Handle(LinEqSolver) solver; // linear solver

int n,q; // grid has n=q*q*q points

MultipleReporter report; // automatic report generation

void makeSystem ();

virtual void openReport();

virtual void closeReport();

public:

LinSys4 () {}

~LinSys4 () {}

virtual void adm (MenuSystem& menu);

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan ();

virtual void solveProblem ();

virtual void resultReport ();

};

Compared with the previous example, the new class LinSys4 has been equipped
with a parameter class of type ConvMonitorList prm. This class can hold the
information needed to initialize one or more convergence monitors and ar-
range them in a linked list for compound evaluation. The new class has also
a parameter class of type Matrix prm needed for run-time selection of ma-
trix formats. The MultipleReporter object, explained in Chapter 3.5.6, is a
generalization of the HTMLReporter utility in the LinSys2 and LinSys3 solvers.

A Slight Digression: Choosing Matrix Formats. In the previous examples we
have used an explicit instance of the dense matrix class Mat in the linear
system. Now, we have replaced this matrix object by a Handle(Matrix). Once
the user has made his choice, the function Matrix prm::createEmpty is called
to set this handle,

7 Those using the Diffpack administrator LinEqAdmFE to solve the systems arising
from finite element problems will have immediate access to these two facilities.

D.6. Convergence History and Stopping Criteria 853

A.rebind(matx_prm.createEmpty());

In this particular case we only pass the name of the matrix format (available
as matx prm.storage) instead of the complete Matrix prm object. This is nec-
essary since we want the relevant instance of the genLaplace3D function to
set the matrix sizes and fill in the actual entries.

Since we still are solving the 3D Poisson problem, we want to utilize the
functions developed in Appendix D.1.2. However, the C++ run-time system
does not know how to automatically map a generic Matrix object to specific
format like MatSparse or MatBand. This mapping must be done explicitly by
the programmer. Such mapping between classes in the same hierarchy is
referred to as casting. Upward casting, i.e., a mapping from a class back to
its base class is always valid and is done automatically by the C++ run-
time system. Downward casting must be stated explicitly and will cause fatal
errors in situations where the casting is invalid. For further information see
[10, pp. 342–343]. Since fatal errors will occur in the case that the object
is of a different type than the one we assume, special care must be taken.
In Diffpack there are two macros CAST REF and CAST PTR that can be used
for safe downward casting of references and pointers, respectively. In the
current example we have used the CAST REF macro in combination with the
macro TYPEID PTR to cast the generic Matrix object entering genLaplace3D to
its relevant subtype:

void LinSys4:: makeSystem ()

{

// since the functions generating the 3D Laplacian allocates

// the appropriate memory segments, we allocate empty matrices

// by calling Matrix_prm(real)::createEmpty (which invokes a

// constructor where no memory for the matrix entries is allocated)

A.rebind(matx_prm->createEmpty());

x.redim(n); b.redim(n);

b = 1.0/sqr(q+1); // rhs in Poisson problem is f=1

// we need to test for matrix types in order to do explicit casts;

// downward casting is necessary to ensure optimal efficiency when

// assigning the matrix entries

if (TYPEID_PTR(A.getPtr(),Mat(real)))

{

Mat(real)& A_dense = CAST_REF(A(),Mat(real)); // A() is *A

genLaplace3D (A_dense,q); // global function

}

else if (TYPEID_PTR(A.getPtr(),MatBand(real)))

{

MatBand(real)& A_banded = CAST_REF(A(),MatBand(real));

854 D. Software Tools for Solving Linear Systems

genLaplace3D (A_banded,q);

}

else if (TYPEID_PTR(A.getPtr(),MatStructSparse(real)))

{

MatStructSparse(real)& A_struct =

CAST_REF(A(),MatStructSparse(real));

genLaplace3D (A_struct,q);

}

else if (TYPEID_PTR(A.getPtr(),MatSparse(real)))

{

MatSparse(real)& A_sparse = CAST_REF(A(),MatSparse(real));

genLaplace3D (A_sparse,q);

}

else

fatalerrorFP("LinSys4::genLaplace3D",

"Cannot make Laplacian in %s format", TYPEID_NAME(A));

}

Illegal situations are caught by the last else clause in this function.

Adding Convergence Monitors to the Sample Program. Returning to this sec-
tion’s main issue of convergence monitors, we look at the bodies of the func-
tions in class LinSys48. The functions adm and resultReport are unchanged
from the LinSys3 example, while the define and scan functions have minor
changes in order to present and read the menu items concerning matrix for-
mats and convergence monitors:

#define MAX_CONV_MONITORS 2

matx_prm.define (menu,level+1);

conv_prm.define (menu,level+1,MAX_CONV_MONITORS);

and

matx_prm.scan (menu);

conv_prm.scan (menu);

Here, the value of MAX CONV MONITORS decides how many submenus will be
created in which input data for different convergence monitors can be set. If
this value is omitted in the call to conv prm.define, a default value of 1 is used.
You should notice that this parameter determines the maximum number of
monitors that can be associated with your solver. For instance, the command

set no of additional convergence monitors = 1

8 The source code is located in the directory src/linalg/LinSys4.

D.6. Convergence History and Stopping Criteria 855

in the LinEqSolver submenu tells that this particular run will use only one
of the monitor submenus (actually the first one listed).

The most important change has taken place in solveProblem:

// attach stopping criteria (convergence monitors), this can

// only be done if the solver is iterative

if (TYPEID_PTR(solver.getPtr(),GaussElim))

warningFP("main","Your solver is not iterative (you have\n"

"chosen the \"%s\" method - cannot attach convergence monitors)",

solv_prm->basic_method.c_str());

else {

// cast solver to the base class for iterative solvers and

// attach the convergence monitor info:

IterativeSolver* itsolver =

CAST_PTR(solver.getPtr(),IterativeSolver);

itsolver->attach (conv_prm);

}

As seen above, the input concerning the convergence monitors is handed over
to the solver which then will allocate and initialize the relevant ConvMonitor

objects, before organizing them as a list structure.
Other changes in class LinSys4, compared with the LinSys3 program, con-

cern the MultipleReporter object. We simply refer to Chapter 3.5.6 and expla-
nations in the source code of class ReportPoisson2 for information regarding
this subject. The purpose of the LinSys4 solver is to utilize the automatic
report generation tools in a simple way and thereby provide an environment
for playing around with iterative methods for the Poisson equation problem
discretized by finite differences.

Finally, we show the main program that has been slightly modified in
order to allow automatic generation of loops over different set of input data
(see Chapter 3.4.2).

#include <LinSys4.h>

int main (int argc, const char* argv[])

{

initDiffpack (argc, argv);

global_menu.init ("Solving the 3D Poisson problem","LinSys4");

LinSys4 problem;

// solve one or several problems, let the menu system function

// multipleLoop take care of the adm, solveProblem, and

// resultReport calls and allowing multiple answers to menu items

global_menu.multipleLoop (problem);

return 0;

}

856 D. Software Tools for Solving Linear Systems

The input file to be presented below shows how to input multiple values for
certain menu items.

Residual-Based Monitors. All convergence monitors are implemented as sub-
classes in the ConvMonitor hierarchy. The two most commonly used tests are
residual-based,

||rk|| ≤ ε (D.1)

or
||rk||/||r0|| ≤ ε (D.2)

where rk = b−Axk. These tests are implemented as the classes CMAbsResidual
and CMRelResidual, respectively. Consider the following input file9:

set grid size q = { 3 & 6 } ! try two values of q

sub Matrix_prm

! try different matrix formats:

set matrix type = {MatBand & Mat & MatStructSparse & MatSparse}

ok

sub LinEqSolver_prm

set basic method = ConjGrad

set use default convergence criterion = false

set no of additional convergence monitors = 1

set max iterations = 300

ok

sub Precond_prm

set preconditioning type = PrecJacobi

ok

sub ConvMonitorList_prm

sub Define ConvMonitor #1

set #1: convergence monitor name = CMRelResidual

set #1: residual type = ORIGINAL_RES

set #1: convergence tolerance = 1.0e-6

set #1: norm type = l2

set #1: monitor mode = ON

set #1: run time plot = OFF

set #1: criterion mode = ON

set #1: relative to rhs = OFF

ok

ok

ok ! leave menu and start simulation

One should note that the problem size and the matrix format has been subject
to multiple choices. Consequently, this input file will cause the solution of

9 This file and associated input files are located in the directory
src/linalg/LinSys4/Verify.

D.6. Convergence History and Stopping Criteria 857

2 × 4 = 8 different problem scenarios, one for each set of input parameters,
see Chapter 3.4.2 for more details.

Let us dissect the other items in the input file.

use default convergence criterion: This item is set to off in order to avoid
automatic insertion of the solver’s default convergence test. The default
is false.

no of additional convergence monitors: This value (here equal to 1) decides
how many convergence monitors that will be attached to our solver. This
value must be in the range from 1 to the value we previously have called
MAX CONV MONITORS.

max iterations: This value gives the maximum number of iterations. If the
convergence test has not been satisfied before this limit is reached, the
iterations will stop and the solver statistics will tell that we failed to find
the solution with specified accuracy. In the current input file this value
is set to 100. The default value is 300.

#1: convergence monitor name: This is the name of the first convergence
monitor in our list. The name specifies the type of convergence test, see
Table D.1 for a list of available alternatives.

Table D.1. The convergence monitors available in Diffpack are listed showing
their class names and the corresponding convergence measure. The “generic
residual” vk can be replaced by rk, sk, or zk depending on the system and
solver in question. The user can choose among different norms. For further
information we refer to the relevant man pages.

Monitor class name Convergence measure Comment

CMAbsResidual ||vk||
CMAbsTrueResidual ||vk|| computes vk explicitly
CMRelResidual ||vk||/||v0||
CMRelTrueResidual ||vk||/||v0|| computes vk explicitly

CMRelResidualUB ||vk||/basevalue user-defined base value

CMRelMixResidual (rk, vk)/(r0, v0) Euclidean inner product
CMRelResSolution ||vk||/||xk||
CMAbsSeqResidual ||vk − vk−1||
CMAbsSeqSolution ||xk − xk−1||
CMRelSeqResidual ||vk − vk−1||/||vk−1||
CMRelSeqSolution ||xk − xk−1||/||xk−1||
CMAbsRefSolution ||xk − xref || needs reference solution

CMRelRefSolution ||xk − xref ||/||xref || needs reference solution

#1: residual type: For the residual-based monitors, this item defines whether
we are using the original residual rk (ORIGINAL RES), the preconditioned

858 D. Software Tools for Solving Linear Systems

residual sk (LEFTPREC RES), or the pseudo-residual zk (PSEUDO RES). The
default value is ORIGINAL RES.

#1: convergence tolerance: This item defines the tolerance value ε needed
in all types of monitors. The default value is ε = 10−4.

#1: norm type: From this menu item the user can choose between the norms
L∞ (Linf), l1 (l1), l2 (l2), L1 (L1), or L2 (L2). The default value is l2.

#1: monitor mode: If this item is ON, the convergence history corresponding to
the chosen measure is recorded for later presentation, analysis, plotting,
etc. The default value is ON.

#1: run time plot: If this item is ON, a convergence history plot is automat-
ically displayed (using curveplot gnuplot). The default value is OFF.

#1: criterion mode: If this item is ON, the corresponding measure is used as
a convergence test. That is, when the specified tolerance is reached, the
current convergence test is flagged as satisfied. The default value is ON.

#1: relative to rhs: When this item is ON, the base value for the relative
test uses the right-hand side rather than the initial residual. That is, when
observing the original residual the base value is ||b||, but when observing
any preconditioned residual it is ||M−1b||. The default value is OFF.

The input file listed above uses the absolute residual criterion. If we want
to use the relative monitor (D.2) instead, the following statement,

set #1: convergence monitor name = CMRelResidual

must be inserted.

Special Residual-Based Monitors. It should also be mentioned that there are
alternative implementations of the residual-based criteria discussed above,
CMAbsTrueResidual and CMRelTrueResidual. The only difference from the two
previously discussed monitors is that these two classes force the explicit com-
putation of the residual. That is, at least the work of a matrix-vector product
and a vector addition is spent extra. In the preconditioned case, this also in-
volves the application of the left (and eventually the right) preconditioner(s).
This might seem as a waste of computing time, but this type of criteria is
needed for solvers that do not update the residuals themselves, e.g. as in Ja-
cobi, SOR and SSOR. Moreover, even Krylov methods can make use of these
“expensive” monitors for problems where the recursive residual updates be-
come inaccurate due to poor conditioning.

There is a special version of the relative residual monitor, CMRelResidualUB
that allows the user to set a specific base value instead of using the initial
residual norm. In this case, the menu command

set #1: user base = 2.5

D.6. Convergence History and Stopping Criteria 859

can be used. However, this particular criterion is usually explicitly coded
to use data from another variable to generate the base value. When solving
nonlinear PDEs, the base value might depend on parameters in the outer
nonlinear iterations. For example,

// Handle(LinEqSolver) solver;

IterativeSolver* itsolver =

CAST_PTR(solver.getPtr(),IterativeSolver);

Handle(ConvMonitorList) cmlist; itsolver->getConvMonitors(cmlist);

const int nmonitors = cmlist.getNoEntries()

for (i = 1 ; i <= nmonitors; ++i) {

// can monitor no. i set a user base value?

if (cmlist()(i).userDefinedBaseValue())

cmlist()(i).setBaseValue (mybasevalue);

}

Finally, the monitor CMRelMixResidual is based on

(rk,vk)/(r0,v0) ≤ ε, (D.3)

where vk is either rk, sk, or zk.

Solution-Based Monitors. Another type of convergence measures focuses on
the computed solution. For instance, the monitor CMAbsSeqSolution observes
the evolution of

||xk − xk−1|| ≤ ε. (D.4)

Similarly, there is a relative criterion

||xk − xk−1||/||xk−1|| ≤ ε (D.5)

available as CMRelSeqSolution. Also, in cases where a reference solution is
available, the variants

||xk − xref || ≤ ε (D.6)

and
||xk − xref ||/||xref || ≤ ε (D.7)

are available as CMAbsRefSolution and CMRelRefSolution.

Presenting the Convergence History. As mentioned earlier, it is possible to
request run-time plots of the convergence history. However, this information
can also be extracted after execution, either by directly manipulating the
generated CurvePlot files, or by generation of performance statistics in e.g.
an HTML report. For instance, to view the convergence history of the LinSys4

examples, try

curveplot gnuplot -f tmp.convhist_figures.pl.map -r ’.’ ’.’ ’.’

860 D. Software Tools for Solving Linear Systems

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 1 2 3 4 5 6 7 8 9

Convergence monitor #1

log10(CMRelResidual)

Fig.D.7. A sample curve plot showing the convergence history for a run of
the LinSys4 program. The horizontal axis shows the iteration number, while
the vertical axis shows the monitored value (here ||rk ||2/||r0||2) on a log10

scale. Here, the tolerance for the test was set to ε = 10−4, thus reaching
convergence in the 9th iteration.

This command will select all available convergence plots and show them in a
Gnuplot window. If you add the option -ps hist.ps, you will get a PostScript
file containing the selected curve plot(s). The plot in Figure D.7 is generated
this way.

The sample program LinSys4 uses the HTML approach as well, and you
are encouraged to examine the generated report in order to find information
on the linear solver’s performance.

Compound Convergence Tests. In the example above we used only one mon-
itor to test for convergence. However, Diffpack offers the possibility of com-
bining several monitors into one compound test. Consider this excerpt from
an input file:

sub LinEqSolver_prm

set basic method = ConjGrad

set use default convergence criterion = OFF

set no of additional convergence monitors = 2

...

sub ConvMonitorList_prm

sub Define ConvMonitor #1

set #1: convergence monitor name = CMAbsResidual

set #1: residual type = ORIGINAL_RES

D.7. Example: Implicit Methods for Transient Diffusion 861

set #1: max error = 1.0e-6

set #1: norm type = l2

set #1: monitor mode = ON

set #1: run time plot = OFF

set #1: criterion mode = ON

set #1: append at end of list = ON

set #1: relational operator = CM_AND

ok

sub Define ConvMonitor #2

set #2: convergence monitor name = CMRelSeqSolution

set #2: max error = 1.0e-4

set #2: norm type = l2

set #2: monitor mode = ON

set #2: run time plot = ON

set #2: criterion mode = ON

set #2: append at end of list = OFF

ok

ok

ok

This input will cause a combined convergence test consisting of (D.1) and
(D.5). The residual based monitor will be put at the end of the list and both
criteria need to be satisfied before the compound test is evaluated as true (us-
ing operator CM AND instead of CM OR). The evaluation of the list goes always
from start to end, and both relational operators have the same precedence.
Clearly, this scheme allows for the construction of quite complicated con-
vergence tests, where all or some of the involved monitors contribute to the
convergence test, while some or all also are used for pure reporting purposes.

D.7 Example: Implicit Methods for Transient Diffusion

We shall end our treatment of software tools for large sparse linear systems
with an example on implementing implicit finite difference methods for a 2D
time-dependent diffusion problem:

∂u

∂t
= k

(
∂2u

∂x2
+
∂2u

∂y2

)
, (x, y) ∈ (0, a)× (0, a), t > 0, (D.8)

u = 0, x = 0, a, y = 0, a, (D.9)

u(x, y, 0) = I(x, y), (x, y) ∈ [0, a]× [0, a] . (D.10)

The primary unknown u(x, y, t) is the concentration of the diffusing specie,
k is a diffusion coefficient, and I(x, y) is a known initial distribution of the
specie. Chapter 1.7.6 provides a brief background for diffusion problems. The
problem (D.8)–(D.10) can also be physically interpreted as heat conduction
in a 2D square, u being a measure of the temperature.

862 D. Software Tools for Solving Linear Systems

First, we introduce a uniform grid on [0, a]× [0, a], with grid points (i, j),
i, j = 1, . . . ,m. The grid increment h = ∆x = ∆y then becomes 1/(m −
1). A quite flexible finite difference scheme for (D.8) is the θ-rule combined
with centered spatial differences. Using the compact notation explained in
Appendix A.3, and in particular in Example A.6 on page 676, the scheme for
the current problem can be written as follows:

[δtu]
`− 1

2

i,j = θk[δxδxu+ δyδyu]
`
i + (1− θ)k[δxδxu+ δyδyu]

`−1
i,j . (D.11)

When θ = 0, this is an explicit scheme where new u`
i,j values are computed

by an explicit formula involving only known values u`−1
i,j . The basic corre-

sponding computational algorithm and implementation can then follow the
ideas from Chapters 1.4.6 and 1.4.7, or from Chapter 1.7.5 if a more advanced
Diffpack simulator is desired. Unfortunately, the results of Project 1.8.1 or
Example A.18 on page 698 show that the explicit scheme has a severe stabil-
ity requirement. When θ ≥ 1/2, there is no stability restriction on ∆t, which
can be convenient from an application point of view. However, θ > 0 results
in an implicit scheme; that is, the new u`

i,j values are coupled in a system
of linear algebraic equations: Au = b, where A is a sparse n × n matrix,
u is the vector of new u`

i,j values, and b is the right-hand side. The num-

ber of unknowns, n, equals m2 in our grid. Furthermore, assuming that the
grid points are numbered according to a double loop over j and i, with the
fastest variation over i (i.e. the innermost loop runs over i), grid point (i, j)
corresponds to the single index (j − 1)m+ i in the linear system Au = b.

The accuracy of the scheme (D.11) depends on θ. For θ 6= 1/2 the trun-
cation error becomes (h2, ∆t), while θ = 1/2, corresponding to the Crank-
Nicolson scheme, leads to a more favorable truncation error: O(h2, ∆t2). The
choice θ = 1/2 is therefore popular, since it appears to be the optimal com-
bination of stability and accuracy.

Writing out (D.11) in detail and collecting the terms at time level ` on
the left-hand side of the equation, gives

u`
i,j − θγ

(
u`

i,j−1 + u`
i−1,j − 4u`

i,j + u`
i+1,j + u`

i,j+1

)
=

u`−1
i,j + (1− θ)γ

(
u`−1

i,j−1 + u`−1
i−1,j − 4u`−1

i,j + u`−1
i+1,j + u`−1

i,j+1

)
, (D.12)

where γ = k∆t/h2. The coefficients on the left-hand side now determine the
entries in row (j − 1)m + i in A, whereas the term on the right-hand side
is to be placed in row (j − 1)m + i in b. The examples in Appendix D.1.2,
combined with the suggested optimization in Exercise D.1, might be of great
help when formulating a computational algorithm for generating the linear
system at each time level.

Solution of the linear systems is definitely the most computationally inten-
sive part of a finite difference-based simulator for (D.8)–(D.10). It is therefore
crucial to apply efficient iterative solution methods, with preconditioning, as
explained in Appendix C. A suitable solver for the present problem is the

D.8. High-Level Stencil Programming of Finite Difference Schemes 863

Conjugate Gradient method combined with MILU preconditioning. The most
natural matrix storage format for finite difference equations on a square is the
structured sparse matrix format, represented through class MatStructSparse

in Diffpack.
The development of a simulator for (D.8)–(D.10) can start with the quite

flexible LinSys4 program from Appendix D.6, which is an extension of sim-
pler demo programs from Appendices D.3–D.5. The LinSys4 code must be
extended with software tools from Chapters 1.6.5 and 1.7.4, that is, finite dif-
ference grids (GridLattice), scalar fields of type (FieldLattice) for u at the
current and previous time level, time discretization parameters (TimePrm),
and a time loop. In addition, we might want to have a flexible interface
to visualization. The SaveSimRes class, covered in Chapters 3.3 and 3.12, is
then a convenient tool that allows for interaction with many visualization
systems (Plotmtv, Matlab, Vtk, AVS, IRIS Explorer). Although a simula-
tor for (D.8)–(D.10) can be implemented in almost any computer language
using direct array manipulation, we highly recommend using the more high-
level tools outlined above. These tools provide greater flexibility when the
simulator is used for investigating a physical problem through extensive nu-
merical experimentation. Furthermore, if the shape of the domain changes,
and hence calls for finite element-based solution methods, the step from the
currently suggested solver to a full finite element solver is conceptually small
from an implementational point of view, despite the fact that the increase
in numerical complexity is substantial. This is the advantage of using classes
and high-level abstractions also in simple problems.

Readers having already studied classes LinSys4, Wave1D, and perhaps Wave2D,
are strongly encouraged to create a new solver for (D.8)–(D.10). A suggested
result is provided in the directory src/linalg/Diffusion2D.

D.8 High-Level Stencil Programming of Finite

Difference Schemes

The finite difference solvers for the Poisson equation examples so far in this
appendix are coded at a fairly low abstraction level; hand-derived expressions
for all the discrete equations are inserted directly in the matrix and right-
hand side vector of linear system objects. Solution of linear systems are ob-
tained by working with LinEqSystem, LinEqSolver, Precond, LinEqSolver prm,
convergence monitor objects, etc. The programming is straightforward, but
many readers familiar with our more high-level style of developing finite ele-
ment simulators for the same problem (see Chapters 3.1–3.2) may wonder if
a similar programming style can be applied in a finite difference context. The
answer is positive; we have developed counterparts to the classes DegFreeFEM,
LinEqAdmFE, and FEM, together with an abstraction of finite difference stencils.
Using these classes, in combination with grids and fields, gives the possibility
of creating finite difference solvers in the well-known Diffpack style for finite
element solvers.

864 D. Software Tools for Solving Linear Systems

We shall, as usual, employ an example-oriented approach for presenting
the basic usage of the tools for high-level finite difference programming. As
soon as you have grasped the basic ideas from this example, the man pages
should provide sufficient information for adopting the ideas in more compli-
cated settings. The example is the same as covered in Appendix D.7, that
is, a two-dimensional transient diffusion equation solved by an implicit fi-
nite difference scheme. The benefit of programming with the high-level tools
covered in the present section is apparent only when we have implicit finite
difference schemes and thus the need for solving linear systems. The reader
should be familiar with the Diffusion2D code from Appendix D.7 as well as
basic concepts of finite difference methods in two space dimensions and time
(from, e.g., Chapters 1.4.6 and 1.4.7). Moreover, we have based the exposi-
tion on familiarity with basic finite element programming from Chapters 3.1
and 3.2.

D.8.1 Finite Difference Stencils

The finite difference stencil concept is introduced early in this book, see Fig-
ure 1.9 on page 59. For example, second-order finite difference approximations
to the second-order derivatives in a 2D Laplace term ∇2u` give rise to a 5-
point stencil. On the contrary, a two-point finite difference approximation
to a term like ∂u/∂t results in two 1-point stencils (u`

i,j and u`−1
i,j), because

it will be natural to distinguish between quantities at different time levels
when forming the stencils. This will hopefully be clear from the forthcoming
complete example.

The initial-boundary value problem used as example in the present section
involves the 2D diffusion equation

∂u

∂t
= k

(
∂2u

∂x2
+
∂2u

∂y2

)

on a uniformly partitioned rectangular domain, with u = 0 on the boundary.
The precise mathematical formulation of the problem is formulated through
the equations (D.8)–(D.10) on page 861. Discretizing this PDE by second
order differences in space and a θ-rule in time gives a finite difference scheme
of the form (see Appendix D.7 for more details)

u`
i,j + θγ

(
−u`

i,j−1 − u`
i−1,j + 4u`

i,j − u`
i+1,j − u`

i,j+1

)
=

u`−1
i,j − (1− θ)γ

(
−u`−1

i,j−1 − u`−1
i−1,j + 4u`−1

i,j − u`−1
i+1,j − u`−1

i,j+1

)
. (D.13)

The factor γ depends on the grid parameters; it equals ∆t/h2 in the present
case, where we have assumed that the grid spacings ∆x and ∆y in the two
spatial directions are equal (∆x = ∆y = h).

We can interpret (D.13) as a sum of finite difference stencils. The first term
on the left-hand-side of (D.13) can be viewed as a 1-point stencil, whereas the

D.8. High-Level Stencil Programming of Finite Difference Schemes 865

θ-term can be viewed as a 5-point Laplace stencil scaled by θγ. On the right-
hand side we also have the sum of a 1-point and 5-point Laplace stencil.
Actually, a stencil is an operator operating on a finite difference field. On
the left-hand side of (D.13), the stencils operate on the discrete u field at
time level `. On the right-hand side of the equation, the stencils operate on
the discrete u field at the previous time level ` − 1. Introducing the 5-point
Laplace stencil as the operator Laplace(·), and the 1-point stencil operator
as Identity(·), we can write (D.13) in the form

Identity(u`) + θγLaplace(u`) = Identity(u`−1)− (1− θ)γLaplace(u`−1) .

The stencils are linear operators in this example so we can view a term
Laplace(u) as a matrix-vector product, where the stencil represents the ma-
trix and the unknown field u represents the vector. This is, in fact, how the
stencil notation is transformed to a linear system Au = b. Having the scheme
expressed as a linear system, we can apply tools from numerical linear algebra
to solve the system, i.e., compute the u`

i,j values.
The three basic steps of our working strategy can be summerized as fol-

lows:

– discretization of derivatives in the PDE,

– rewriting the finite difference equations in terms of stencils,

– employing Diffpack tools for specifying the stencils and calculating the
associated linear system.

The latter point is addressed in the following.

D.8.2 Basic Structure of a Stencil-Based Simulator

We shall now present in detail how to program with finite difference sten-
cils in Diffpack simulators. The basic structure of the simulator follows the
Diffpack standard as introduced in Chapter 1.7, i.e., we apply the grid and
field abstractions GridLattice and FieldLattice for the finite difference grid
and the associated discrete u field. The standard function scan for reading
input data and allocating data structures is included, as well as the required
functions solveProblem and resultReport. Moreover, our finite difference sim-
ulator employs the menu system, which is introduced in Chapter 3.2.2 (in a
finite element context).

Regarding programming with finite difference stencils, the simulator class
has

– class FDM as base class,

– an object of type LinEqAdmFD containing the linear system for the current
problem and providing access to various solvers for linear systems,

866 D. Software Tools for Solving Linear Systems

– a degree of freedom handler object of type DegFreeFD, which performs the
mapping between field values and the vector of unknowns in the linear
system,

– two StencilCollection objects for defining the finite difference schemes
for the matrix A and the right-hand side b in the linear system,

– a function initStencils for defining the involved stencils (this function
acts as the counterpart to the integrands function in finite element sim-
ulators).

The sample simulator is called Diffusion2DStencil, and the application
directory is located as src/fdm/stencil. The declaration of the simulator class
is listed next.

class Diffusion2DStencil : public FDM

{

friend class testproblem;

protected:

// general data:

Handle(GridLattice) grid; // finite difference grid

Handle(DegFreeFD) dof; // map: field <-> lin.system

Handle(FieldLattice) u; // primary unknown

Handle(FieldLattice) u_prev; // u at previous time step

Handle(TimePrm) tip; // time step etc

real theta; // time difference prm.

real diff; // diffusion coefficient

real a; // domain is (0,a)(0,a)

int problem_tp; // test problem type

Vec(real) linear_solution;

Handle(LinEqAdmFD) lineq; // linear system & solution

Handle(SaveSimRes) database;

Handle(StencilCollection) A_stencils; // stencils for the A matrix

Handle(StencilCollection) b_stencils; // stencils for the b vector

virtual void setIC ();

virtual void timeLoop ();

virtual void solveAtThisTimeStep ();

virtual void fillEssBC ();

virtual void initStencils ();

public:

Diffusion2DStencil ();

~Diffusion2DStencil ();

virtual void adm (MenuSystem& menu);

D.8. High-Level Stencil Programming of Finite Difference Schemes 867

virtual void define (MenuSystem& menu, int level = MAIN);

virtual void scan ();

virtual void solveProblem ();

virtual void resultReport ();

};

Let us go through the most important functions and explain the use of the
new tools DegFreeFD, LinEqAdmFD, and StencilCollection. A natural start is
the define function, although not much is unexpected:

void Diffusion2DStencil:: define (MenuSystem& menu, int level)

{

menu.addItem (level, // menu level (level+1 is a submenu)

"grid size q", // command

"size of grid in each direction", // (help)

"3"); // default answer

menu.addItem (level,

"time parameters",

"TimePrm::scan(Is) syntax",

"dt=0.1 t in [0,1]");

menu.addItem (level, "theta", "prm in theta-rule", "1.0");

menu.addItem (level, "diffusion coefficient", " ", "1.0");

menu.addItem (level, "problem type",

"1: exp(-2*sqr(pi/a)*k*t)*sin(pi*x_)*sin(pi*y) "

"analytical solution, 2: initial plug", "1");

// submenus:

SaveSimRes:: defineStatic (menu, level+1);

LinEqAdm:: defineStatic (menu, level+1);

}

The scan function has many familiar statements, but also some new lines:

void Diffusion2DStencil:: scan ()

{

// connect to the menu system database

MenuSystem& menu = SimCase::getMenuSystem();

a = 1.0;

int q = menu.get("grid size q").getInt();

grid.rebind (new GridLattice()); // make an empty grid

grid->scan (aform("d=2 [0,%g]x[0,%g] [1:%d]x[1:%d]",a,a,q,q));

grid->initBoInds (); // set up default boundary indicators

// here we introduce only one boundary indicator, i.e.,

// map the four default indicators to the one we will use:

868 D. Software Tools for Solving Linear Systems

grid->redefineBoInds ("nbind=1, names= u=0 1=(1 2 3 4)");

tip.rebind (new TimePrm());

tip->scan (menu.get ("time parameters"));

theta = menu.get ("theta").getReal();

diff = menu.get ("diffusion coefficient").getReal();

problem_tp = menu.get ("problem type").getInt();

database.rebind (new SaveSimRes());

database->scan (menu, grid->getNoSpaceDim());

lineq.rebind (new LinEqAdmFD());

lineq->scan (menu);

u.rebind (new FieldLattice (*grid, "u"));

u_prev.rebind (new FieldLattice (*grid, "u_prev"));

// Set up the indexsets, one for each boundary indicator,

// plus one for inner nodes:

IndexSetCollection& indexsetcoll = grid->createIndexSetCollection();

dof.rebind (new DegFreeFDLattice (*grid, indexsetcoll, 1));

linear_solution.redim (dof->getTotalNoDof());

lineq->attach (linear_solution);

// all data structures are allocated

}

When working with GridLattice objects in previous sections of the book,
we have not used the concept of boundary indicators (see Chapter 3.5.1) to
mark different segments of the boundary. This is necessary (and natural) in
the present more flexible context. The GridLattice::initBoInds sets up a
default set of boundary indicators, introducing four indicators for the four
sides in 2D. The numbering of the indicators is the same as that employed
by the PreproBox preprocessor. That is, in the present example boundary
indicator 1 marks the right boundary x = a, indicator 2 marks the upper
boundary y = a, indicator 3 marks the left boundary x = 0, and indicator 4
marks the bottom boundary y = 0. As explained on page 310, we can map
the default set of indicators to a new set adapted to our problem (using the
grid object’s redefineBoInds function). In the present example, we need only
one indicator since we have only one type of boundary condition (u = 0).

The nodes in the grid are grouped into index sets. Typically, the nodes
marked with a particular boundary indicator constitute an index set. All
interior nodes are also grouped into an index set. Each index set is repre-
sented by a subclass of class IndexSet, and all the index sets are stored in an
IndexSetCollection in a given order. The creation of index sets is automati-
cally done by a call to

D.8. High-Level Stencil Programming of Finite Difference Schemes 869

2 3

6 7 8

1

4 5
9

1

2

3

4

Fig.D.8. Default boundary indicators for a 2D GridLattice object to the left,
and the corresponding IndexSetCollection to the right. Note the separate
index sets for the corner nodes, which is due to these nodes having two
indicators set on the same node.

GridLattice::createIndexSetCollection

In particular, one should note that while, e.g., all nodes with indicator 1 will
be in one index set and nodes with indicator 2 are placed in another index
set, nodes marked with both indicators 1 and 2 will be part of a third index
set. The order in which the index sets are stored in the IndexSetCollection

object is determined by the order in which the boundary indicators are
found when iterating through the grid. The iteration is done using the stan-
dard GridLattice iteration functions, i.e., the index is varying fastest in the
first coordinate direction (x), then the second coordinate direction (y), and
so on. Figure D.8 shows an example of default boundary indicators on a
2D lattice grid and the corresponding index sets and their order in the
IndexSetCollection. The collection of index sets is supplied to the DegFreeFD

and is used when building the linear equation system.
When solving (D.8)–(D.10), the boundary conditions are the same on the

entire boundary. Hence, all the boundary nodes might be represented by the
same stencil. Redefining the boundary indicators so that all boundary nodes
will have the same indicator, entails that the call to createIndexSetCollection

creates a collection consisting of two index sets, one for all the boundary nodes
and one for the inner nodes.

D.8.3 Defining the Stencils

The “heart” of the finite difference simulator is the initStencil function,
where we program the mathematical expressions of the problem to be solved,
i.e., the stencils. We first list the function and then explain the contents in

870 D. Software Tools for Solving Linear Systems

more detail. Hopefully, the basic steps of the code should be meaningful even
before you read the proceeding text with the explanations.

void Diffusion2DStencil:: initStencils ()

{

// useful local variables

int nsd = grid().getNoSpaceDim();

const real gamma = tip->Delta()*diff/sqr(grid->Delta(1));

const real c_1 = theta *gamma;

const real c_2 = (1-theta)*gamma;

// All nodes on the boundary are subject to boundary ind. 1.

// The StencilCollections will therefore only consist of 2

// stencils each, the first for the boundary nodes, and the

// second for the inner points.

A_stencils = new StencilCollection (nsd, 2 /*2 stencils*/,

1 /*one dof*/);

b_stencils = new StencilCollection (nsd, 2 /*2 stencils*/,

1 /*one dof*/);

//==

// Build stencil system for the coefficient matrix

//==

// The boundary points have essential boundary conditions, which

// only require a single 1 point identity stencil, already

// in the stencil collection by default.

// The inner points of the grid have the contribution

// u_{i,j} + c_1*(- u_{i-1,j} - u_{i,j-1} + 4u_{i,j}

// - u_{i+1,j} - u_{i,j+1})

// Create a StencilUnion of an Identity stencil and

// a Laplace stencil:

StencilUnion A_main (2 /*union of 2 stencils*/);

StencilIdentity A_main_id (nsd); // 1-point identity stencil

StencilLaplace A_main_lp (nsd); // 5-point Laplace stencil

// Insert the two stencils into the StencilUnion

A_main.insert(*A_main_id.getStencil());

A_main.insert(*A_main_lp.getStencil(), c_1 /*scale factor*/);

//===

// Build stencil system for right-hand side

//===

D.8. High-Level Stencil Programming of Finite Difference Schemes 871

// The inner grid points for the right hand side system (Vec b)

// have the contribution

// u_{i,j} - c_2*(-up_{i-1,j} -up_{i,j-1}

// + 4up_{i,j} -up_{i+1,j} -up_{i,j+1})

// Create a Stencil Union of an Identity and a Laplace stencil:

StencilUnion b_main (2 /*union of 2 stencils*/);

StencilIdentity b_main_id (nsd);

StencilLaplace b_main_lp (nsd);

// Both stencils should be applied on the field u_prev

b_main_id.attach (*u_prev);

b_main_lp.attach (*u_prev);

// Insert the two stencils into the StencilUnion

b_main.insert (*b_main_id.getStencil());

b_main.insert (*b_main_lp.getStencil(),-c_2 /*scaling factor*/);

// Insert the stencils into their respective stencil collections

A_stencils->insert(A_main,2,1); // stencil no. 2 in the collection

b_stencils->insert(b_main,2,1); // stencil no. 2 in the collection

#ifdef DP_DEBUG

A_stencils->print(s_o);

b_stencils->print(s_o);

#endif

}

For each IndexSet in the collection, a stencil must be created, matching the
numerical scheme valid for the nodes in the index set over which the stencil
should be applied. Each stencil is placed in a StencilCollection, in the same
position as the corresponding IndexSet has in the IndexSetCollection. The
stencils should be of type Stencil or StencilUnion. The Stencil class allows
the user to create a stencil of any size and shape, and the stencil weights can
be constant values or functors10. The StencilUnion is a stencil made up of
several other stencil objects, and is used when a finite difference scheme most
easily is described as a sum of several stencils.

There are predefined classes available for the most common stencils:
StencilLaplace for stencils representing the Laplacian and StencilIdentity

for representing a one point stencil with unit value. (In addition to pro-
viding full Laplace stencils in 1D, 2D, and 3D for inner nodes, the class
StencilLaplace can provide Laplace stencils adjusted to the boundary in all
directions. Readers are encouraged to study the man page and the applica-
tion examples for documentation of boundary stencils.) As identity stencils

10 See Chapter 3.4.4 for an introduction to functors.

872 D. Software Tools for Solving Linear Systems

are widely used, e.g., it is always used for representing essential boundary
conditions, the StencilCollection is filled with identity stencils by default.

As we have already shown, our finite difference scheme can be expressed
in terms of identity and Laplace stencils. The StencilUnion class is used to
combine stencils. Note that on the left side of the scheme’s equation we want
to collect the stencils as operators into a matrix A. On the right side we want
to collect the application of the stencils to u prev into a vector b. This latter
action is accomplished by attaching the field to the two stencils before they
are inserted into the StencilUnion.

The initStencils function should be called once by the user during the
initialization of the simulator. In a time dependent problem it would be natu-
ral to call this function in timeLoop, after u prev has been initialized by initial
conditions in setIC:

void Diffusion2DStencil:: timeLoop ()

{

tip->initTimeLoop();

setIC();

initStencils ();

database->dump (*u, tip.getPtr(), "initial condition");

while(!tip->finished())

{

tip->increaseTime(); // update time for the next step

solveAtThisTimeStep (); // solve spatial problem by the FDMLattice

*u_prev = *u; // update fields for next step

database->dump (*u, tip.getPtr(), "u"); // store u on file

}

}

Finally, the stencils defining the A matrix and the b vector must be provided
to makeSystem together with the DegFreeFD object, in order to assemble the
linear equation system at each time step:

void Diffusion2DStencil:: solveAtThisTimeStep ()

{

fillEssBC (); // set essential boundary condition

makeSystem (*dof, *A_stencils, *b_stencils, *lineq);

// use most recent u as start vector for iterative solvers:

dof->field2vec (*u_prev, linear_solution);

lineq->solve (); // solve linear system

s_o << "t= " << tip->getTime() << endl;

int niterations; bool c; // for iterative solver statistics

D.8. High-Level Stencil Programming of Finite Difference Schemes 873

if (lineq->getStatistics(niterations,c)) // iterative solver?

s_o << oform(" solver%sconverged in %3d iterations\n",

c ? " " : " not ",niterations);

// the solution is now in linear_solution,

// it must be copied to the u field:

dof->vec2field (linear_solution, *u);

}

Known u values on the boundary, or essential boundary conditions as we call
them in a finite element context, are set in a function fillEssBC (just as for
finite element simulators, cf. Chapter 3.1):

void Diffusion2DStencil:: fillEssBC ()

{

dof->initEssBC ();

const int nno = grid->getNoPoints();

for (int i = 1; i <= nno; i++)

// is node i subjected any boundary indicator?

if (grid->boNode (i)) {

dof->fillEssBC (i, 0.0); // u = 0.0 on boundary

}

#ifdef DP_DEBUG

dof->printEssBC(s_o);

#endif

}

The number 0.0 can, of course, be replaced by any desired boundary value.
Note that boundary conditions involving derivatives of u modify the sten-

cils. In that case we will therefore have different stencils at the boundaries
and in the interior. Sample simulators are provided in src/fdm/stencil.

Exercise D.3. .
Modify the Diffusion2DStencil class such that you can have u = 0 as

initial condition and u = 1 as boundary condition. Visualize how u(x, y, t)
develops in time. �

Exercise D.4. .
Modify the Diffusion2DStencil class such that you can have u = 0 as

initial condition, u = 0 at x = 0, y = 0 and y = a, and u = 1 at x = a.
Visualize how u(x, y, t) develops in time. �

Bibliography

[1] E. Acklam and H. P. Langtangen. Tools for simplified programming
with staggered grids. Research report 2002-06, Simula Research Labo-
ratory, 2002. See URL http://www.simula.no. 583

[2] J. E. Akin. Finite Elements for Analysis and Design. Academic Press,
1994. 199

[3] M. Alonso and E. J. Finn. Physics. Adison-Wesley, 1992. 680

[4] J. D. Anderson. Computational Fluid Dynamics – The Basics with
Applications. McGraw-Hill, 1995. 605

[5] E. Arge, A. M. Bruaset, P. B. Calvin, J. F. Kanney, H. P. Langtangen,
and C. T. Miller. On the efficiency of C++ in scientific computing. In
M. Dæhlen and A. Tveito, editors, Mathematical Models and Software
Tools in Industrial Mathematics, pages 91–118. Birkhäuser, 1997. 77

[6] E. Arge, A. M. Bruaset, and H. P. Langtangen, editors. Modern Soft-
ware Tools for Scientific Computing. Birkhäuser, 1997. 71

[7] O. Axelsson. Iterative Solution Methods. Cambridge University Press,
1994. 795, 807

[8] I. Babuska, T. Strouboulis, and C. S. Upadhyay. A model study of
the quality of a posteriori error estimators for linear elliptic problems.
Comput. Methods Appl. Mech. Engrg., 114:307–378, 1994. 258, 259

[9] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, P Pozo, C. Romine, and H. van der Vorst. Templates for
the Solution of Linear Systems: Building Blocks for Iterative Methods.
SIAM, 1993. 795, 801, 803, 804, 806, 807, 809

[10] J. J. Barton and L. R. Nackman. Scientific and Engineering C++ – An
Introduction with Advanced Techniques and Examples. Addison-Wesley,
1994. IX, 5, 71, 87, 91, 277, 299, 853

[11] K. J. Bathe. Finite Element Procedures in Engineering Analysis.
Prentice-Hall, 1982. 519

[12] W. B. Bickford. A First Course in the Finite Element Method. Irwin,
2nd edition, 1994. 182, 519

[13] J. H. Bramble. Multigrid Methods, volume 294 of Pitman Research
Notes in Mathematical Sciences. Longman Scientific & Technical, 1993.
809

[14] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite
Element Methods. Text in Applied Mathematics. Springer, 1994. 231,
235, 236, 523

Bibliography 875

[15] W. L. Briggs. A Multigrid Tutorial. SIAM Books, Philadelphia, 1987.
809

[16] A. N. Brooks and T. J. R. Hughes. A streamline upwind/Petrov-
Galerkin finite element formulation for advection domainated flows
with particular emphasis on the incompressible Navier-Stokes equa-
tions. Comput. Meth. Appl. Mech. Engrg., pages 199–259, 1982. 408,
410

[17] A. M. Bruaset. A Survey of Preconditioned Iterative Methods. Addison-
Wesley Pitman, 1995. 786, 787, 794, 795, 799, 802, 803, 804, 806, 807,
846, 850

[18] A. M. Bruaset, X. Cai, H. P. Langtangen, and A. Tveito. Numerical so-
lution of PDEs on parallel computers utilizing sequential simulators. In
Y. Ishikawa, R. R. Oldehoeft, J. V. W. Reynders, and M. Tholburn, ed-
itors, Scientific Computing in Object-Oriented Parallel Environments,
Lecture Notes in Computer Science, pages 161–168. Springer, 1997. 809

[19] A. M. Bruaset, E. Holm, and H. P. Langtangen. Increasing the efficiency
and reliability of software development for systems of PDEs. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
for Scientific Computing. Birkhäuser, 1997. 650

[20] A. M. Bruaset and H. P. Langtangen. Basic tools for linear algebra. In
M. Dæhlen and A. Tveito, editors, Mathematical Models and Software
Tools in Industrial Mathematics, pages 27–44. Birkhäuser, 1997. 91

[21] A. M. Bruaset and H. P. Langtangen. A comprehensive set of tools
for solving partial differential equations; Diffpack. In M. Dæhlen and
A. Tveito, editors, Mathematical Models and Software Tools in Indus-
trial Mathematics, pages 61–90. Birkhäuser, 1997. 3

[22] A. M. Bruaset and H. P. Langtangen. Object-oriented design of precon-
ditioned iterative methods in Diffpack. Transactions on Mathematical
Software, 23:50–80, 1997. 91, 851

[23] A. M. Bruaset, H. P. Langtangen, and G. W. Zumbusch. Domain
decomposition and multilevel methods in Diffpack. In P. Bjørstad,
M. Espedal, and D. Keyes, editors, Proceedings of the 9th Conference
on Domain Decomposition. Wiley, 1997. 851

[24] X. Cai. Domain decomposition. In H. P. Langtangen and A. Tveito,
editors, Advanced Topics in Computational Partial Differential Equa-
tions – Numerical Methods and Diffpack Programming. Springer, 2003.
808, 851

[25] X. Cai, E. Acklam, H. P. Langtangen, and A. Tveito. Parallel comput-
ing in Diffpack. In H. P. Langtangen and A. Tveito, editors, Advanced
Topics in Computational Partial Differential Equations – Numerical
Methods and Diffpack Programming. Springer, 2003. 584

876 Bibliography

[26] D. Calhoun and H. P. Langtangen. Writing C++ interfaces to FOR-
TRAN packages. Research report 2002-07, Simula Research Labora-
tory, 2002. See URL http://www.simula.no. 731

[27] T. F. Chan and T. P. Mathew. Domain decomposition algorithms. In
Acta Numerica 1994, pages 61–143. Cambridge University Press, 1994.
808

[28] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math.
Comp., 22:745–762, 1968. 605

[29] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-
Holland, 1978. 231

[30] P. G. Ciarlet. Finite element approximation theory. In H. Kardestuncer,
editor, Finite Element Handbook. McGraw-Hill, 1987. 247

[31] R. D. Cook, D. S. Malkus, and M. E. Plesha. Concepts and Applications
of Finite Element Analysis. Wiley, 3rd edition, 1989. 199, 519

[32] D. A. Barry, C. T. Miller and P. J. Culligan-Hensley. Temporal dis-
cretization errors in non-iterative split-operator approaches to solving
chemical reaction/groundwater transport models. J. of Contaminant
Hydrology, 22:1–17, 1996. 514

[33] G. Dahlquist and Å. Bjørk. Numerical Methods. Prentice-Hall, 1974.
17, 488, 489

[34] L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy. Toward a
universal h−p adaptive finite element strategy. Part 1. Constrained ap-
proximation and data structure. Comput. Methods Appl. Mech. Engrg.,
77:79–112, 1989. 259

[35] Diffpack software package. http://www.diffpack.com. 3

[36] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Introduction to
adaptive methods for differential equations. Acta Numerica, pages 1–
54, 1995. 257, 259

[37] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational
Differential Equations. Cambridge University Press, 1996. 223, 227,
229, 248, 257, 259

[38] M. J. Fagan. Finite Element Analysis. Longman Scientific & Technical,
1992. 182, 519

[39] Fastflo software package.
http://www.nag.co.uk/simulation/Fastflo/fastflo.html. 71

[40] FEMLAB software package. http://www.femlab.com. 71

[41] J. H. Ferziger and M. Perić. Computational Methods for Fluid Dynam-
ics. Springer, 1996. 605

[42] B. A. Finlayson. Numerical Methods for Problems with Moving Fronts.
Ravenna Park Publishing, Seattle, USA, first edition, 1992. 229

Bibliography 877

[43] C. A. J. Fletcher. Computational Techniques for Fluid Dynamics, Vol I
and II. Springer Series in Computational Physics. Springer, 1988. 18,
24, 68, 229, 488, 592, 593, 605, 607, 696, 701

[44] N. D. Fowkes and J. J. Mahony. An Introduction to Mathematical
Modelling. Wiley, 1994. 663

[45] FreeFEM software package. http://www.asci.fr/˜prudhomm/gfem-
html. 71

[46] J. E. F. Friedl. Mastering Regular Expressions. O’Reilly, 1997. 45, 745

[47] R. Glowinski. Numerical Methods for Nonlinear Variational Problems.
Springer, 1984. 231, 238, 244

[48] P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite
Element Method. Wiley, 1998. 165, 189, 219, 222, 223, 590, 593, 615,
676

[49] M. Griebel, T. Dornseifer, and T. Neunhoeffer. Numerical Simulation
in Fluid Dynamics: A Practical Introduction. SIAM, 1997. 590, 605,
613

[50] GRUMMP software package. http://tetra.mech.ubc.ca/GRUMMP. 323

[51] M. D. Gunzburger and R. A. Nicolaides. Incompressible computational
fluid dynamics; Trends and advances. Cambridge University Press,
1993. 607, 615

[52] W. G. Habashi and M. M. Hafez. Compressible inviscid flow. In
H. Kardestuncer, editor, Finite Element Handbook. McGraw-Hill, 1987.
517

[53] W. Hackbusch. Multi–Grid Methods and Applications. Springer, Berlin,
1985. 809

[54] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations.
Springer, 1994. 786, 795

[55] D. Harms and K. McDonald. The Quick Python Book. Manning, 1999.
51

[56] J. P. Den Hartog. Advanced Strength of Materials. Dover, 1987. (orig-
inal edition published by McGraw-Hill, 1952). 401, 520, 544

[57] E. J. Holm and H. P. Langtangen. A uniform mesh refinement method
with applications to porous media flow. Int. J. Num. Meth. Fluids,
28:679–702, 1998. 382, 656

[58] E. J. Holm and H. P. Langtangen. A method for simulating sharp fluid
interfaces in groundwater flow. Adv. Water Res., 23:83–95, 1999. 656

[59] T. J. R. Hughes. Recent progress in the development and understanding
of SUPG methods with special reference to the compressible Euler and
Navier-Stokes equations. Int. J. Num. Meth. Fluids, 14(7):1261–1275,
1987. 227

878 Bibliography

[60] T. J. R. Hughes, W. K. Liu, and A. Brooks. Finite element analysis
of incompressible viscous flows by the penalty function formulation. J.
Comp. Phys., 30:1–60, 1979. 593, 596

[61] S. C. Hunter. Mechanics of Continuous Media. Wiley, 2nd edition,
1983. 304, 401, 520

[62] M. B. Allen III, G. A. Behie, and J. A. Trangenstein. Multiphase
flow in porous media. Lecture notes in engineering. Lecture notes in
engineering. Springer, 1988. 144

[63] M. B. Allen III, I. Herrera, and G. F. Pinder. Numerical Modeling in
Science and Engineering. Wiley, 1988. 26, 175, 488

[64] B. Joe. GEOMPACK – a software package for the generation of meshes
using geometric algorithms. Adv. Eng. Software, 13:325–331, 1991. 317,
318, 323

[65] C. Johnson. Numerical Solutions of Partial Differential Equations by
the Finite Element Method. Cambridge University Press, 1987. 231,
248

[66] A. Kjeldstad, H. P. Langtangen, J. Skogseid, and K. Bjørlykke. Sim-
ulation of sedimentary basins. In H. P. Langtangen and A. Tveito,
editors, Advanced Topics in Computational Partial Differential Equa-
tions – Numerical Methods and Diffpack Programming. Springer, 2003.
656

[67] L. D. Landau and E. M. Lifshitz. Theory of Elasticity. Course of
Theoretical Physics, Volume 7. Pergamon Press, 2nd edition, 1970. 627

[68] H. P. Langtangen. Python Scripting for Scientific Computing. Textbook
in Computational Science and Engineering. Springer. In preparation.
50, 51, 56, 326, 333, 456, 457, 464, 741, 744

[69] H. P. Langtangen. Conjugate gradient methods and ILU precondition-
ing of non-symmetric matrix systems with arbitrary sparsity patterns.
Int. J. Num. Meth. Fluids, 10:213–223, 1989. 807

[70] H. P. Langtangen. Implicit finite element methods for two-phase flow
in oil reservoirs. Int. J. Num. Meth. Fluids, 20:651–681, 1990. 801

[71] H. P. Langtangen. Tips and frequently asked questions about Diffpack.
Numerical Objects Report Series, Numerical Objects A.S., 2002.
http://www.nobjects.com/Diffpack/FAQ. 86, 109, 309, 330, 720, 721,
735

[72] H. P. Langtangen, A. M. Bruaset, and E. Quak, editors. Advances in
Software Tools for Scientific Computing. Springer, 1999. 783

[73] H. P. Langtangen and K.-A. Mardal. A software framework for mixed
finite element programming. In P. M. A. Sloot, C. J. K. Tan, J. J. Don-
garra, and A. G. Hoekstra, editors, Proceedings of the 2nd International

Bibliography 879

Conference on Computational Science, Lecture Notes in Computer Sci-
ence. Springer, 2002. 586, 591

[74] H. P. Langtangen and K.-A. Mardal. Using Diffpack from Python
scripts. In H. P. Langtangen and A. Tveito, editors, Advanced Topics
in Computational Partial Differential Equations – Numerical Methods
and Diffpack Programming. Springer, 2003. 333

[75] H. P. Langtangen, K.-A. Mardal, and R. Winther. Numerical methods
for incompressible viscous flow. Adv. Water. Res., pages 1125–1146,
2002. 590

[76] H. P. Langtangen and O. Munthe. Solving systems of partial differential
equations using object-oriented programming techniques with coupled
heat and fluid flow as example. ACM Transactions on Mathematical
Software, 27(1):1–26, March 2001. 656

[77] H. P. Langtangen, N. Nunn, G. Pedersen, K. Samuelsson, H. Semb,
and W. Shen. Finite element preprocessors in Diffpack. Numeri-
cal Objects Report Series, Numerical Objects A.S., 2002. See URL
http://www.nobjects.com/Reports. 267, 313, 317, 323, 326, 402, 405,
602

[78] H. P. Langtangen and H. Osnes. Stochastic partial differential equa-
tions. In H. P. Langtangen and A. Tveito, editors, Advanced Topics
in Computational Partial Differential Equations – Numerical Methods
and Diffpack Programming. Springer, 2003. 692

[79] H. P. Langtangen and G. Pedersen. Computational methods for weakly
dispersive and nonlinear water waves. Comput. Meth. Appl. Mech.
Engrg., 160:337–358, 1998. 589

[80] H. P. Langtangen and G. Pedersen. A Lagrangian model for run-up
of shallow water waves. In M. Hafez and J. C. Heinrich, editors, The
proceedings of the Tenth International Conference on Finite Elements
in Fluids, 1998. 589

[81] H. P. Langtangen and A. Tveito, editors. Advanced Topics in Computa-
tional Partial Differential Equations – Numerical Methods and Diffpack
Programming. Springer, 2003. 4

[82] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser,
1992. 145, 688

[83] R. J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cam-
bridge University Press, 2002. 145

[84] J. A. Liggett. Fluid Mechanics. McGraw-Hill, 1994. 576, 626, 670

[85] C. C. Lin and L. A. Segel. Mathematics Applied to Deterministic Prob-
lems in the Natural Sciences. SIAM, 1988. 663

880 Bibliography

[86] W. K. Liu and T. Belytschko. Efficient linear and nonlinear heat con-
duction with a quadrilateral element. Int. J. Num. Meth. Engng.,
20:931–948, 1984. 776

[87] J. D. Logan. Applied Mathematics; A Contemporary Approach. Wiley,
1987. 663, 678

[88] J. D. Logan. An Introduction to Nonlinear Partial Differential Equa-
tions. Wiley, 1994. 661, 702

[89] M. Loukides and A. Oram. Programming with GNU Software. O’Reilly,
1997. 21, 332, 720

[90] B. Lucquin and O. Pironneau. Introduction to Scientific Computing.
Wiley, 1998. 71, 404, 405

[91] M. Lutz and D. Ascher. Learning Python. O’Reilly, 1999. 51

[92] L. E. Malvern. Introduction to the Mechanics of a Continuous Medium.
Prentice-Hall, 1969. 520, 522, 525, 671

[93] K.-A. Mardal, E. Acklam, and D. Calhoun. How to use Matlab in C++
programs. Research report 2002-08, Simula Research Laboratory, 2002.
See URL http://www.simula.no. 103, 432

[94] K.-A. Mardal and H. P. Langtangen. Mixed finite elements. In H. P.
Langtangen and A. Tveito, editors, Advanced Topics in Computational
Partial Differential Equations – Numerical Methods and Diffpack Pro-
gramming. Springer, 2003. 586, 591

[95] K.-A. Mardal, J. Sundnes, A. Tveito, and H. P. Langtangen. Block pre-
conditioning for systems of PDEs. In H. P. Langtangen and A. Tveito,
editors, Advanced Topics in Computational Partial Differential Equa-
tions – Numerical Methods and Diffpack Programming. Springer, 2003.
807

[96] K.-A. Mardal, G. W. Zumbusch, and H. P. Langtangen. Multigrid
software tools. In H. P. Langtangen and A. Tveito, editors, Advanced
Topics in Computational Partial Differential Equations – Numerical
Methods and Diffpack Programming. Springer, 2003. 382, 612, 809,
815, 851

[97] G. E. Mase. Theory and Problems of Continuum Mechanics. Schaum’s
Outline Series in Engineering. McGraw-Hill, 1970. 520, 522, 525, 671

[98] Mayavi Vtk visualization interface. http://mayavi.sourceforge.net. 291

[99] C. C. Mei. The Applied Dynamcsi of Ocean Surface Waves. World
Scientific, 1989. 576

[100] C. T. Miller and A. J. Rabideau. Development of split-operator, Petrov-
Galerkin methods to simulate transport and diffusion problems. Water
Resources Research, 29:2227–2240, 1993. 514

[101] K. W. Morton. Numerical Solution of Convection-Diffusion Problems.
Chapman & Hall, 1996. 223, 226, 227, 229

Bibliography 881

[102] O. Munthe and H. P. Langtangen. Finite elements and object-oriented
implementation techniques in computational fluid dynamics. Comput.
Meth. Appl. Mech. Engrg., 190:865–888, 2000. 656

[103] M. Nelson. C++ Programmers Guide to the Standard Template Li-
brary. IDG Books, 1995. 299

[104] C. D. Norton. Object-Oriented Programming Paradigms in Scientific
Computing. PhD thesis, Rensselaer Polytechnic Institute, 1996. 70

[105] Object-Oriented Numerics. http://www.oonumerics.org/. 71

[106] J. T. Oden, L. Demkowicz, W. Rachowicz, and T. A. Westermann. To-
ward a universal h−p adaptive finite element strategy. Part 2. A poste-
riori error estimates. Comput. Methods Appl. Mech. Engrg., 77:113–180,
1989. 259

[107] H. Olsson. Object-oriented solvers for initial value problems. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools
for Scientific Computing. Birkhäuser, 1997. 103

[108] D. R. J. Owen and E. Hinton. Finite Elements in Plasticity: Theory
and Practice. Pineridge Press Ltd., 1980. 553, 557, 558, 559, 560

[109] S. B. Palmer and M. S. Rogalski. Advanced University Physics. Gordon
and Breach Publishers, 1996. 680

[110] D. H. Peregrine. Equations for water waves and the approximation
behind them. In R. E. Meyer, editor, Waves on beaches, pages 357–
412. Academic Press, New York, 1972. 576

[111] R. Peyret and T. D. Taylor. Computational Methods for Fluid Flow.
Springer Series in Computational Physics. Spriver, 1983. 605, 610

[112] S. Prata. C++ Primer Plus. Waite Group Press, 2nd edition, 1995.
IX, 5, 71, 737

[113] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery.
Numerical Recipes in C; The Art of Scientific Computing. Cambridge
University Press, 2nd edition, 1992. 99, 103, 165

[114] A. Quarteroni and A. Valli. Numerical Approximation of Partial Dif-
ferential Equations. Springer Series in Computational Mathematics.
Springer, 1994. 199, 231, 244, 514, 593, 615, 803

[115] B. D. Reddy. Functional analysis and boundary-value problems: an
introductory treatment. Longman Scientific & Technical, 1986. 159,
231

[116] J. N. Reddy. On penalty function methods in the finite element analysis
of flow problems. Int. J. Num. Meth. Fluids, 2:151–171, 1982. 593

[117] J. N. Reddy and D. K. Gartling. The Finite Element Method in Heat
Transfer and Fluid Dynamics. CRC Press, 1994. 593, 596, 605

882 Bibliography

[118] G. Ren and T. Utnes. A finite element solution of the time-dependent
incompressible Navier-Stokes equations using a modified velocity cor-
rection method. Int. J. Num. Meth. Fluids, 17:349–364, 1993. 605,
616

[119] M. Renardy and R. C. Rogers. An Introduction to Partial Differential
Equations. Text in Applied Mathematics. Springer, 1993. 151

[120] R. D. Richtmyer and K. W. Morton. Difference Methods for Initial-
Value Problems. Wiley, 1967. 688

[121] P. J. Roache. Verification and Validation in Computational Science
and Engineering. Hermosa Publishers, 1998. 377

[122] U. Rüede. Mathematical and Computational Techniques for Multilevel
Adaptive Methods. Frontiers in Applied Mathematics. SIAM, 1993. 809

[123] R. H. Sabersky, A. J. Acosta, and E. G. Hauptmann. Fluid Flow: A
First Course in Fluid Mechanics. Maxwell Macmillian, 3 edition, 1989.
670

[124] R. Sampath and N. Zabaras. An object-oriented implementation of
adjoint techniques for the design of complex continuum systems. Int.
J. Num. Meth. Engng., 1999. 564

[125] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit;
an Object-Oriented Approach to 3D Graphics. Prentice-Hall, 2nd edi-
tion, 1998. 290

[126] L. A. Segel. Mathematics Applied to Continuum Mechanics. Dover,
1987. (original edition published by Macmillan, 1977). 401, 520, 522,
671

[127] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator
and delaunay triangulator.
http://www.cs.cmu.edu/˜quake/tripaper/triangle0.html, 1996. 317,
318, 323, 405

[128] B. Smith, P. Bjørstad, and W. Gropp. Domain Decomposition – Paral-
lel Multilevel Methods for Elliptic Partial Differential Equations. Cam-
bridge University Press, 1996. 760, 808, 809

[129] I. M. Smith and D. V. Griffiths. Programming the Finite Element
Method. Wiley, 3 edition, 1998. 199, 553

[130] M. R. Spiegel. Theory and Problems of Theoretical Mechanics.
Schaum’s Outline Series in Science. McGraw-Hill, 1967. 190

[131] A. Srikanth and N. Zabaras. A computational model for the finite ele-
ment analysis of thermoplasticity with ductile damage at finite strains.
Int. J. Num. Meth. Engng., 1999. 564

[132] W. A. Strauss. Partial Differential Equations: An Introduction. Wiley,
1992. 678

Bibliography 883

[133] J. C. Strikwerda. Finite Difference Schemes and Partial Differential
Equations. Wadsworth and Brooks/Cole, 1989. IX, 496, 688

[134] T. Strouboulis and K. A. Haque. Recent experiences with error es-
timation and adaptivity, Part I: Review of error estimators for scalar
elliptic problems. Comput. Methods Appl. Mech. Engrg., 97:399–436,
1992. 259

[135] T. Strouboulis and K. A. Haque. Recent experiences with error es-
timation and adaptivity, Part II: Error estimation for h-adaptive ap-
proximations on grids of triangles and quadrilaterals. Comput. Methods
Appl. Mech. Engrg., 100:359–430, 1992. 258, 259

[136] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 3rd
edition, 1997. IX, 5, 7, 70, 71, 91, 92

[137] B. Szabo and I. Babuska. Finite Element Analysis. Wiley, 1991. 175,
259

[138] M. Tabbara, T. Blacker, and T. Belytschko. Finite element derivative
recovery by moving least squares interpolants. Comput. Meth. Appl.
Mech. Engrg., 117:211–223, 1994. 304

[139] R. Temam. Sur l’approximation de la solution des équations de Navier-
Stokes par la méthode des pas fractionnaires. Arc. Ration. Mech. Anal.,
32:377–385, 1969. 605

[140] S. P. Timoshenko. Theory of Elasticity. McGraw-Hill, 3rd edition,
1982. 401, 520, 535, 660, 671

[141] D. L. Turcotte and G. Schubert. Geodynamics – Applications of Con-
tinuum Physics to Geological Problems. Wiley, 1982. 14

[142] S. Turek. Efficient Solvers for Incompressible Flow Problems. Springer,
1999. 590

[143] A. Tveito and R. Winther. Introduction to Partial Differential Equa-
tions – A Computational Approach. Springer, 1998. IX, 18, 664, 667,
678, 696

[144] T. L. Veldhuizen and M. E. Jernigan. Will C++ be faster than For-
tran? In Y. Ishikawa, R. R. Oldehoeft, J. V. W. Reynders, and M. Thol-
burn, editors, Scientific Computing in Object-Oriented Parallel Envi-
ronments, Lecture Notes in Computer Science, pages 49–56. Springer,
1997. 77

[145] R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive
Mesh-Refinement Techniques. Wiley Teubner, 1996. 259

[146] L. Wall, T. Christiansen, and R. L. Schwartz. Programming Perl.
O’Reilly, 2nd edition, 1996. 45, 745

[147] Z. U. A. Warsi. Fluid Dynamics, Theoretical and Computational Ap-
proaches. CRC Press, 1993. 670

884 Bibliography

[148] P. Wesseling. An Introduction to Multigrid Methods. Wiley, 1992. 790,
809, 811, 815

[149] F. M. White. Viscous Fluid Flow. McGraw-Hill, 1991. 67, 140, 670

[150] N. Zabaras and A. Srikanth. An object-oriented programming approach
to the Lagrangian FEM analysis of large inelastic deformations and
metal forming processes. Int. J. Num. Meth. Engng., 1999. 564

[151] N. Zabaras and A. Srikanth. Using objects to model finite deformation
plasticity. Engineering with Computers, 1999. 564

[152] E. Zauderer. Partial Differential Equations of Applied Mathematics.
Wiley, 1989. 711

[153] O. C. Zienkiewicz and K. Morgan. Finite Elements and Approximation.
Wiley, 1983. 209

[154] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method (3
volumes). McGraw-Hill, 5th edition, 2000. 175, 209, 214, 216, 258,
519, 527, 550, 553, 554, 559, 632

[155] O. C. Zienkiewicz and J. Z. Zhu. A simple error estimator and adap-
tive procedure for practical engineering analysis. Int. J. Num. Meth.
Engng., 24:337–357, 1987. 258, 389

[156] O. C. Zienkiewicz and J. Z. Zhu. The super convergent patch recovery
and a posteriori error estimates. Part 1: The recovery technique. Int.
J. Num. Meth. Engng., 33:1331–1364, 1992. 258

Index

∇ · λ(x)∇ operator, 56
∂u/∂n, 60

a posteriori error estimates, 255
a priori error estimates, 248
accuracy
– a posteriori estimates (FEM), 255
– a priori estimates (FEM), 248
– numerical dispersion relations, 689
– numerical experiments, 251, 298,

343, 416
– truncation error, 693
– wave equation (FDM), 689
– wave equation (FEM), 188
adaptivity, 253, 380
addBoIndNodes, 311, 716
addItem, 275, 344, 714
AddMakeSrc, 306
addMaterial, 313, 716
addSubMenu, 714
adm, 275, 348, 840
--advice, 734
aform, 23
--allocreport, 735
animation
– of waves, 42, 475, 584
– using Gnuplot, 42
– using Matlab, 43, 584
– using Plotmtv, 427
– using Vtk, 429
app, 7
application overview, 7
archiving simulation results, 43
array
– classes in Diffpack, 86
– plain C/C++, 79
ArrayGen, 86, 713, 818
ArrayGenSel, 104, 713
ArrayGenSimple, 91, 713
ArrayGenSimplest, 91, 713
artificial diffusion, 67, 224

assembly process (FEM)
– algorithm, 176
– Diffpack code, 751
– example in 1D, 176
– example in 2D, 212
assignEnum, 345
automatic report generation, 333,

420
automatic verification, 740
axisymmetric problems, 204, 345

backward Euler scheme, 133, 163,
494

.bashrc, 718
basis function, 150
BasisFuncGrid, 713
--batch, 345, 735
BiCGStab, 847
bilinear elements, 205, 278
binary storage of fields, 288
biquadratic elements, 213, 279
Blitz++, 783
boNode, 310, 716
boundary conditions
– boundary indicators, 308
– Dirichlet, 267
– essential, 159
– essential (impl.), 267
– in weighted residual method, 156
– natural, 159
– natural (impl.), 314
– Neumann, 60, 314
– redefinition, 310
– Robin, 199, 314, 337, 419
boundary indicators, 308
boundary-layer problems, 67, 224
boundary-value problem, 12
Boussinesq wave equations, 587
Buckley-Leverett equation, 144
Burgers’ equation, 144

885

886 Index

calcElmMatVec, 315, 715, 752
calcTolerance, 734
calling C functions, 729
calling Fortran functions, 730
--casedir, 43
casename, 43, 733
--casename, 43, 733
casename m*, 297
.casename.field, 750
casename.files, 297
.casename.grid, 750
casename.makegraphics, 335
.casename.simres, 281
casename.unix, 335
casename orig, 733
CAST PTR, 739
CAST REF, 739
CAST PTR, 853
CAST REF, 853
casting, 739, 853
Cauchy-Schwartz’ inequality, 239
CdBase, 570
CdEff, 570
CdNonlin, 570
CdStefan, 574
CGS, 847
cl argc, 110
cl argv, 110
class hierarchy, 90, 95, 100, 335,

738
Clean, 46, 719
clean up of files, 43, 719
CloGUI.py, 125
closeReport, 334
CM AND, 861
CM OR, 861
CMAbsRefSolution, 859
CMAbsResidual, 418, 856
CMAbsSeqSolution, 859
CMAbsTrueResidual, 858
.cmake1, 721
.cmake2, 306, 721, 728
cmappr, 744
CMRelMixResidual, 859
CMRelRefSolution, 859

CMRelResidual, 418, 856
CMRelResidualUB, 858
CMRelSeqSolution, 859
CMRelTrueResidual, 858
code optimization, 303, 514, 760
– array indexing, 583
– assembly process, 773
– initial assembly only, 471, 763
– integrands function, 774
– LU/ILU factorization, 761
collecting simulation results, 43
collocation, 151
command prefix (menu), 635
command-line arguments, 277, 293
– menu system, 294
– standard Diffpack arg., 733
– user-defined, 109, 294
CommonRel, 651
compact difference notation, 674
complex exponential functions, 677
complex PDEs, 833
ConjGrad, 845
conjugate-gradient method, 795
consistent mass matrix, 187
const, 81, 268
constructor, 80
continuation methods, 500, 601
continuationSolve, 650
continuing a simulation, 481
continuous problem, 16, 711
ConvDiff1, 407
convection-diffusion equation
– discretization, 67, 222, 406, 569
– scaling, 669
– simulator, 406, 570
convergence monitor, 418, 851
– compound test, 860
– plotting, 859
convergence rate, 248, 251, 343
convergence tests, 417
ConvMonitor, 855
ConvMonitorList prm, 852
copy constructor, 80
copying files/directories, 719
Couette flow

Index 887

– circular, 203
– starting, 139
Courant number, 38
CpnewMakefiles, 721
crack modeling, 564
Crank-Nicolson scheme, 133, 163,

632
create, 101
createEmpty, 823
.cshrc, 718
curve integrals (FEM), 314
CurvePlot, 742, 859
curveplot, 44, 137, 293, 375, 744
CurvePlotFile, 742
curveplotgui, 43
curveplotmovie, 42
CXXUF, 720

-D, 293
Darcy’s law, 218
debugging, 330
--Default, 293
default menu answers, 293
#define, 84
define, 274, 348, 840
defineStatic, 275
DegFreeFD, 866
DegFreeFE, 264, 270, 714, 717
delta function, 151, 191, 552
Delta, GridLattice, 716
Delta, TimePrm, 717
derivativePt, 717
derivedQuantitiesAtItgPt, 303, 304
destructor, 84
difference equations
– analytical solution, 683
– compact notation, 674
difference operators, 674
differential equations, 33
Diffpack
– application directory, 6
– array classes, 86
– boundary indicators, 308
– calling C, 729
– calling Fortran, 730

– casting, 739
– clean up of files, 43, 719
– command-line arguments, 277, 293,

733
– compilation, 7, 21, 306, 720, 727
– continuing a simulation, 481
– contouring, 748
– CPU time, 23
– curve plotting, 42, 742
– default menu answers, 293
– directory, 6
– drawing algorithms, 748
– element types, 279
– examples, overview, 7
– fields, 103, 478
– files generated, 297
– filters, 280, 422
– graphical filters, 280, 422
– grids, 103, 264, 380
– I/O, 736, 748
– linking, 7, 720, 727, 728
– make directory, 6
– makefiles, 721, 727
– man pages, 733
– material subdomains, 313
– menu interface, 276
– menu system, 274
– MLS smoothing, 301, 304
– optimization of code, 303, 514,

583, 760
– overriding the menu, 340
– overview, 3
– profiling, 721
– programming standard, 109
– random grid distortion, 337
– redefine boundary indicators, 310
– restart of simulation, 481
– smoothing of derivatives, 301
– subdomain markers, 313
– tolerance, 312, 734
– Verify directory, 740
diffusion/heat equation, 199, 411,

501, 661, 705, 861
dimensionless variables, 663
Dirac delta function, 151, 191, 552

888 Index

DirectSolver, 835
Dirichlet boundary condition, 14
Dirichlet condition, 267
discrete problem, 16, 711
dispersion relations
– analytical, 681
– numerical, 686
distorted grids, 337
domain decomposition, 809
downward casting, 739
dpc.m, 745, 746
dpcshrc, 718
dpd.m, 289, 430
$DPEXTSOFT, 728
DpList, 92
DpMenu, 296
dpshrc, 718
DUMMY, 298

elastic vibrations, 545
elasticity, 520
Elasticity1, 528
Elasticity2, 528
ElasticVib1, 547
elasto-plasticity, 550
elasto-viscoplasticity, 550
ElastoVP1, 561
ElastoVP2, 562
element matrix/vector
– ∇2u term (triangles), 211
– u term, 186
– u′′ term, 174
– assembly, 176
– definition, 172
– implementation, 268
– numerical integration, 175, 752
elliptic equations, 701
ElmMatVec, 263
ElmMatVecCalc, 754
ElmMatVecCalcStd, 754
ElmTensorProd1-3, 508
embed1.py, 436
#endif, 84
Energy, 651
energy norm, 239

EnergyS, 651
enthalpy formulation, 573
environment variables
– $DPEXTSOFT, 728
– $MACHINE TYPE, 718
– $NOR, 718
error analysis
– a posteriori (FEM), 255
– a priori (FEM), 248
– numerical dispersion relations, 689
– numerical experiments, 251, 298,

343, 416
– truncation error, 693
– wave equation (FDM), 689
– wave equation (FEM), 188
error estimation
– a posteriori, 388
– a posteriori (FEM), 255
– a priori (FEM), 248
– exact, 298, 416
error norms, 298
errorFP, 101, 715
ErrorNorms, 298, 714
ErrorRate, 343, 714
essential boundary conditions, 159
--exceptions, 735
explicit difference schemes, 33
explicit schemes, 131, 862
extreme values, 428

fatalerrorFP, 715
FDM, 865
FEM, 263, 714, 715
Field, 478, 713
.*.field, 750
field objects in Diffpack, 103, 478
field2vec, 717
FieldConst, 478
FieldFE, 264, 478, 714, 715
FieldFormat, 478
FieldFunc, 713, 717
FieldLattice, 105, 478, 583, 714,

715
FieldPiWisConst, 714
Fields, 478, 713

Index 889

FieldsConst, 478
FieldsFE, 478, 714
FieldsFEatItgPt, 303, 714
FieldsFunc, 478, 713
FieldsLattice, 478, 714
FieldsPiWisConst, 303, 478, 714
fillEssBC, 348, 717
fillEssBC2zero, 505
filter (simres), 280, 422
findElmAndLocPt, 716
finished, 717
finite differences
– accuracy, 689
– arithmetic average, 26, 585
– basic ideas, 15
– diffusion/heat equation, 861
– explicit schemes, 37
– geometric average, 26, 585
– harmonic average, 26
– heat/diffusion equation, 861
– implicit schemes, 699, 861
– Navier-Stokes equation, 607
– notation, 674
– stability, 688
– staggered grids, 577, 607
– stencil representation, 59, 864
– systems of PDEs, 577, 607
– truncation error, 693
– upwind, 67
– variable coefficients, 24
– visualization, 107
– wave equation, 33, 57, 577
finite elements
– assembly, 176, 212, 751
– basic ideas, 150
– bilinear, 205, 278
– biquadratic, 213, 279
– convection-diffusion, 222, 406, 569
– cylindrical coordinates, 204, 345
– derivatives, 216
– Diffpack element types, 279
– elasticity, 520
– element level, 172
– error analysis, 248
– expansion, 150

– interpolation, 480
– isoparametric, 173
– jumps in coefficients, 219, 337
– Lagrange type, 213
– line integral, 314
– linear, 168, 208, 215, 279
– many unknowns per node, 530,

594
– mapping, 173
– mixed methods, 586, 591
– Neumann condition, 314
– nonlinear PDEs, 484
– quadratic, 168, 179, 213
– quadrature, 175
– radial coordinate, 204
– Robin condition, 199, 314, 337,

419
– serendipity type, 213
– surface integral, 314
– system of PDEs, 523, 592, 645
– tensor product, 207
– thermo-elasticity, 520
– trilinear, 207, 279
– triquadratic, 215, 279
finite volume methods, 17
FiniteElement, 263, 301, 716
five-point Laplace operator, 58
fluid-structure interaction, 624
flux computation, 219, 302, 754
forceAnswer, 340, 714
formatting of reals, 23
FORTRANname, 730
forward Euler scheme, 133, 163
Fourier
– series, 154, 679
– transform/integral, 679
fractional step, 514
fracture mechanics, 564
freezing problems, 572
Froude number, 671
functor, 115, 127, 299, 414

Galerkin’s method, 153
Gauss-Legendre rules, 175
Gauss-Lobatto rules, 175

890 Index

Gauss-Seidel iteration, 790
GAUSS POINTS, 298, 344
GaussElim, 836
Gaussian elimination
– linear solver, 836
– on a matrix, 19
– pivoting, 827
gdb, 332
generalized I/O, 736
getBool, 715
getCoor, 716
getElmType, 716
getEnumValue, 345
getEssBC, 717
getInt, 715
getLattice, 716
getMaterialType, 716
getMinMaxCoord, 716
getPtr0, 89, 729
getReal, 715
getTime, 717
getTimeStepNo, 717
global menu.init, 275
GMRES, 846
GNU debugger, 332
grading (of mesh), 278
graphical user interface, 125, 293
Green’s lemma, 157
.*.grid, 750
grid generation, 264, 278, 317, 323,

366, 449
grid objects in Diffpack, 103, 264,

380
grid refinement, 380
GridDynFE, 713
GridFE, 264, 713, 716
GridFEAdB, 380, 713
GridFEAdT, 380, 713
gridfile, 274, 278, 297
GridLattice, 104, 714, 716
GridLatticeC, 583
GridRefAdm, 386
group finite element method, 486
GUI, 125, 293
--GUI, 293, 345, 735

gui.py, 117
GUIMENU, 293

Handle, 106, 266, 330
HandleId, 107
has a (class relationship), 99
header files, 84
heat/diffusion equation, 199, 411,

501, 661, 705, 861
Heat1, 412
Heat1D, 135, 706
Heat1iLU, 762
Heat1opt, 773
Heat2, 419
Heat2analsol, 420
Heat2eff, 767
Heat2weld, 422
HeatSteady1D, 108
Heaviside function, 552
--help, 733
hollow disk, 337
hollow sphere, 337
hyperbolic conservation laws, 144
hyperbolic equations, 701

I/O, 736, 748
#ifndef, 84
ifstream, 736
ignore, 737
ILU preconditioning, 806, 850
implicit schemes, 131, 862
include files, 5, 265
increaseTime, 717
index optimization, 303, 583
Indicators, 313, 654
inheritance, 305
initDiffpack, 6, 715
initEssBC, 312, 717
initFromCommandLineArg, 109, 715
initial-boundary value problem, 33
initTimeLoop, 717
InputPrmDp, 457
InputPrmDpGUI, 464
insertEssBC, 717
integer arrays, 87

Index 891

IntegrandCalc, 753
integrands, 268, 348, 509, 715, 752,

753
integrands functor, 599, 753
integrands4side, 314, 349, 715, 752
integrate
– over boundary (flux), 754
– over side, 754
– over the grid, 754
integrated flux computations, 754
IntegrateOverGridFE, 755
integration
– by parts in 1D, 156
– by parts in 2D/3D, 157
– Green’s lemma, 157
– numerical, 175
– over sides, 314
– reduced, 596
– rules, 175
interpolant, 247
IRIS Explorer, 291
irregular nodes, 382
irrotational flow, 238, 404, 515
Is, 736
is a (class relationship), 99
--iscl, 735
isLattice, 716
isoparametric mapping, 173, 213
--iss, 735
IterativeSolver, 835

Jacobi, 844
Jacobi iteration, 788
Jacobian
– isoparametric mapping, 173, 262
– nonlinear systems, 489

Kronecker delta, 523
Krylov space, 797
Krylov subspace methods, 844
Kutta-Joukowski condition, 404

Lagrange elements, 213
Lax Equivalence Theorem, 688
Lax-Milgram Theorem, 236

Lax-Wendroff scheme, 228
– MacCormack, 145
– Richtmyer, 145
LDPATH, 728
Leap-Frog scheme, 621
– heat equation, 496
– hyperbolic equation, 145
least squares, 151
LIBS, 728
lift on airfoil, 404
line integrals, 314
line integrals, 754
linear elements, 168, 208, 215, 279
linear solvers
– BiCGStab, 847
– CGS, 847
– conjugate gradients, 801, 845
– convergence monitor, 418, 851
– direct, 835
– Gauss-Seidel, 790
– GCR, 800, 846
– generalized conjugate residuals,

800
– GMRES, 846
– iterative, 785, 844
– Jacobi, 788, 843
– menu system input, 294, 418, 461,

539
– minimum residuals, 800
– Minres, 846
– multigrid, 810
– Orthomin, 800, 846
– preconditioning, 803, 844, 847
– pseudo time stepping, 789
– R-OM, 800, 846
– restarted iterations, 846
– SOR, 791, 843
– SSOR, 792, 843
– start vector, 418, 851
– Symmlq, 845
– T-OM, 800, 846
– termination criteria, 418, 851
– TFQMR, 847
– truncated iterations, 846
linear systems

892 Index

– class representation, 831, 847
– complex-valued, 833
– first encounter, 16
– interface for FDM, 865
– interface for FEM, 264
– iterative solvers, 785
– preconditioned, 803, 847
lineCurves, 293
LinEqAdmFD, 865
LinEqAdmFE, 264, 714, 823, 852
LinEqMatrix, 833
LinEqSolver, 835, 855
LinEqSummary, 714
LinEqSystem, 834
LinEqSystemPrec, 847
LinEqSystemStd, 834, 847
LinEqVector, 833
linking with external libraries, 728
LinSys1, 836
LinSys4, 852
Lnorm, 298
loc2glob, 717
local mesh refinements, 380
LongWave1, 581
loop optimization, 303, 583
lumped mass matrix, 187, 302, 546,

617

MacCormack’s method, 145
$MACHINE TYPE, 718
main, 6
Make, 21, 306, 740
– clean, 720
– MODE=nopt, 21, 720
– MODE=opt, 21, 720
– newverify, 741
– verify, 740
makefiles, 306, 721, 727
makeFlux, 302, 715
makegrid, 280, 310, 323, 391, 544,

564
makeMassMatrix, 715
makeSystem, 270, 715, 751
man pages (for Diffpack), 733
mass computations, 754

mass matrix, 162
Mat, 86, 713, 819, 825
MatBand, 713, 820, 826
MatDense, 713
MatDiag, 713, 820
material subdomains, 313
Matlab, 43, 103, 289, 430
MatlabEngine, 103, 431
Matrix, 713
matrix
– banded, 820, 826
– blocks, 832
– compressed row storage, 824
– dense, 819, 825
– diagonal, 820
– formats, 818
– general sparse, 821, 823, 830
– structured sparse, 821, 824, 828
– tridiagonal, 24, 820
matrix classes, 86
Matrix prm, 852
Matrix prm::createEmpty, 852
MatSimple, 713
MatSimplest, 713
MatSparse, 713, 821, 823, 830
MatStructSparse, 713, 821, 824, 829
MatTri, 24, 713, 820
max/min field values, 428
MAX CONV MONITORS, 854
melting and solidification, 572
menu command prefix, 635
menu interface, 276
menu system, 274
– answers, 274, 297
– callback, 294
– comments, 295
– get answers, 276
– input data manual, 296
– input file, 274
– input file generation, 296
– iterative solvers, 295
– multiple loop, 297
menu.get, 276, 714
MenuSystem, 274, 714
.menutree, 296

Index 893

mesh refinement, 380
MILU preconditioning, 806, 850
minimization
– functionals, 237
– quadratic forms, 246
minmax simres2summary, 463
Minres, 846
mixed finite elements, 586, 591, 758
Mkdir, 6
.ml, 297
MODE, 21
Momentum, 650
MomentumS, 651
move, 716
moving least squares, 304
MovingLS, 304
MPEG movie
– examples, 475
– front page, 746
– Gnuplot, 45
– Matlab, 45, 430
– Plotmtv, 427
– Vtk, 429
multigrid, 611, 810
multiple index array, 86
multiple menu answers, 297
multiple unknowns per node, 530,

594, 656
multipleLoop, 297, 714
MultipleReporter, 714
MyVector, 77

naming conventions, 109
natural boundary conditions, 159
Navier equations, 520
Navier-Stokes equations, 591
– finite differences, 605
– finite elements, 592, 615
– reduced, 643
– scaling, 670
Neumann boundary condition, 14,

314
Newmark scheme, 632
Newton’s cooling law, 199
Newton’s method, 488, 504, 509

Newton-Raphson’s method, 488
NewtonRaphson, 502
NlHeat1, 501
NlHeat1e, 508
NlHeatSteady1D, 114
NODAL POINTS, 298, 344
--nodump, 735
--nographics, 335, 734
non-optimized compilation, 21, 720
nonlin solution, 504
nonlinear algebraic equations, 501
nonlinear PDEs, 483, 501
nonlinear systems
– continuation methods, 500
– continuous Newton method, 497
– Diffpack tools, 501
– examples, 490
– Newton’s method, 488
– Picard iteration, 488
– simple iterations, 488
– Successive Substitutions, 488
NonLinEqSolver, 502, 714
NonLinEqSolver prm, 503, 714
NonLinEqSolvers, 714
NonLinEqSolvers prm, 714
NonLinEqSolverUDC, 714
NonLinEqSummary, 513, 714
$NOR, 718
--noreport, 335, 734
normal derivative, 60
--nounix, 335, 734
--nowarnings, 734
NsPenalty1, 597
null pointers, 330
numerical integration, 175, 298
numItgOverElm, 715, 752
numItgOverSide, 752
numItgOverSides, 715
NUMT, 833

object-oriented programming, 92,
339, 570, 632, 649, 817

ODE solvers, 92
ODESolver, 96
oform, 23

894 Index

ofstream, 736
open boundary condition, 704
openReport, 334
operator splitting, 497, 514, 579,

588, 605, 615, 645
OpSysUtil, 715
optimization of Diffpack, 303, 514,

583, 760
optimized compilation, 21, 720
order of a scheme, 690
ordinary differential equations, 92
organizing simulation files, 43
Orthomin, 846
Os, 19, 96, 736
output
– ASCII formatting, 23
– binary storage, 288
overriding menu answers, 340

parabolic equations, 701
parallel computing, 584
parameter class, 100, 822
Peclet number, 223, 669
Perl, 71, 437
perturbation in data, 237, 242, 696
Petrov-Galerkin formulation, 153,

227, 796
phase transitions (heat transfer),

572
Picard iteration, 488, 509
plane stress/strain, 522, 526
plasticity
– crack-tip flow, 564
– explicit strategy, 557
– fully implicit scheme, 556
– viscoplastic model, 550
– viscoplastic steady state, 550
– yield criteria, 553
PlateVib, 633
PlateVibS, 633
PlateVibSin, 633
Plotmtv, 284, 427
plotmtvEL.py, 537
plotting, 22, 42, 280, 281, 422, 742,

747

Poi2disk, 337
Poi2estimates, 252
Poi2flux, 337
Poi2randgrid, 337
Poi2Robin, 316
Poi2sinesum, 337
Poincaré’s inequality, 239
Poiseuille flow, 141, 200, 201
Poisson’s equation, 262, 825
Poisson’s ratio, 526
Poisson0, 263
Poisson1, 273
Poisson2, 307
porous media flow
– single phase, 218
– two phase (1D), 144
positive definite matrix, 245
PrecAlgebraic, 851
PrecJacobi, 849
Precond, 851
preconditioning, 803
– classical iterations, 805, 849
– Gauss-Seidel, 805, 849
– ILU, 806, 850
– incomplete factorization, 806, 850
– inner iterations, 850
– Jacobi, 805, 849
– matrix (def.), 804
– matrix splittings, 805, 849
– MILU, 806, 850
– RILU, 806, 850
– SOR, 805, 849
– SSOR, 805, 849
– user-defined, 851
PrecProcedure, 851
PrecRILU, 850
PrecSORIter, 850
PrecSSOR, 850
Prepro, 717
PreproBox, 278
preprocessor, 264, 278, 317
PreproStdGeom, 317
PreproSupElDef, 326
prm, 100, 822

product approximation, 486

Index 895

.profile, 718
profiling, 721
--prompt, 735
ps2mpeg, 46, 430, 746
pseudo time stepping, 789
Ptv, 86, 267
Python, 50, 71, 326, 366, 376, 433,

455

quadratic elements, 168, 179, 213,
279

quadrature, 175, 298

radiation condition, 704
Rayleigh–Ritz’ method, 247
reaction-diffusion equation, 661
readOrMakeGrid, 278, 715
real, 6
redefineBoInds, 310, 716
reduced integration
– finite element derivatives, 217
– selective (penalty methods), 596
reference counting, 106
RefinementInd, 386
RefinementInd prm, 386
regression tests, 740
report generation, 333, 420
ReportPoisson2, 333
residual, 150, 233, 255, 498, 693,

787
restarting a simulation, 481
resultReport, 109, 348, 838, 842
Reynolds number, 670
RILU preconditioning, 806, 850
RmCase, 43
Robin condition, 199, 314, 337, 419

s i, 6
s o, 6
SAFETY CHECKS, 82
saveResults, 349
SaveSimRes, 280, 714
scaling, 663
scan, 109, 263, 274, 334, 348, 840
scanLattice, 716

scripting, 47, 433, 455
search (direction) vectors, 800
selective reduced integration, 596
semi-norm, 236
separation of variables, 676
serendipity elements, 213
setCommandPrefix, 635
setMaterialType, 716
SetOfNo, 92
SetSimplest, 92
setTimeStep, 717
shape function, 150
SimCase, 276, 714, 758
simple nonlinear iteration, 488
simres, 280, 422, 748
.simres, 281
simres2explorer, 291
simres2gnuplot, 288
simres2matlab, 289
simres2mpeg, 428
simres2mtv, 284
simres2summary, 428
simres2vtk, 289
SimRes2xxx, 714
simresgui, 283, 749
SIMULATION m*, 297
simulation results
– animation, 42, 427, 429, 746
– archiving, 43
– binary storage, 288
– boundary plot, 287
– browsing data, 749
– curve plotting, 42, 742
– extreme values, 428
– field file, 750
– filtering, 280, 422
– Gnuplot, 42, 288, 745
– grid file, 750
– grid plot, 287
– GUI browser, 283, 749
– IRIS Explorer, 291
– Matlab, 42, 289, 430, 745
– organizing, 43
– Plotmtv, 284, 427, 745
– plotting, 42, 280, 422, 742

896 Index

– report generation, 333, 420
– simres format, 750
– table of fields, 281
– Vtk, 289, 429
– Xmgr, 42, 745
SIMULATION.dp, 23
.SIMULATION.field, 750
SIMULATION.files, 297
.SIMULATION.grid, 750
SIMULATION.makegraphics, 335
SIMULATION.map, 42
SIMULATION.unix, 335
simulator overview, 7
simvizGUI.py, 464
SimVizPrmGUI, 464
smooth, 717
smoother (multigrid), 811
solidification and melting, 572
solve, 270
solveAtThisTimeStep, 349, 415, 505
solveProblem, 109, 269, 348
SOR iteration, 791
sound waves, 146
source code for all examples, 1
SparseDS, 824
spectral method, 153, 163, 628
spectral radius, 787
Squeeze, 633
squeeze film, 624
SqueezeS, 633
SSOR, 844
SSOR iteration, 792
stability
– continuous estimate, 237, 242, 696
– discrete estimate, 245
– numerical, 46, 688, 695
– von Neumann’s method, 695
– wave equation, 696
staggered grids, 577, 607
standard template library, 92
start vector
– linear solvers, 269, 416, 418, 787,

844, 851
– nonlinear solvers, 488, 505
static function, 277, 298

SteadyHeating, 352
Stefan problems, 572
stepBack, 717
STL, 92
stopTimeLoop, 717
storing data on file, 281
stream function, 393, 600
String, 23, 714
subdomain collocation, 152
Successive Over-Relaxation, 791
Successive Substitution, 488, 509
SuccessiveSubst, 488
supel.py, 326
super element preprocessor, 323, 366,

449
surface integrals, 314, 754
Symmetric SOR, 792
symmetry of PDE problems, 371,

400
Symmlq, 845
system of PDEs
– finite difference implementation,

142, 577
– finite element implementation, 528,

586, 597, 618, 632, 649

Taylor-Galerkin method, 228
Tcl/Tk, 71, 293
tensor-product elements, 207
termination criteria
– linear solvers, 377, 418, 851
– Newton-Raphson iteration, 489
TFQMR, 847
thermo-elasticity, 520
θ-rule, 133, 163, 508, 862
this, 80
time points for plot, 424
time series points, 424
TimePrm, 714, 717
tmpdpc*.ps, 45, 746
--tolerance, 312, 734
traction, 525
trial function, 150
Triangle preprocessor, 323
triangle2prism, 717

Index 897

trilinear elements, 207, 279
triquadratic elements, 215, 279
truncation error, 693
two-point boundary-value problem,

12
type casting, 853
type identification (run-time), 739
TYPEID NAME, 739
TYPEID PTR, 739, 853
TYPEID REF, 739
TYPEID STR, 740

unfillEssBC2zero, 505
Unix, 2, 719
unsetCommandPrefix, 635
upwind differences, 67, 68, 145
UpwindFE, 407, 571
user’s manual (for menu), 296

valueFEM, 301, 479, 480
valuePt, 480, 717
variational formulation, 232
variational principle, 238
variational problem, 232
Vec, 86, 713, 818
vec2field, 270, 504, 530, 717
VecSimple, 713
VecSimplest, 713
VecSort, 713
Vector, 713, 818
vector
– block, 832
– classes, 86
– formats, 818
velocity potential, 238, 404, 515,

586
--verbose, 296, 330, 454, 735, 762
Verify, 740
viscoplasticity
– crack-tip flow, 564
– explicit time scheme, 557
– fully implicit scheme, 556
– physical model, 550
– plastic steady state, 550
– yield criteria, 553

visualization, 42, 280, 281, 422, 742,
747

– during execution, 103, 431
von Neumann stability, 696
Vtk, 289, 429

warningFP, 715
wave equation
– analysis of accuracy, 687
– finite difference stencil, 59
– finite differences, 33, 57
– finite elements, 471
– qualitative properties, 701
– radiation condition, 704
– spectral method, 163
Wave0, 474
Wave1, 478
Wave1D, 121
Wave2D, 127
weak formulation, 232
weighted residual method, 150
weld1 (simulation case), 423
welding, 422, 660
well-posed problem, 711
wildcard (Unix shell-style), 45
Windows platform, 2, 721

yield criteria, 553
Young’s modulus, 526

	1 Getting Started
	1.1 The First Diffpack Encounter
	1.1.1 What is Diffpack?
	1.1.2 A Simple C++ Program
	1.1.3 A Simple Diffpack Program

	1.2 Overview of Application Examples
	1.2.1 Very Simple Introductory Program Examples
	1.2.2 Finite Difference Simulators
	1.2.3 Finite Element Simulators
	1.2.4 More Advanced Applications

	1.3 Steady One-Dimensional Heat Conduction
	1.3.1 The Physical and Mathematical Model
	1.3.2 A Finite Difference Method
	1.3.3 Implementation in Diffpack
	1.3.4 Dissection of the Program
	1.3.5 Tridiagonal Matrices
	1.3.6 Variable Coefficients
	1.3.7 A Nonlinear Heat Conduction Problem

	1.4 Simulation of Waves
	1.4.1 Modeling Vibrations of a String
	1.4.2 A Finite Difference Method
	1.4.3 Implementation
	1.4.4 Visualizing the Results
	1.4.5 Automating Simulation and Visualization in Scripts
	1.4.6 A 2D Wave Equation with Variable Wave Velocity
	1.4.7 A Model for Water Waves

	1.5 Projects
	1.5.1 A Uni-Directional Wave Equation
	1.5.2 Centered Differences for a Boundary-Layer Problem
	1.5.3 Upwind Differences for a Boundary-Layer Problem

	1.6 About Programming with Objects
	1.6.1 Motivation for the Object Concept
	1.6.2 Example: Implementation of a Vector Class in C++
	1.6.3 Arrays in Diffpack
	1.6.4 Example: Design of an ODE Solver Environment
	1.6.5 Abstractions for Grids and Fields

	1.7 Coding the PDE Simulator as a Class
	1.7.1 Steady 1D Heat Conduction Revisited
	1.7.2 Nonlinear 1D Heat Conduction Revisited
	1.7.3 Empirical Investigation of a Numerical Method
	1.7.4 Simulation of 1D Waves Revisited
	1.7.5 Simulation of 2D Waves Revisited
	1.7.6 Transient Heat Conduction

	1.8 Projects
	1.8.1 Transient Flow Between Moving Plates
	1.8.2 Transient Channel Flow
	1.8.3 Coupled Heat and Fluid Flow
	1.8.4 Difference Schemes for Transport Equations
	1.8.5 3D Sound Waves

	2 Introduction to Finite Element Discretization
	2.1 Weighted Residual Methods
	2.1.1 Basic Principles
	2.1.2 Example: A 1D Poisson Equation
	2.1.3 Treatment of Boundary Conditions

	2.2 Time Dependent Problems
	2.2.1 A Wave Equation
	2.2.2 A Heat Equation

	2.3 Finite Elements in One Space Dimension
	2.3.1 Piecewise Polynomials
	2.3.2 Handling of Essential Boundary Conditions
	2.3.3 Direct Computation of the Linear System
	2.3.4 Element-by-Element Formulation
	2.3.5 Extending the Concepts to Quadratic Elements
	2.3.6 Summary of the Element-by-Element Algorithm

	2.4 Example: A 1D Wave Equation
	2.4.1 The Finite Element Equations
	2.4.2 Interpretation of the Discrete Equations
	2.4.3 Accuracy and Stability

	2.5 Naive Implementation
	2.6 Projects
	2.6.1 Steady Heat Conduction with Cooling Law
	2.6.2 Stationary Pipe Flow
	2.6.3 Transient Pipe Flow
	2.6.4 Retardation of a Well-Bore

	2.7 Higher-Dimensional Finite Elements
	2.7.1 The Bilinear Element and Generalizations
	2.7.2 The Linear Triangle
	2.7.3 Example: A 2D Wave Equation
	2.7.4 Other Two-Dimensional Element Types
	2.7.5 Three-Dimensional Elements

	2.8 Calculation of Derivatives
	2.8.1 Global Least-Squares Smoothing
	2.8.2 Flux Computations in Heterogeneous Media

	2.9 Convection-Diffusion Equations
	2.9.1 A One-Dimensional Model Problem
	2.9.2 Multi-Dimensional Equations
	2.9.3 Time-Dependent Problems

	2.10 Analysis of the Finite Element Method
	2.10.1 Weak Formulations
	2.10.2 Variational Problems
	2.10.3 Results for Continuous Problems
	2.10.4 Results for Discrete Problems
	2.10.5 A Priori Error Estimates
	2.10.6 Numerical Experiments
	2.10.7 Adaptive Finite Element Methods

	3 Programming of Finite Element Solvers
	3.1 A Simple Program for the Poisson Equation
	3.1.1 Discretization
	3.1.2 Basic Parts of a Simulator Class

	3.2 Increasing the Flexibility
	3.2.1 A Generalized Model Problem
	3.2.2 Using the Menu System
	3.2.3 Creating the Grid Object

	3.3 Some Visualization Tools
	3.3.1 Storing Fields for Later Visualization
	3.3.2 Filtering Simres Data
	3.3.3 Visualizing Diffpack Data in Plotmtv
	3.3.4 Visualizing Diffpack Data in Gnuplot
	3.3.5 Visualizing Diffpack Data in Matlab
	3.3.6 Visualizing Diffpack Data in Vtk
	3.3.7 Visualizing Diffpack Data in IRIS Explorer
	3.3.8 Plotting Fields along Lines

	3.4 Some Useful Diffpack Features
	3.4.1 The Menu System
	3.4.2 Multiple Loops
	3.4.3 Computing Numerical Errors
	3.4.4 Functors
	3.4.5 Computing Derivatives of Finite Element Fields
	3.4.6 Specializing Code in Subclass Solvers

	3.5 Introducing More Flexibility
	3.5.1 Setting Boundary Condition Information in the Grid
	3.5.2 Line and Surface Integrals
	3.5.3 Simple Mesh Generation Tools
	3.5.4 Grid Generation by Super Elements
	3.5.5 Debugging
	3.5.6 Automatic Report Generation
	3.5.7 Specializing Code in Subclass Solvers
	3.5.8 Overriding Menu Answers in the Program
	3.5.9 Estimating Convergence Rates
	3.5.10 Axisymmetric Formulations and Cartesian 2D Code
	3.5.11 Summary

	3.6 Step-by-Step Development of a Diffpack Solver
	3.6.1 Physical and Mathematical Problem
	3.6.2 Editing and Writing Source Code
	3.6.3 A Simplified Test Case
	3.6.4 Creating the Grid
	3.6.5 Running Some Initial 2D Simulations
	3.6.6 Running Real Simulations

	3.7 Adaptive Grids
	3.7.1 Grid Classes with Local Mesh Refinements
	3.7.2 How to Extend an Existing Simulator
	3.7.3 Organization of Refinement Criteria
	3.7.4 Grid Refinements as a Preprocessor
	3.7.5 Example: Corner-Flow Singularity
	3.7.6 User-Defined Refinement Criteria
	3.7.7 Transient Problems

	3.8 Projects
	3.8.1 Flow in an Open Inclined Channel
	3.8.2 Stress Concentration due to Geometric Imperfections
	3.8.3 A Poisson Problem with Pure Neumann Conditions
	3.8.4 Lifting Airfoil

	3.9 A Convection-Diffusion Solver
	3.10 A Heat Equation Solver
	3.10.1 Discretization
	3.10.2 Implementation

	3.11 A More Flexible Heat Equation Solver
	3.11.1 About the Model Problem and the Simulator
	3.11.2 Variable Time Step Size
	3.11.3 Applying a Transient Solver to a Stationary PDE
	3.11.4 Thermal Conditions During Welding

	3.12 Visualization of Time-Dependent Fields
	3.12.1 Filtering Time-Dependent Simres Data
	3.12.2 Storing Fields at Selected Time Points
	3.12.3 Time Series at Selected Spatial Points
	3.12.4 Using ImageMagick Tools
	3.12.5 Animation Using Plotmtv
	3.12.6 Animation Using Vtk
	3.12.7 Animation Using Matlab
	3.12.8 Real-Time Visualization
	3.12.9 Handling Simulation and Visualization from a Script
	3.12.10 Heat Transfer Exercises

	3.13 A Transient Heat Transfer Application
	3.13.1 The Mathematical and Physical Model
	3.13.2 Implementation
	3.13.3 Testing and Debugging the Initial State
	3.13.4 Creating the Grid
	3.13.5 Running Time-Dependent Simulations
	3.13.6 A Scripting Interface for Automating Simulations

	3.14 Projects
	3.14.1 Transient Heat Transfer in a Two-Material Structure
	3.14.2 Transient Flow with Non-Circular Cross Section
	3.14.3 Transient Groundwater Flow

	3.15 Efficient Solution of the Wave Equation
	3.15.1 Discretization
	3.15.2 Implementation
	3.15.3 Extensions of the Model Problem
	3.15.4 Flexible Representation of Variable Coefficients

	4 Nonlinear Problems
	4.1 Discretization and Solution of Nonlinear PDEs
	4.1.1 Finite Difference Discretization
	4.1.2 Finite Element Discretization
	4.1.3 The Group Finite Element Method
	4.1.4 Successive Substitutions
	4.1.5 Newton-Raphson's Method
	4.1.6 A Transient Nonlinear Heat Conduction Problem
	4.1.7 Iteration Methods at the PDE Level
	4.1.8 Continuation Methods

	4.2 Software Tools for Nonlinear Finite Element Problems
	4.2.1 A Solver for a Nonlinear Heat Equation
	4.2.2 Extending the Solver

	4.3 Projects
	4.3.1 Operator Splitting for a Reaction-Diffusion Model
	4.3.2 Compressible Potential Flow

	5 Solid Mechanics Applications
	5.1 Linear Thermo-Elasticity
	5.1.1 The Physical and Mathematical Model
	5.1.2 A Finite Element Method
	5.1.3 Engineering Finite Element Notation
	5.1.4 Implementation
	5.1.5 Examples
	5.1.6 Elastic Vibrations

	5.2 Elasto-Viscoplasticity
	5.2.1 Basic Physical Features of Elasto-Viscoplasticity
	5.2.2 A Three-Dimensional Elasto-Viscoplastic Model
	5.2.3 Simplification; a Forward Scheme in Time
	5.2.4 Numerical Handling of Yield Criteria
	5.2.5 Implementation
	5.2.6 Examples

	6 Fluid Mechanics Applications
	6.1 Convection-Diffusion Equations
	6.1.1 The Physical and Mathematical Model
	6.1.2 A Finite Element Method
	6.1.3 Incorporation of Nonlinearities
	6.1.4 Software Tools
	6.1.5 Melting and Solidification

	6.2 Shallow Water Equations
	6.2.1 The Physical and Mathematical Model
	6.2.2 Finite Difference Methods on Staggered Grids
	6.2.3 Implementation
	6.2.4 Nonlinear and Dispersive Terms
	6.2.5 Finite Element Methods

	6.3 An Implicit Finite Element Navier-Stokes Solver
	6.3.1 The Physical and Mathematical Model
	6.3.2 A Finite Element Method
	6.3.3 Solution of the Nonlinear Systems
	6.3.4 Implementation

	6.4 A Classical Finite Difference Navier-Stokes Solver
	6.4.1 Operator Splitting
	6.4.2 Finite Differences on 3D Staggered Grids
	6.4.3 A Multigrid Solver for the Pressure Equation
	6.4.4 Implementation

	6.5 A Fast Finite Element Navier-Stokes Solver
	6.5.1 Operator Splitting and Finite Element Discretization
	6.5.2 An Optimized Implementation

	6.6 Projects
	6.6.1 Analysis of Discrete Shallow Water Waves
	6.6.2 Approximating the Navier-Stokes Equations by a Laplace Equation

	7 Coupled Problems
	7.1 Fluid-Structure Interaction; Squeeze-Film Damping
	7.1.1 The Physical and Mathematical Model
	7.1.2 Numerical Methods
	7.1.3 Implementation

	7.2 Fluid Flow and Heat Conduction in Pipes
	7.2.1 The Physical and Mathematical Model
	7.2.2 Numerical Methods
	7.2.3 Implementation

	7.3 Projects
	7.3.1 Transient Spherical-Symmetric Thermo-Elasticity
	7.3.2 Transient 2D/3D Thermo-Elasticity
	7.3.3 Convective-Diffusive Transport in Viscous Flow
	7.3.4 Chemically Reacting Fluid

	A Mathematical Topics
	A.1 Scaling and Dimensionless Variables
	A.2 Indicial Notation
	A.3 Compact Notation for Difference Equations
	A.4 Stability and Accuracy of Difference Approximations
	A.4.1 Typical Solutions of Simple Prototype PDEs
	A.4.2 Physical Significance of Parameters in the Solution
	A.4.3 Analytical Dispersion Relations
	A.4.4 Solution of Discrete Equations
	A.4.5 Numerical Dispersion Relations
	A.4.6 Convergence
	A.4.7 Stability
	A.4.8 Accuracy
	A.4.9 Truncation Error
	A.4.10 Traditional von Neumann Stability Analysis
	A.4.11 Examples: Analysis of the Heat Equation

	A.5 Exploring the Nature of Some PDEs
	A.5.1 A Hyperbolic Equation
	A.5.2 An Elliptic Equation
	A.5.3 A Parabolic Equation
	A.5.4 The Laplace Equation Solved by a Wave Simulator
	A.5.5 Well-Posed Problems

	B Diffpack Topics
	B.1 Brief Overview of Important Diffpack Classes
	B.2 Diffpack-Related Operating System Interaction
	B.2.1 Unix
	B.2.2 Windows

	B.3 Combining Diffpack with Other Types of Software
	B.3.1 Calling Other Software Packages from Diffpack
	B.3.2 Calling Diffpack from Other Types of Software

	B.4 Basic Diffpack Features
	B.4.1 Diffpack Man Pages
	B.4.2 Standard Command-Line Options
	B.4.3 Generalized Input and Output
	B.4.4 Automatic Verification of a Code

	B.5 Visualization Support
	B.5.1 Curves
	B.5.2 Scalar and Vector Fields

	B.6 Details on Finite Element Programming
	B.6.1 Basic Functions for Finite Element Assembly
	B.6.2 Using Functors for the Integrands
	B.6.3 Integrating Quantities over the Grid or the Boundary
	B.6.4 Class Relations in the Finite Element Engine

	B.7 Optimizing Diffpack Codes
	B.7.1 Avoiding Repeated Matrix Factorizations
	B.7.2 Avoiding Repeated Assembly of Linear Systems
	B.7.3 Optimizing the Assembly Process
	B.7.4 Optimizing Array Indexing

	C Iterative Methods for Sparse Linear Systems
	C.1 Classical Iterative Methods
	C.1.1 A General Framework
	C.1.2 Jacobi, Gauss-Seidel, SOR, and SSOR Iteration

	C.2 Conjugate Gradient-Like Iterative Methods
	C.2.1 Galerkin and Least-Squares Methods
	C.2.2 Summary of the Algorithms
	C.2.3 A Framework Based on the Error

	C.3 Preconditioning
	C.3.1 Motivation and Basic Principles
	C.3.2 Classical Iterative Methods as Preconditioners
	C.3.3 Incomplete Factorization Preconditioners

	C.4 Multigrid and Domain Decomposition Methods
	C.4.1 Domain Decomposition
	C.4.2 Multigrid Methods

	D Software Tools for Solving Linear Systems
	D.1 Storing and Initializing Linear Systems
	D.1.1 Vector and Matrix Formats
	D.1.2 Detailed Matrix Examples
	D.1.3 Representation of Linear Systems

	D.2 Programming with Linear Solvers
	D.2.1 Gaussian Elimination
	D.2.2 A Simple Demo Program
	D.2.3 A 3D Poisson Equation Solver

	D.3 Classical Iterative Methods
	D.4 Conjugate Gradient-like Methods
	D.4.1 Symmetric Systems
	D.4.2 Nonsymmetric Systems

	D.5 Preconditioning Strategies
	D.6 Convergence History and Stopping Criteria
	D.7 Example: Implicit Methods for Transient Diffusion
	D.8 High-Level Stencil Programming of Finite Difference Schemes
	D.8.1 Finite Difference Stencils
	D.8.2 Basic Structure of a Stencil-Based Simulator
	D.8.3 Defining the Stencils

